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Abstract

Given a finite group H and a free group Fn, we prove that the
wreath product H ≀ Fn admits a metrically proper, isometric action
on a Hilbert space.

1 Introduction

Following [HP98], a space with walls is a pair (X,W) where X is a set and

W is a family of partitions of X into two classes, called walls, such that for

any two distinct points x, y ∈ X, the number w(x, y) of walls separating x

from y, called the wall distance between x and y, is finite.

Let us define the class PW as the class of countable groups G admitting

a left-invariant structure of space with walls such that the corresponding wall

distance is proper, i.e. bounded subsets are finite. The class PW contains

for instance Zn, free groups, surface groups (see 1.2.7 in [CCJ+01] for this

fact). More generally, it contains all groups acting combinatorially properly

on some finite product of trees.

It is known (see [CCJ+01], Corollary 7.4.2) that, if G belongs to the class

PW , then G has the Haagerup property (or is a-T-menable), i.e. G admits

an isometric action on a Hilbert space H that is metrically proper, that is,

lim
g→∞

‖x0 − g · x0‖ = +∞

for some/every x0 in H.
∗This research was done at Centre Bernoulli (EPF Lausanne), in the framework of the

semester “Limits of graphs in group theory and computer science”.
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Recall that the (standard, restricted) wreath product H ≀G of two groups

H and G is the semidirect product H(G)
⋊ G, where G acts by shifting the

direct sum H(G) of copies of H . Up to now, the problem of stability of the

Haagerup Property under wreath products was open. Indeed, the Haagerup

Property is closed under direct sums, but not under general semidirect prod-

ucts. However it is known to be closed under extensions with amenable

quotients [CCJ+01, Example 6.1.6], so that in particular H ≀ G is Haagerup

whenever H is Haagerup and G is amenable.

These were however the only known examples of wreath products with

the Haagerup Property. This note presents the first examples of a-T-menable

wreath products H ≀ G with H 6= 1 and G non-amenable, including the first

natural such example, namely the “lamplighter group” (Z/2Z) ≀ F2 over the

free group F2 of rank two.

Theorem 1 Let H be a finite group. If G is a group in PW, then so is

H ≀ G. In particular, H ≀ G has the Haagerup property.

This latter statement will be generalized in a forthcoming paper, where we

prove that the Haagerup Property is closed under taking wreath products.

The proof of the general case relies on the same basic construction, but

requires more technicalities.

Theorem 1 is proved in Section 2, while Section 3 presents some conse-

quences on the relation between the Haagerup Property and weak amenabil-

ity.

Ackowledgements: Thanks are due to I. Chatterji, C. Drutu and S.

Popa for useful conversations and correspondence, and to N. Ozawa for

suggesting Corollary 3. The second-named author is especially grateful to

Frédéric Haglund for very fruitful discussions and hints about the construc-

tion of families of walls for wreath products.

2 Proof of Theorem 1

We first fix some notation. Write Λ = H(G) and Γ = H ≀G = Λ⋊G. Elements

of Γ are denoted

γ = λg (λ ∈ Λ, g ∈ G).

The support of λ is

supp(λ) = {g ∈ G : λ(g) 6= 1H}.
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If (X,W) is a space with walls, a half-space in X is one of the two classes

of some wall in W. Suppose that G belongs to the class PW , and let us

denote by H the family1 of half-spaces in G. For A ∈ H, we denote by Ac

the other half-space in the same wall, i.e. the complement of A in G. For

A ∈ H and µ : Ac → H a function with finite support, we set

E(A, µ) =: {γ = λg ∈ Γ : g ∈ A, λ|Ac = µ}.

We define a family of walls in Γ as partitions {E(A, µ), E(A, µ)c}, for

A ∈ H and µ : Ac → H finitely supported. We check in three steps that this

equips Γ with a structure of space with walls on which Γ acts properly.

1st step: Γ is a space with walls.

Let γ1 = λ1g1 and γ2 = λ2g2 be two elements of Γ. Let us show that

there are finitely many E(A, µ)’s such that γ1 ∈ E(A, µ) and γ2 /∈ E(A, µ).

Indeed γ1 ∈ E(A, µ) means g1 ∈ A and λ1|Ac = µ (so that µ is determined

once A is given). And γ2 /∈ E(A, µ) means that either g2 /∈ A, or λ2|Ac 6= µ;

since µ = λ1|Ac, this can be re-written:

Ac ∩ ({g2} ∪ supp(λ−1
1 λ2)) 6= ∅.

