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Stability Guaranteed Active Fault Tolerant Control of Networked
Control Systems

Shanbin Li, Dominique Sauter, Christophe Aubrun, Josephé&ram

Abstract— The stability guaranteed active fault tolerant con-  failures. This makes the issue of fault tolerant control in NCS
trol against actuators failures in networked control systems animportant one and entails designing strategies to cope with
(NCS) is addressed. A detailed design procedure is formulated g,y of the fundamental problems introduced by the network
as a convex optimization problem which can be efficiently solved . Lo .. .
by existing software. An illustrative example is given to show such as bandwidth I'm'tat'ons’ quantlzatlpn .and sampling
the efficiency of the proposed method for NCS. effects, message scheduling and communication delays. Mo-

tivated by the above considerations, we address the problem
. INTRODUCTION of fault tolerant control in NCS with time-varying delays.

Fault tolerant control (FTC) techniques against actuat@pecifically, we extend the results of reference [4] for the
faults can be classified into two groups: passive and actieabilization of a plant, subject to modehcertaintiesand
approaches. In passive FTC systems, a single controller witfetuator faults which is controlled over a communication
fixed structure/parameters is used to deal with all possibleetwork that induces time-varying but bounded delays.
failure scenarios which are assumed to be knawpriori.

Consequently, the passive controller is usually conservative. % 3

Furthermore, if a failure out of those considered in the ——A pr B

design occurs, the stability and performance of the closed-

loop system might not be guaranteed. Such potential limita- o i3 B

tions of passive approaches provide a strong motivation for I"dilc_ﬂ*zr _____ il ="

the development of methods and strategies for active FTC i 5 - 0. o
Tie &) (&

(AFTC) systems. : C' G OOO

In contrast to passive FTC systems, AFTC techniques rely L

on a real-time fault detection and isolation (FDI) scheme SW'T%
and a controller reconfiguration mechanism. Such techniques
allow a flexibility to select different controllers according
to different component failures, and therefore better perfor-
mance of the closed-loop system can be expected. However,
this holds true when the FDI process does not make an incor- {
rect or delayed decision [1]. Some preliminary results have
been obtained on AFTC which is immuneitaperfectFDI
process [2], [3]. In reference [4], the latter issue is further
discussed in a classical setting (i.e., point-to-point control)
by using the guaranteed cost control approach and online
controller switching in order to ensure stability of the closed-
loop system at all times. The aim of this paper is to extend
the results in reference [4] to plants controlled over digital Il. PROBLEM STATEMENT
communication networks. In such networks, the information Figure 1 shows the basic networked control architecture
transfer from sensors to controllers and from controllersonsidered in this paper and which consists of a single
to actuators is not instantaneous but suffers communicatiemcertain plant, with few sensors and actuators, controlled
delays. These network-induced delays may impact adversady a digital controller in a centralized structure. The delays
on the stability and performance of the control system [Sinduced by the network in the closed-loop control system are
[6]. Networked control systems (NCS) are now pervasivenodelled as time-varying quantitiegk) = 73 arising from
and such systems are long-running real-time systems whige communication delays between sensors and controllers
should function in a correct manner even in the presence af timek. For the simplicity of analysis, we assume that the
. . 4 ontrollers and actuators are located at the same side and
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Fig. 1. Networked control system with actuator failures



link as depicted in figure 1 can be described by the following  the smallest possible value for* under all admissible
dynamical and state-delayed feedback equations: plant uncertainties andll actuator failure modes

« (ii) redesign that part of the above controller associated

ok +1) = (A+ DA(K)E)z (k) + BLu(k), @ to only one fault-free actuator in order to improve the
z(0) = wo, 2) robust performance without loss of the stability property
u(k) = Kx(k — 7(k)) 3) of the design in step (i). Step (ii) repeats for all
actuators and results in a bankaf controllers.

