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Robust Fault Isolation Filter Design for Networked Control Systems

In this paper, the effect of network-induced delay introduced into the control loop is modelled as time-varying disturbance. Based on this model, a fault isolation filter (FIF) for fault detection of networked control systems (NCSs) with multiple faults is then parameterized. Directional residual generations decoupling from the disturbance ensure the treatment of multiple faults appearing simultaneously or sequentially. The remaining degrees of freedom in the design of the filter's gain are used to satisfy an H ∞ disturbance attenuation and poles assignment constraints in the frame of Markov jump linear systems (MJLS). The sufficient existence conditions of the free parameters are formulated as a convex optimization problem over a couple of linear matrix inequalities (LMIs). An illustrative example is given to show the efficiency of the proposed method for NCS.

Introduction

Networked Control Systems (NCSs) may represent a class of spatially distributed systems wherein the plants, sensors, controllers and actuators are assembled feedback loops through a shared communication network. Because of the inherent complexity of such systems, the control issues of NCS have attracted most attention of many researchers with taking into account network-induced delays and/or packet losses, and so on. For instance, the stability and stabilization problems of NCS were investigated in [START_REF] Halevi | Integrated communication and control systems: Part I-Analysis[END_REF][START_REF] Nilsson | Stochastic analysis and control of real-time systems with random time delays[END_REF][START_REF] Branicky | Stability of Networked Control Systems: Explicit Analysis of Delay[END_REF][START_REF] Zhang | Stability of networked control systems[END_REF][START_REF] Li | LMI approach to guaranteed cost control for networked control systems[END_REF] for network-induced delays, [START_REF] Ling | Robust performance of soft real-time networked control systems with data dropouts[END_REF][START_REF] Seiler | An H∞ approach to networked control[END_REF] for packet losses, and [START_REF] Hu | Stochastic optimal control and analysis of stability of networked control systems with long delay[END_REF][START_REF] Yu | An LMI approach to networked control systems with data packet dropout and transmission delays[END_REF][START_REF] Yue | Network-based robust H∞ control of systems with uncertainty[END_REF][START_REF] Li | Guaranteed cost control of networked control systems with time-delays and packet losses[END_REF] for network-induced delays and packet losses. We refer the readers to the survey [START_REF] Tipsuwan | Control Methodologies in Networked Control Systems[END_REF] for more information about the state-of-the-art of NCS.

On the other hand, due to an increasing complexity of dynamical systems, as well as the need for reliability, safety and efficient operation, the model-based fault detection and isolation (FDI) has been becoming an important subject in modern control theory and practice, see e.g. [START_REF] Willsky | A survey of design methods for failure detection in dynamic systems[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge based redundancy-a survey and some new results[END_REF][START_REF] Gertler | Fault Dectection and Diagnosis in Engineering Systems[END_REF][START_REF] Chen | Robust Model-based Fault Diagnosis for Dynamic Systems[END_REF][START_REF] Mangoubi | Model-based fault detection: the optimal past, the robust present and a few thoughts on the future[END_REF] and the references therein. The procedures of model-based FDI problem are i) generations of residuals which are ideally close to zero under fault-free conditions, minimally sensitive to noises and disturbances and maximally sensitive to faults, ii) residual evaluation, namely design of decision rules based on these residuals. When involving the model-based FDI of NCS, the aforementioned problems will be more complex than those of traditional point-to-point systems because of the networkinduced effects. Whereas there are ample significant results on the control issues of NCS, the studies related to FDI of NCS are just at the starting point, which motivates the current research of this paper.

In this paper, we show our attention on the design of a robust fault isolation filter for networked control systems with network-induced delays and multiple faults. Similar to [START_REF] Halevi | Integrated communication and control systems: Part I-Analysis[END_REF], sensor-to-controller network-induced delay and controller-to-actuator network-induced delay are lumped together as a single delay, which is assumed to be random and governed by a Markov chain. Then, the effect of network-induced delays introduced into the control loop is regarded as time-varying disturbance. Based on this model, a fault isolation filter for fault detection of such networked control systems is then parameterized in order to generate the residuals having directional properties in response to a particular fault and decoupling from the disturbance. The remaining degrees of freedom in the design of the filter's gain are used to satisfy an H ∞ disturbance attenuation and poles assignment constraints in the frame of Markov jump linear systems (MJLS). The sufficient existence conditions of the free parameters are formulated as a convex optimization problem over a couple of linear matrix inequalities (LMIs), which can be very efficiently solved by interior-point methods.

