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Abstract

Given a finite group H and a free group Fn, we prove that the

wreath product H ≀Fn has the Haagerup property and we estimate its

equivariant compression in L
p-spaces.

1 Introduction

Following [HP98], a space with walls is a pair (X,W) where X is a set and

W is a set of partitions of X into two classes, called walls, such that for any

two distinct points x, y ∈ X, the number w(x, y) of walls separating x from

y is finite. A group G is a group of automorphisms of (X,W) if G acts on X,

preserving the wall structure. The group G acts properly on X if, for every

x0 ∈ X:

lim
g→∞

w(gx0, x0) = +∞.

It is known (see [CCJ+01], Corollary 7.4.2) that, if G acts properly on a

non-empty space with walls, then G has the Haagerup property (or is a-T-

menable), i.e. G admits a metrically proper, isometric action on a Hilbert

space.

An important example of a space with walls is the vertex set of a tree,

where walls are given by edges. A group acting properly on a tree (e.g. a

free group) is therefore a-T-menable.

Let us define the class PW as the class of countable groups G carrying a

structure of space with walls on which G acts properly by left multiplication.

This class contains for instance Zn, free groups, surface groups (see 1.2.7 in
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[CCJ+01] for this fact). More generally it contains all groups acting properly

on some finite product of trees.

Recall that the (standard, restricted) wreath product of two groups H and

G is the semidirect product H(G)
⋊G, where G acts by shifting the direct sum

H(G) of copies of H . Up to now, the problem of stability of the Haagerup

Property under wreath products was open. Indeed, the Haagerup Prop-

erty is closed under direct sums, but not under general semidirect products.

However it is known to be closed under extension with amenable quotients

[CCJ+01, Example 6.1.6], so that in particular H ≀ G is Haagerup whenever

H is Haagerup and G is amenable. These were however the only known

examples of wreath products with the Haagerup Property. This paper con-

tains the first examples of a-T-menable wreath products H ≀ G with H 6= 1

and G non-amenable, including the first natural such example, namely the

“lamplighter group” (Z/2Z) ≀ F2 over the free group F2 of rank two.

Theorem 1 Let H be a finite group. If G is a group in PW, then so is

H ≀ G. In particular, H ≀ G has the Haagerup property.

In fact, the proof we present below works in more general cases. We

restrict to Theorem 1 because of its interesting connections with operator

algebras and harmonic analysis (see below), while its proof avoids most of

technical problems. The general result, to appear in a forthcoming paper, is:

Theorem The Haagerup property and the property of existence of a metri-

cally proper action on some space with walls, are closed under taking wreath

products.

Equivariant Hilbert space compression was defined by Guentner and Kam-

inker [GK04] as a way to quantify the Haagerup property for finitely gen-

erated groups G. We define B(G) as the supremum of those t ∈ [0, 1] such

that there exists an affine isometric action α of G on a Hilbert space, with

‖α(g)(0)‖ � |g|tS,

where |g|S denotes word length on G. We prove:

Theorem 2 Let Fn be the free group on n generators (2 ≤ n < ∞), and H

be a finite group. Then, the following hold:
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1. One has B(H ≀ Fn) = 1
2
;

2. H ≀Fn admits an affine isometric action β on some L1-space, such that

the map γ 7→ β(γ)(0) is a quasi-isometric embedding (with respect to

the word length).

Theorem 1 has interesting consequences in view of a recent result of Popa

and Ozawa [PO]. Recall from [CH89] that a countable group G has the

complete metric approximation property (also called “weak amenability with

constant 1”) if there exists a sequence (fn)n>0 of functions with finite support

on G, converging pointwise to 1, and such that lim supn→∞
‖fn‖cb = 1, where

‖f‖cb is the Herz-Schur multiplier norm of the function f .

In [PO, Corollary 2.11], it is proved that, if H is non-trivial and G is

non-amenable, then H ≀G does not have the complete metric approximation

approximation property. Combining with Theorem 1, we get:

Corollary 3 For H a non-trivial finite group, H ≀ F2 is an a-T-menable

group without the complete metric approximation property. �

This disproves a conjecture of Cowling (see page 7 in [CCJ+01]), stating

that the class of a-T-menable groups coincides with the class of groups with

the complete metric approximation property. Whether every such group is

a-T-menable, is still an open question.