"It follows from inequalitym < N = 2™ — 1, that the
cardinality of the bank of controllers (which is equal to the
number of actuators) is less than the cardinality of the set
L of faulty modes. For each faulty mod#, the controller
to be switched-on should be the best as ranked with respect
0 a closed-loop performance index. In this paper, we will
not address the switching and reconfiguration mechanism,

where z(k) € R™ is the state of the uncertain plant
u(k) € R™ is the control input,A, B, D, E are all real
constant matrices. Matri¥X is the controller gain matrix to
be designed and\(k) is an uncertain time-varying matrix
satisfying the boundA(k)TA(k) < I where I denotes
the identity matrix with appropriate dimension. The faul
indicator matrixL is given by

L =diag{ly,...,lm} (4) we focus on the design of the bank wf controllers
with 1; € {0,1} for j = 1,2, ...,m and wherd; = 1 means Ill. AFTC DESIGN FORNCS
that the jth actuator is in healthy state, whereas tfia A. Step (i): Robust Stability
actuator is meant to experience a total failure whes- 0. The control law (3) applied to plant (1) results in the

Having a finite number of actuators, the set of possiblponowing system:

related failure modes is also finite and, by abuse of notation,

we denote this set by a(k+1) = Aya(k) + BLKx(k — 7(k)) (8)
£={ct ... N ) where A, :_A + DA(k)E. The cost function associated to

‘ system (8) is

with N = 2™ — 1. Each failure modeZ’, (i = 1,2,..., N —oo T

is therefore an element of the sét We (also viewL? a)s J = Yo e (K)Qe(k) ©)

a matrix, i.e., as a particular pattern of matdkin (4) where zI'(k) = [27(k), 2T(k — 7(k))], and Q =

depending on the values 6f(j = 1,2,...m). Throughout, diag{Q:, K" Q2K }. Under the assumptions made in sec-

when £ is invoked as a matrix, it will mean that matri& tion Il, we state the following result:

varies over the set of matrices in (5). Note that the faulty Theorem 1:If there exists a gain matriX, a scalare >

mode £’ in the NCS architecture of figure 1 is estimated), Symmetric positive-definite matriceB;, € R"*", R €

by the FDI unit. In order to ensure that system (1) shoul®™*", S € R"*", and matrices?, € R"*", P; € R"*",

remain controllable, we assume that the Se¢xcludes the W € R?"*?", M e R*"*" such that the following matrix

elementdiag{0,0,...,0}, i.e., at least one actuator shouldinequalities are satisfied:

be healthy. We further assume that the time-varying delay

7(k) lies between the following positive integer bounds r oprl O | uy ET]]
andryy, i.e., BLK 0 <0 (10)
¥ —R+KTQyK 0
T < 7(k) < TN (6) . . Q2 T
Given positive definite symmetric matrics and@-, we W M_
consider the quadratic cost function: x S 20 1)

J =320 [#T (R)Qua(k) +u” (F)Qeu(k)]  (7)  with

T

and with respect to this cost function, we define the guar-1 — pT [ 0 1 } + { 0 I } P

anteed cost controller in the event of actuator failures as A-1 —1I A-T -1

follows. 4 epT { 0 0 } I { pR+ Qq 0 }
Definition 1: If there exists a control lawu(k) and a 0 DDT 0 P +1uS

positive scalar/* such that, for all admissible uncertainties T

A(k) andall failure modes.? € £, the closed-loop system W[ M0 ]+ M 0]