The rest of this paper is organized as follows. In Section 2, the networked control systems model taking into account network-induced time-delays and multiple faults is described and main assumptions are presented. Parameterized solutions to the gains of filter and projector, and a sufficient condition for the free parameter satisfying two constrained conditions are developed in Section 3. An illustrative example is presented in Section 4 to show the effectiveness of the result.The paper is concluded in Section 5.

Notations:

In what follows, if not explicitly stated, ma-
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A structure of an NCS with FDI unit trices are assumed to have compatible dimensions. R and Z + denote the set of real numbers and the set of nonnegative integer numbers, respectively. R n and R n×m are, respectively, the n-dimensional Euclidean space and the set of n × m real matrices. The notations A > 0 and A < 0 are used to denote a positive and negative definite matrix, respectively. A T denotes the transpose of matrix or vector A. A -1 and A + represent the inverse and pseudo-inverse of A, respectively. diag(a 1 , . . . , a n ) refers to an n × n diagonal matrix with a i as its ith diagonal entry. A denotes the Euclidean norm for vectors or the spectral norms of matrices A. rank(A) stands for the rank operator of matrix A. λ i (A) represents the ith eigenvalue of matrix A.

Problem description and preliminaries

The networked control system structure discussed in this paper is shown in Fig. 1. The plant, sensor, controller and actuator are spatially distributed and closed over network. We suppose that the sensor is time-driven with an identical sampling period h. By event-triggered controller or actuator, we mean that calculation of the new control or actuator signal is started as soon as the new control or actuator information arrives. Similar to [START_REF] Halevi | Integrated communication and control systems: Part I-Analysis[END_REF], the distributed network-induced delays can be lumped together as a single time-delay

τ k = τ sc k + τ ca k ∈ [0, h)
, where τ sc k and τ ca k are delays of sensor-to-controller and controllerto-actuator, respectively.

Suppose that an LTI dynamical model with multiple faults is described as following:

ẋt = Ax t + Bu t + F n t y t = Cx t t ∈ R (1) 
where x t ∈ R n is the state vector, y t ∈ R m the output vector, u t ∈ R p the input vector. F = f 1 . . . f i . . . f q is the fault distribution matrix, and n t ∈ R q is the fault vector.

Taking into account the network-induced delay and the control input over a sampling interval [kh, (k + 1)h]:

u t = u k-1 , t ∈ [kh, kh + τ k ]; u k , t∈ [kh + τ k , (k + 1)h]. (2) 
Integration the plant (1) over such interval will then give:

x k+1 = Ax k + B0,τ k u k + B1,τ k u k-1 + F n k y k = Cx k , k ∈ Z + (3) 
where

A = e Ah , C = C, B 0,τ k = h-τ k 0 e As dsB, B 1,τ k = h h-τ k e As dsB, F = h 0 e As dsF .
According to the property of definite integral, Equation ( 3) is rewritten as:

x k+1 = Ax k + Bu k + F n k + B 1,τ k Δu k , y k = Cx k , (4) 
where

B = h 0 e As dsB, Δu k = u k-1 -u k , F = f 1 . . . f i . . . f q .
Remark 1 Different from the sampled-data system without taking into account the network-induced delay, there exists a time-varying term B 1,τ k Δu k in the state evolution equation of system [START_REF] Gertler | Fault Dectection and Diagnosis in Engineering Systems[END_REF]. Therefore, the traditional strategy of detecting and isolating multiple faults must be reevaluated for the NCS.