It was recently proved by Guentner and Higson [GH] that a group act-

ing properly isometrically on a finite-dimensional CAT (0) cube complex, has

the complete metric approximation property. In view of the dictionary be-

tween spaces with walls and CAT (0) cube complexes, set up in [CN05] and

independently in [Nic04], we get from Theorem 1:

Corollary 4 Let H be a non-trivial finite group. The wreath product H ≀F2

admits a proper isometric action on a CAT (0) cube complex, but does not

have the complete metric approximation property. �

In other words, the finite-dimensionality assumption cannot be omitted

in the Guentner-Higson result.

Ackowledgements: Thanks are due to I. Chatterji, C. Drutu and S.

Popa for useful conversations and correspondence. The second-named author

is especially grateful to Frédéric Haglund for very fruitful discussions and

hints about the construction of families of walls for wreath products.
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2 Proof of Theorem 1

We first fix some notation. Write Λ = H(G) and Γ = H ≀G = Λ⋊G. Elements

of Γ are denoted

γ = λg (λ ∈ Λ, g ∈ G).

The support of λ is

supp(λ) = {g ∈ G : λ(g) 6= 1H}.

If (X,W) is a space with walls, a half-space in X is a class of some wall

in W. By assumption, G carries a structure of space with walls on which it

acts properly, and we denote by H the set of its half-spaces. For a ∈ H, we

denote by ac the other half-space in the same wall, i.e. the complement of a

in G. For a ∈ H and µ : ac → H a function with finite support, we set

E(a, µ) =: {γ = λg ∈ Γ : g ∈ a, λ|ac = µ}.

We define walls in Γ as partitions {E(a, µ), E(a, µ)c}, for a ∈ H and

µ : ac → H finitely supported. We check in three steps that this equips Γ

with a structure of spaces with walls on which Γ acts properly.

1st step: Γ is a space with walls.

Let γ1 = λ1g1 and γ2 = λ2g2 be two elements of Γ. Let us show that

there are finitely many E(a, µ)’s such that γ1 ∈ E(a, µ) and γ2 /∈ E(a, µ).

Indeed γ1 ∈ E(a, µ) means g1 ∈ a and λ1|ac = µ (so that µ is determined

once a is given). And γ2 /∈ E(a, µ) means that either g2 /∈ a, or λ2|ac 6= µ;

since µ = λ1|ac , this can be re-written:

ac ∩ ({g2} ∪ supp(λ−1
1 λ2)) 6= ∅.

So a must separate g1 from the finite set {g2} ∪ supp(λ−1
1 λ2). Since G is a

space with walls, this singles out finitely many possibilities for a.

2nd step: Γ preserves the above wall structure.

This follows immediately from the formulae:

gE(a, µ) = E(ga, gµ) (g ∈ G);

λE(a, µ) = E(a, λ|acµ) (λ ∈ Λ).
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3rd step: Γ acts properly on its wall structure.

Let wΓ(γ) be the number of walls separating the unit 1Γ from γ ∈ Γ.

We must prove that, for every N ∈ N, there are finitely many γ’s with

wΓ(γ) ≤ N .

Define analogously wG(g) as the number of walls separating 1G from g in

G, and set BG(N) = {g ∈ G : wG(g) ≤ N}; by our assumption BG(N) is a

finite set.

Claim: If γ = λg satisfies wΓ(γ) ≤ N , then {g} ∪ supp(λ) ⊂ BG(N).

Theorem 1 then follows from the claim together with the fact that H is

a finite group.

Proof of the claim: Contraposing, suppose that there exists g′ ∈ {g}∪

supp(λ) with wG(g′) > N . So we find N + 1 distinct half-spaces a0, ..., aN in

G with 1G ∈ ai and g′ /∈ ai (i = 0, ..., N). Then the E(ai, 1H)’s are N + 1

distinct half-spaces in Γ separating 1Γ from γ = λg, so wΓ(γ) > N . �

3 Equivariant Lp-compression

For G a finitely generated group, we define the equivariant Lp-compression

of G (where 1 ≤ p < ∞) as

Bp(G) = sup{t ∈ [0, 1] : ∃α : ‖α(g)(0)‖ � |g|tS}

where α is an affine isometric action of G on some Lp-space. Clearly B2(G)

coincides with the B(G) previously introduced.