(1)-(3) is stable with cost function (7) satisfying < J*, p=1+(rar —7m), P= { P 0 }

then.J* is said to be a guaranteed cost arfét) a guaranteed Py P
cost controller for the uncertain system (1). Then, system (8) is asymptotically stable and the cost func-
In the next section, we will proceed through two mairtion (9) satisfies the inequality:
steps to design a cost guaranteed active fault tolerant control J <2zT(0)P: (0 -1 T (1) Ra(l
in the NCS framework. These steps are : e ( )O 12(0) + Zfl:‘TMIT( JRz(D)
« (i) construct a fault-tolerant controller (i.e., a robust con- + 20— rnt1 2i=—110Y (DSY(D) 12)
troller), with structure as given by (3), which achieves + Zgﬂjﬂhz Sy 12T () Ra(l)



wherey(l) = z(l + 1) — z(l). where

Proof: See the appendix. _l _ U, = Z42" 4l + Wi
Remark 1:The x represents blocks that are readily in- Uy = Y+XA-DT =27+ 7uWa + §(BLF)T
ferred by symmetry U = Y —-YT 47ryWs+eDDT

XET wnz¥ 0 x Z7T
0 YT 0 0 YT

Remark 2:Note that the upper bound in equation (12) | ¥4
depends on the initial condition of system (8). To remove | Va2

the dependence on the initial condition, we suppose that th Was . 0 0 Fi 0 ,10

initial state of system (8) might be arbitrary but belongs to Vs = diag{—el,—mn$,-Qy", —Qr ", —X}

the setS = {z(l) € R" : z(l) = Uv, v"v < 1, I = Tnen, the control law

-1y, —Tm + 1, ..., —Tm}, WhereU is a given matrix.

Then inequality (12) leads to: u(k) = FX (k- (k) (16)

J < Amax(UT PLU) 4 p12max(UT RU) + p2Amax (U7 SU) (13)  is a guaranteed cost networked control law for system (1)

and the corresponding cost function satisfies:

where Ay« (-) denotes the maximum eigenvalue of matrix - - )
(-)s pr = p(Tar +7m)/2 and po = 2707 (Tar + 1). J Lmax(U7 X 7U) + prdmax(U” X LX V) 17)
+ pQAmax(UTgilU)

B. Step (i): Controller Design wherep; = p(rar + 7m)/2 and py = 273 (ar + 1).

By Sherman-Morrison matrix inversion formula, we have: Remark 3:From (17), we establish the following inequal-

ities:
Pl = —le_l -1 O—1 T T
—Py PP Py [OJ UX} <0, [ﬂl X(élX} <0,
In the sequel, we will denot&X = P!, Y = P;! and —~I UT (18)
Z = —P;'P,P[*. We further restrictM to the following [ S] <0

case in order to obtain a linear matrix inequality (LMI) (see
e.g. [7]): whereq, (3, and~y are scalars to be determined. It is worth

noting that condition (18) is not a LMI because of the term
0 —XL~'X. This is also the case for condition (15) which is
M = 6PT [ BLK } not a LMI because of the ter’Y S—!X. Note that for any
matrix X > 0, we have:
where § is a scalar parameter. Pre- and post-multiply _— _ =
equation (10) bydiag{(P~")T, P!, I} and diag{P~", XSTX 22X -5, XLTX=22X-1L

P!, I} respectively; also pre- and post-multiply equatior?iven a prescribed scaldr the design problem of the op-
(11) by diag{(P~1)", P{*} anddiag{P~", P;"'} and de- timal guaranteed cost controller can be formulated therefore

note: as the following optimization problem:
- OP1: i
L=P'RP[', F=KP[', §=57", s o A Ll
(P-YTW P! = [ Wi Wy } . (i) Equation(14)
* Ws W, W, 0
Applying the Schur complement and expanding the block (i) * W 5B£F_ >0
matrices, we obtain the following result under the assump- * x 2X -9
tions made in section II. s.t.
Theorem 2:Suppose that for a prescribed scalathere i [=ar UT —BI UT

exists a scalae > 0, matricesX > 0, Y, Z, F, L > (i) |, x| <0 ], ox 4| <O
0, S >0, Wy, Wy, Ws, such that the following matrix I UT
inequalities are satisfied: . -3 <0

U Wy 0 Uy ] (19)

% W3 (1—8)BLF Wy Clearly, the above optimization problem (19) is a convex

ok —L Wy | < 0 (14) optimization problem which can be effectively solved by

* Ok * Vs existing LMI software [8]. Thus, the minimization af +
Wi W 0 ] p18 + poy implies the minimization of the cost in (9). By
* Wz 6BLF | >0 (15) applying a simple one-dimensional search avéar a certain

«  x XSTIX | a1, @ global optimum cost can be found.