Remark 2 Inspired by the principles of Delta-Modulation which was introduced in [6] for NCS to generally decrease bits to specify the control signal, we propose to send the decrements of the control signals rather than sending them directly. The actual input signal u k is readily reconstructed by discrete-time integration as u

k = u k-1 -Δu k = u 0 - k i=1 Δu i ,
where u 0 is the initial control signal and assumed to be known in advance. Because the FDI scheme considered in this paper is open-loop, the term Bu k in the dynamics equation [START_REF] Gertler | Fault Dectection and Diagnosis in Engineering Systems[END_REF] will not be important and can be omitted when computing the residual. Therefore, we only focus the attention on the property of Δu k .

In the sequel, we further impose two communication schemes on the design as follows:

S1

The data from the controller to each actuator is restricted to belong to a small and fixed finite set of scalars, U.

S2

The inputs of the plant (Δu i ) k (i = 1, . . . , p) can be lumped together into one network packet and transmitted at the same time. Between updates, all plant inputs are held at their previous values.

Communication schemes 1 and 2 can be summarized by a simple finite-set constraint on the decrements Δu k = u k-1u k . More precisely, at every time instant k, the vector

Δu k (Δu 1 ) k • • • (Δu p ) k T (5) 
is restricted to belong to the set V, which is defined as

V {η ∈ R p : η = υ • • • υ T , for some υ ∈ U}.

Remark 3

The communication scheme S2 is suitable for networks with large packets size, e.g. Ethernet which can hold a maximum of 1500 bytes of data in a single packet, see e.g. [START_REF] Srinivasagupta | Timestamped model predictive control: an algorithm for control of processes with random delays[END_REF][START_REF] Tang | Ethernet-based Predictive Control of an Industrial Hydraulic Machine[END_REF].

Remark 4 Utilizing a receding horizon scheme as deployed in model predictive control, see e.g. [START_REF] Goodwin | A moving horizon approach to networked control system design[END_REF][START_REF] Yu | Predictive compensation for stochastic time delay in network control systems[END_REF], the optimal Δu k can be obtained which is not within the scope of this paper. When implementing the design of FDI, Δu k is assumed to be known.

Without loss of generality, we assume that the statistical behavior of network-induced delay τ k is random and governed by the Markov chain

θ k ∈ S = {1, 2, . . . , s}, ∀k ∈ Z + (6) 
with the transition probabilities λ ij denoting as

λ ij = Pr[θ k+1 = j|θ k = i], λ ij ≥ 0 and s j=1 λ ij = 1 for any i ∈ S.
For sake of simplifying notations, we denote B 1,τ k as B 1,θ k and Δu k as w k . Then, the model of networked control system considered in this paper is replaced the state space system (4) with the following particular Markov jump linear system:

x k+1 = Ax k + Bu k + F n k + B 1,θ k w k , y k = Cx k , (7) 
The following filter is presented as the residual generator of NCS [START_REF] Haddad | Controller design with reginal pole constraints[END_REF]:

xk+1 = Ax k + Bu k + K(y k -C xk ), α k = L(y k -C xk ), (8) 
where xk is the state of the filter, α k the residual generator or the fault indicator. Filter gain K ∈ R n×m and projector L ∈ R q×m are unknown matrices to be found for the solution of the fault detection and isolation problem. The objectives of this paper are i) to construct a fault isolation filter as [START_REF] Halevi | Integrated communication and control systems: Part I-Analysis[END_REF] for fault detection and isolation of multiple faults in networked control system, ii) to design a free parameter ensuring that the energy ratio between useful and disturbance signal w k defined on the fault indicators is maximized, iii) to locate the closed-loop poles within a prescribed region in the complex plane in order that the residual dynamical has the given transient properties.

It should be noted that the particular case we have focused on ensures that the definitions of fault detectability indexes and matrices introduced in [START_REF] Keller | Fault isolation filter design for linear stochastic systems[END_REF] still hold true for system [START_REF] Haddad | Controller design with reginal pole constraints[END_REF]. We end this section by recalling these definitions which will be essential for the proofs in the next section.