Proposition 5 Let H be a finite group. Then Bp(H ≀Fn) ≥ 1
p

for 1 ≤ p < ∞.

Proof of Theorem 2, part 1: By the above Proposition, B(H ≀Fn) ≥ 1
2
.

Equality follows from the result by Guentner and Kaminker [GK04] that

groups with B > 1/2 must be amenable. �

Proof of Proposition 1: We may assume H 6= {1}. For h ∈ H\{1H},

define δ(h) ∈ Λ as

(δ(h))(g) =

{

1H if g 6= 1Fn

h if g = 1Fn

As a finite generating set of Γ = H ≀ Fn, let us take the set S consisting in

the union of the standard generators of Fn and the δ(h)’s, h ∈ H\{1h}.
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By Proposition 3.1 in [CTV], from the wall structure on Γ, one deduces an

affine isometric action αp of Γ on some Lp-space, with wΓ(γ) = ‖αp(γ)(0)‖p
p.

So the Proposition follows from the

Claim: For γ ∈ Γ with wΓ(γ) ≥ 2, one has 1
2
wΓ(γ) ≤ |γ|S ≤ 2 wΓ(γ).

To prove this claim, we appeal to a result of Parry [Par92, Theorem 1.2]:

if γ = λg, then

|γ|S = LFn
(g, λ) + ♯(supp(λ))

where LFn
(g, λ) is the length of the shortest path from 1Fn

to g in the Cayley

tree of Fn, passing through all points in supp(λ).

Lemma 6 Let T be a finite tree with m vertices. For every two vertices x, y,

the length of the shortest path from x to y, passing through all vertices of T ,

is 2m − 2 − dT (x, y).

We apply this lemma to the subtree T of Fn generated by 1Fn
, g, and

supp(λ). Let m denote its number of vertices. Then by the lemma

|γ|S = 2m − 2 − |g|Fn
+ ♯(supp(λ))

while wΓ(γ) = 2(m − 1), each edge of T giving rise to two walls in Γ (since

H 6= {1}). As |g|Fn
≤ diam(T ) ≤ m − 1, we already get the first inequality

1
2
wΓ(γ) ≤ |γ|S. On the other hand ♯(supp(λ)) ≤ m; since wΓ(γ) = 2(m−1) ≥

2, we get the second inequality

|γ|S ≤ 3m − 2 ≤ 4(m − 1) = 2wΓ(γ).

�

Postponing the proof of Lemma 6, we show how to finish the proof of

Theorem 2.

Proof of Theorem 2, part 2: It suffices to set β = α1, where α1 is

defined as in the proof of Proposition 1. This proof shows that γ 7→ β(γ)(0)

is a quasi-isometric embedding. �

Proof of Lemma 6: The tree T has m− 1 edges. In every path from x

to y, passing through all vertices of T , every edge not on the unique geodesic

from x to y must be crossed at least twice, since T has no circuit. So such a

path has length at least 2(m− 1 − dT (x, y)) + dT (x, y) = 2m− 2 − dT (x, y).

To prove that a path with this length always exists, we work by induction

over m, the case m = 1 being obvious. In general, we distinguish two cases.
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• The degree of x is at least 2. Remove then from T some branch T ′

hanging from x, not containing y. Let k be the number of vertices of

T ′. By induction assumption we find a path from x to x, of length

2+(2k−2), through all the vertices of T ′; and we find a path of length

2(m − k) − 2 − dT (x, y), from x to y, through all the vertices of T\T ′.

Composing these two paths we get the desired path.

• The degree of x is 1, i.e. x is a terminal vertex. Let x′ be the unique

neighbor of x. If y 6= x, we find by induction assumption a path from

x′ to y in T\{x}, of length 2m − 4 − dT (x′y), through all vertices in

T\{x}. Adding the edge xx′ at the beginning, we get a path of the

desired length. The case x = y is similar. �
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