C. Step (ii): Robust Stability 0, S >0, Wi, Wy, W3, such that the following matrix

Based on the controller designed in Theorem 2, let J§€qualities are satisfied:
assume that actuaters fault-free, then we can redesign the

i-th row of controller gain matrix’ to improve the robust T, \Pz 0 \?41 i
performance for the system against actuator failures. We can | * W3 BiLKG;X + (1 —-0)biF™ VY <0 (24)
rewrite the overall control system as kK —L Wys
* * * Vs
z(k+1) = Avz(k) + (B; L: K5 + biki)x(k — 7(k)) (20) W W 0 q
whereA; = A+ DA(k)E, matrix K; is obtained by deleting x Wi  dbF* >0 (25)
the i-th row from K, B; is obtained by deleting théth * x  XSTlx
column from B and £; is obtained by deleting-th row and -
i-th column from£. The cost function associated to system Where
(20) reads as: (131 = Z+ZT 4+ ul +muWs
. Uy = Y+XA-DT =27 4+ 7aWa +6(b;F*)T
J = Zk:o xZ(k)Qxe(k) (21) i \1,3 = Y —YT 4 7yWs+eDDT
with «f(k) = [T(k), 27k - 7(k)), @ = |Yu XEY iz o0 0 X Z)
diag{Q1, kT Qaik;+ KX Qy;K;}, whereQ,; is obtained by | Y42 | = 0 m¥m 0 0 0¥
. ¢ i : T3 0 0 (FHT XKT' 0 0
deleting thei-th row andi-th column from@-. With regard & = i s 3 . 1oy
to system (20) wheré; is assumed to be known, we have 5 = diag{=el,—TmS, =Q3, —Qy, —Qr, ~ X}
the following result Then, theith control law
Theorem 3:If there exists a gain matrik;, a scalare > wi(k) = F* X Va(k — 7(k)) (26)

0, symmetric positive-definite matriceB, € R"*", R €
R™", S € R™", and matricesP, € R"*", P3; € R™™", is a guaranteed cost networked control law of system (20)
W e R#2n M e R?*™ ™ such that the following matrix and the corresponding cost function satisfies:

inequalities are satisfied:
q J umax(UTX M) + prdmax(UT X TPLXTU)

_ 27
T + pQAnlax(UTsilU) ( )
r pT 0 -m | E
B;L; K5 + bik; 0 <0 (22) wherepy = u(7ar + 7 ) /2 @and po = 277 (Tar + 1).
% —R+ k] Qaiki + K] Qui K3 0 ’ Given a prescribed scala, the redesign problem of the
* * —el

optimal guaranteed cost controller can be formulated as the
{W M] S0, (23) following convex optimization problem:

* S
OoP2: min _ __ (a+p1S+p2v)
Then, system (20) is asymptotically stable and the cost & XY, Z, P15, W1, Wa, Wa
function (21) satisfies inequalit{12). (i) Equation(24)
Proof: Similar to the proof of Theorem 1. W, W 0
D. Step (ii): Controller Redesign (i) * Ws 5biF*_ 20

Proceeding as in Step (i), we restritf to the following ok 2X -8

case in order to obtain a LMI:

o | —al  UT —BI ur
m=spT| ° (i) { * —X}<O’ [ * —2X+L]<O’
- bik; _ T
~vI U <0
where/ is a scalar parameter. Pre- and post-multiply equa- x =S
tion (22) with diag{(P~")", P; ', I} and diag{P 1, (28)
P!, I} respectively; also pre- and post-multiply equation
(23) with diag{(P~")T, P, '} anddiag{P~', P, '} respec- IV. TLLUSTRATIVE EXAMPLE
tively and denote: The dynamics are described as follows:
L:P71RP717 F*:kipfl’ 525—17 _ 0.9 0 _ 0.2 0.1
bt ! A=102 05| B 0 —01 |’

(P~hHf'wp = [Wl WQ} .