Definition 1 The networked control system ( 7) is said to have fault detectability indexes ρ = {ρ 1 , ρ 2 , . . . , ρ q } if ρ i = min{ν : CA ν-1 f i = 0, ν = 1, 2, . . .}.

Definition 2

If the networked control system [START_REF] Haddad | Controller design with reginal pole constraints[END_REF] has finite fault detectability indexes, the fault detectability matrix Ψ is defined as:

Ψ = CD (9) 
with

D = A ρ1-1 f 1 • • • A ρi-1 f i • • • A ρq-1 f q .
3 Robust FIF for NCS

In this section, we will firstly give the parameterized solutions of filter gain and projector. Under two constrained conditions, a robust FIF for NCS will then be designed from reduced gains describing the available degrees of freedom.

From ( 4) and ( 8), the state estimation error e k = x kxk and the output of the filter α k propagate as

e k+1 = (A -KC)e k + F n k + B 1,θ k w k α k = LCe k , k ∈ Z+, θ k ∈ S (10) 
Let G nα (z) be the transfer function from n k to the output residual α k . Then the following theorem is presented to design K and L such that

Gnα(z) = LC(zI -(A -KC)) -1 F = diag{z -ρ 1 , . . . , z -ρq }, (11) 
which ensures the isolation of multiple faults.

Theorem 1 Under the condition rank(Ψ) = q, the solutions of ( 11) can be parameterized as

K = ωΠ + Kθ k Σ, L = Π, with Σ = β(I -ΨΠ), Π = Ψ + , ω = AD
and Ψ = CD,where Kθ k ∈ R n×m-q is the free parameters to be designed, Ψ + is the pseudo-inverse of Ψ and β is an arbitrary matrix chosen so that rank(Σ) = mq.

Proof. From (11), we have

G nα (z) = LC(zI -(A -KC)) -1 F = k≥0 LC(A -KC) k F z -k-1 = k≥0 z -k-1 • • • LC(A -KC) k f i • • • (12) 
where

k≥0 z -k-1 LC(A -KC) k fi = z -1 LCfi + z -2 LC(A -KC)fi + • • • = LCA ρ i -1 fiz -ρ i + k≥0 LC(A -KC) k+1 A ρ i -1 fiz -k-1-ρ i (13) 
Substituting ( 13) into ( 12), we have

Gnα(z) = • • • LCA ρ i -1 fiz -ρ i + k≥0 LC(A -KC) k+1 A ρ i -1 fiz -k-1-ρ i • • • (14) 
If the filter gain K satisfies the following algebraic constraint

(A-KC)[ • • • A ρ i -1 fi • • • ]= 0⇐⇒ (A-KC)D = 0, then (14) 
gives

G nα (z) = LΨdiag{z -ρ1 , . . . , z -ρq }, (15) 
and ( 11) is satisfied under LΨ = I. By the generalized inverse of matrix [START_REF] Rao | Generalized inverse of matrices and its applications[END_REF], K and L can be parameterized as the statements of this theorem. The proof is complete.

Remark 5 It's should be noted that the free parameter

Kθ k is independent of the multiple faults isolation because any Kθ k ensures [START_REF] Li | Guaranteed cost control of networked control systems with time-delays and packet losses[END_REF]. So, the filter gain K is independent of Kθ k and hence independent of the Markov chain θ k ∈ S when the theorem is proven. Otherwise, K governed by Markov chain θ k will bring about the complexity of analysis in the case where the filter ( 8) and the error system [START_REF] Keller | Fault isolation filter design for linear stochastic systems[END_REF] are hybrid. However, the introduction of Kθ k gives an extra degree of freedom to satisfy some other design requirements.