So A must separate g1 from the finite set {g2} ∪ supp(λ−1
1 λ2). Since G is a

space with walls, this singles out finitely many possibilities for a.

2nd step: Γ preserves the above wall structure.

This follows immediately from the formulae:

gE(A, µ) = E(gA, gµ) (g ∈ G);

λE(A, µ) = E(a, λ|Acµ) (λ ∈ Λ).

3rd step: Γ acts metrically properly on its wall structure.

Let wΓ(γ) be the number of walls separating the unit 1Γ from γ ∈ Γ.

We must prove that, for every N ∈ N, there are finitely many γ’s with

wΓ(γ) ≤ N .

Define analogously wG(g) as the number of walls separating 1G from g in

G, and set BG(N) = {g ∈ G : wG(g) ≤ N}; by our assumption BG(N) is a

finite set.

1Although the family is not assumed injective, we will identify, to avoid subscripts in
the notation, elements of the index set H with the corresponding subsets of G.
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Claim: If γ = λg satisfies wΓ(γ) ≤ N , then {g} ∪ supp(λ) ⊂ BG(N).

Theorem 1 then follows from the claim together with the fact that H is

a finite group.

Proof of the claim: Contraposing, suppose that there exists g′ ∈ {g}∪

supp(λ) with wG(g′) > N . So we find N + 1 distinct half-spaces A0, ..., AN

in H with 1G ∈ Ai and g′ /∈ Ai (i = 0, ..., N). Then the E(Ai, 1Λ)’s are N +1

distinct half-spaces in Γ separating 1Γ from γ = λg, so wΓ(γ) > N . �

3 Weak amenability à la Cowling-Haagerup

Theorem 1 has interesting consequences in view of a recent result of Ozawa

and Popa [OP]. Recall from [CH89] that a countable group G is weakly

amenable if there exists a constant L > 0 and a sequence (fn)n>0 of functions

with finite support on G, converging pointwise to 1, and such that ‖fn‖cb ≤ L

for n > 0, where ‖f‖cb is the Herz-Schur multiplier norm of the function f .

The best (i.e. lowest) possible L for which there exists such a sequence is the

Cowling-Haagerup constant of G, denoted by Λ(G). We set Λ(G) = ∞ if G

is not weakly amenable. Groups which are weakly amenable with constant 1

are also said to satisfy the complete metric approximation property.

In [OP, Corollary 2.11], it is proved that, if H is non-trivial and G is

non-amenable, then H ≀G does not have the complete metric approximation

approximation property. Combining with Theorem 1, we get:

Corollary 2 For H a non-trivial finite group, H ≀ F2 is an a-T-menable

group without the complete metric approximation property. �

This disproves a conjecture of Cowling (see page 7 in [CCJ+01]), stating

that the class of a-T-menable groups coincides with the class of groups with

the complete metric approximation property. Whether every such group is

a-T-menable, is still an open question.

It was pointed out to us by N. Ozawa that from Corollary 2 one can

deduce the following:

Corollary 3 Let H be a non-trivial finite group. The iterated wreath product

(H ≀ F2) ≀ Z is a-T-menable but not weakly amenable.

Proof: It was already observed above that G =: (H ≀F2) ≀ Z is a-T-menable;

on the other hand, for N ≥ 1 consider a subgroup KN of G which is the
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direct sum of N copies of H ≀F2. Then by Proposition 1.3.(a) and Corollary

1.5 in [CH89], we have Λ(G) ≥ Λ(KN) = Λ(H ≀ F2)
N . Since N is arbitrary

and Λ(H ≀ F2) > 1 by the Ozawa-Popa result [OP], we get Λ(G) = ∞. �

In view of the cubulation of spaces with walls, carried out independently

in [CN05] and [Nic04], we get from Theorem 1:

Corollary 4 Let H be a non-trivial finite group. The wreath product H ≀F2

admits a metrically proper, isometric action on a CAT (0) cube complex, but

does not have the complete metric approximation property. �

In contrast, it was recently proved by Guentner and Higson [GH] that a

group acting metrically properly, isometrically on a finite-dimensional CAT (0)

cube complex, has the complete metric approximation property.
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versitaire des Cézeaux, 63177 Aubière Cedex, France

yves.stalder@math.univ-bpclermont.fr
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