* W3

0 0.1 01 0
D{O.l 0]’E{0.1 —0.1}’
The Schur complement trick leads to the following controller . . .
redesign result, and the simulation parameters are given as:

Theorem 4:Suppose that for a prescribed scalathere /10 101 0 U— 1 0
exists a scalae > 0, matricesX > 0, Y, Z, F*, L > Q1 = 0 11’ Q2 = 0 01|’ 101



Whenr,, = 1,7y = 2 and§ = 1, by OP1 (19), the cost with controllers in the designed bank, the proposed active
is obtained as/; = 61.6653 and the fault-tolerant controller FTC is able to guarantee at least the closed-loop stability of

can be designed for Step (i): the overall system.
ki1 [ —0.0812x 1075 —0.1333 x 107° V. CONCLUSION
ky | 7 | —0.1865 x 1075 —0.3060 x 107°

In this paper, the stability guaranteed active fault tolerant
In Step (ii), by OP2 (28), the cost and the feedback gainsontrol against actuators failure in networked control system
are redesigned as with time-varying but bounded delays has been addressed.
. A detailed design procedure is formulated as a convex

Ja = 39.0026, k7 = [ —0.8776 —0.2857 ], optimization problem which can be efficiently solved by

J3 = 49.9616, k} = [ —0.6494 —0.4161 } . existing software. An illustrative example is also given to
show the efficiency of the proposed method for networked

As a result, the two controllers are determined as fOHOWS:control systems.

T
X Y-N

YT — NT A

—24TNb < l Z

k: _0.8776 —0.9857 APPENDIX:PROOF OFTHEOREM 1
B { ko } - [ —0.1865 x 1075  —0.3060 x 107> } ’ The following matrix inequalities are essential for the
proof of theorem 1:
ﬁz . ky _ —0.0812 x 1075 —0.1333 x 105 Lemman 1><7[19] Assume thatl() S Rn“,b() i?zzb , and
k| T —0.6494 _0.4161 N(-) € R™>*™ _ Then, for any matrices( € R "™, Y €
Rraxme and Z € R™*™ the following holds:
In the simulation, the step disturbance 1 as shown in Fig.
2-(a) enters into the system at time instant 35 and disappears a
at time instant 40. The step disturbance 2 as shown in Fig. b
2-(b) enters into the system at time instant 5 and disappears
at time instant 10 . In figure 2-(c), the solid line represents
the failure of actuator 1 which occurs at time instant 15 an§here vT 7 > 0.
disappear; at time insta_mt 3_5, occurs again at time instant| o mia 2:[10] Let Y be a symmetric matrix andl, E
55 and disappears at time instant 65. In figure 2-(d), thge given matrices with appropriate dimensions, then
solid line represents the failure of actuator 2 which occurs
at time instant 35 and disappears at time instant 45, occurs Y +HFE+ETFTHT <0
again at time instant 65_and_ disappears at time @nstant 8\90Ids for all ' satisfying FTF < I, if and only if there
The delay of fault detection is assumed to be 3 time steps, . .
Co . C . “TeéXists a scalae > 0 such that:
which is represented by dash-dotted lines as shown in figure
e e SToaen oo e S8e. i MTE <
i ' Proof: Note thate(k—7(k)) = (k) =325, ) ¥(D),
o the dotted _Ime_ represents the sta_te response fWherey(l) — 2(I+1)—z(1). Then from system (8), we have:
controller-switching sequence °l #2 is the initial
controller, andil is switched-on at time instant 38, then
12 at time instant 48§1 at time instant 68; 0= (A1 + BLK — Dx(k) —y(k) — BEKZ?";,:J(,C) y(1)
« the solid line represents the state response for controller- (29)
switching sequence 1: #1 is the initial controller, and Choose the Lyapunov-Krasovskii function candidates as
12 is switched-on at time instant 38, theéih at time follows:
instant 48,42 at time instant 68; V(k) = Vi(k) + Va(k) + V3(k) (30)
« the dashed line represents the state response under tme
fault tolerant control of step (i); where

. the dot-dashed line represents state response under Vi(k) = 2" (k) Pix(k)

standard discrete-time linear quadratic regulator design k—1

without considering any time-delay and faults, which is Va(k)= Y 2"()Rx(])

constructed by the Matlab commaudd gr . I=k—1(k)
The trace of matrices—=2@)" __ is used as a perfor- —1 kol

simulation ste T

mance measure for comparison, where represents the Va(k)= > Y y"(D)Sy()
state trajectory in the different schemes. After computation, O=—7n I=k+0
we obtain for the above four scenarios the trages = ~Tm+l k-1 .
0.0279, Tro = 0.0338, Tr3 = 0.0499, T'ry = 0.4236 which + Z Z z” (D) Rx(l)
means thatl'r, < Tro < Trs < Try. We can draw the O=—Tn+21=k+0-1

conclusion that the proposed method for sequerfceidithe Taking the forward difference for the Lyapunov functional
best control scheme, and in all possible switching scenarid§ (k), we have:
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AVi (k) = 22" (k) Pry(k) + y" (k) Pry(k)

From (29), we have:

22" (k) Pry(k)

wheren” (k) = [ 27 (k) y”(k) ]. Choose constant matri-
cesW, M andS satisfying (11), by Lemma 1, we have:

k-1

= 2nT(k)PT[ (A1 +BLK —Iz(k)

y(k)

IO I

I=k—7(k)
k—1

< un” ()Wnk)+ >y ()Sy(D)

l
+ 217 (k) {M —PT {BEK} } (@(k) — z(k — (k)

Similarly,

(1)

k—1
—y(k)—BLK > y()
I=k—7(k)

(32

disturbance2

Failure of actuator 2

0.1y

0.05¢1

0.5¢

<

(b)

20

40 60 80
(d)

80

—+

Note that:
k—1

>

I=k+1—7(k+1)
k—1

>

l=k4+1—7p,
k—1

>

I=k+1—7(k)

So, we have:

(]

I=k4+1—7(k+1)

=T () Rz (1) +

(1) Rz (1) + Z

80

time/step

Disturbance, Actuator Failures and State Response

T (1) Rz (1)

k—Tm

>

I=k+1—7(k+1)

=T (1) Rz (1)

k—Tm
T (1) Ra(l)
I=k+1—7p1

AV, (k) < 2T (k)R (k) — 2T (k — 7(k))Rx(k — 7(k))

+ 3y @ (DR (D)
Furthermore, we have:
AVs(k) = may” (k)Sy(k) — S5, v (DSy()

(34)



2" (k)R (k) = Y250, 2" ()Ra(l)
(35)

+(Tm — Tm)

Combining (9) and (31)-(35), we have:

AV (k) < €7 (k)[©0(Tm, Tar) + DA(K)E + ETAT (k) DT ¢ (k)
— 2. (k)Que (k)
where

¢h(k) =

DT =

[n" (k) @ (k—7(k))]

0 DTIP 0] ,E =[]
[ 0

Fo P [BEK

—R+KTQuK

0

DDT]P

}’01;],

—

@()(Tm7TM) = )

O O x

[og=T—ePT [
By Lemma 2, we have:
AV (k) < €7 (k)[O0(Tm. Tvr) + €DDT + e ' ET E)¢(k)

— ¢ (k)Que(k)
By Schur complement and from (10), we have:

AV (k) <z (k)Que(k)

Summing both sides of the above inequality fronto oo

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8

(9]

[10]

and using system stability yields equation (12), and from

definition 1, this completes the proof of the theorem. m
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