From Theorem 1, the FIF ( 8) is rewritten from the free parameter Kθ k as :

xk+1 = Ax k + Bu k + ωα k + Kθ k Σ(y k -C x), α k = Π(y k -C xk ), (16) 
where α k is a deadbeat filter of fault n k and given by:

α k = αk + n 1 k-ρ1 • • • n i k-ρi • • • n q k-ρq T (17)
where αk is the faults indicator signal without faults and propagates from the fault-free state estimation error ēk = xkxk as:

ēk+1 = ( Ā -Kθ k C)ē k + B 1,θ k w k , αk = ΠC ēk , (18) 
where Ā = A -ωΠC, C = ΣC and xk is the fault-free state. The transfer function from w k to αk is then given by:

G w α(z) = ΠC(zI -( Ā -Kθ k C)) -1 B 1,θ k . ( 19 
)
Let αk be the faults indicator signal without disturbances. From Equation [START_REF] Li | Guaranteed cost control of networked control systems with time-delays and packet losses[END_REF], the transfer function G n α(z) from fault n to fault indicator αk is a pure delay and

G n α(z) ∞ := sup θ0∈S sup 0 =n∈ 2 α 2 n 2 = 1, (20) 
where

s 2 = ( ∞ k=0 s k ) 1/2 is the 2 norm of the sig- nal s k .
Rest of three aims of this paper are then to design the free parameters Kθ k satisfying the constraints as:

C1 the H ∞ -norm of transfer function G w α(z) is less than a prescribed scalar γ > 0, namely G w α(z) ∞ := sup θ0∈S sup 0 =w∈ 2 α 2 w 2 < γ (21) 
C2 the poles of ( Ā -Kθ k C) are inside discs D θ k (ξ θ k , δ θ k ) in the complex plane with the center ξ θ k + j0 and -1

< -ξ θ k + δ θ k < 1, namely λ i Ā-Kθ k C-ξ θ k I δ θ k ⊂ D(0, 1), i = 1, . . . , n, ∀θ k ∈ S.
Remark 6 By locating the closed-loop poles in a prescribed region in the complex plan, the constraint C2 ensures that the error system [START_REF] Rao | Generalized inverse of matrices and its applications[END_REF] has the given transient properties. This scheme is borrowed from the robust control of linear system with poles constraints, see e.g. [START_REF] Haddad | Controller design with reginal pole constraints[END_REF][START_REF] Wang | Controller design for continuous systems with variance and circular pole constraints[END_REF][START_REF] Yu | Robust control of linear uncertain systems with regional pole and variance constraints[END_REF].

Before proceeding further, we recall the notation of second-moment stability (SMS) and some related results. Consider the following stochastic system P:

(P) : x k+1 e k = A θ k B θ k C θ k D θ k x k w k ( 22 
)
where x k ∈ R nx is the state, w k ∈ R nw is the disturbance vector and e k ∈ R ne is the error vector. The notation of θ k is given as [START_REF] Goodwin | A moving horizon approach to networked control system design[END_REF].

Definition 3 ([19])

The system P is weakly controllable if for every initial state/mode, (x 0 , θ 0 ), and any final state/mode, (x f , θ f ), there exists a finite time T c and an input d c,k such that Pr[x Tc = x f and θ Tc = θ f ] > 0.

Lemma 1 ([19]

) System P is SMS if and only if there exist matrices

P i > 0 that satisfy A T i Pi A i -P i < 0 ∀i = θ k ∈ S where Pi := s j=1 λ ij P j .
Lemma 2 (Bounded Real Lemma) Assume the system P is weakly controllable and let x 0 = 0. The following conditions are equivalent: i) P is SMS and the H ∞ -norm denoted as

P ∞ := sup θ0∈S sup 0 =w∈ 2 e 2 w 2 (23) 
satisfies P ∞ < γ.

ii) there exist matrices

P i > 0 that satisfy Ai Bi Ci Di T Pi 0 0 I Ai Bi Ci Di - Pi 0 0 γ 2 I < 0 ( 24 
)
where Pi = s j=1 λ ij P j and i = θ k ∈ S. iii) there exist matrices P i > 0 and G i that satisfy

GiAi GiBi Ci Di T Pi -Gi -G T i 0 0 I -1 × GiAi GiBi Ci Di - Pi 0 0 γ 2 I < 0 ( 25 
)
where Pi = s j=1 λ ij P j and i = θ k ∈ S.

Proof. The equivalence of i) and ii) has been proven in [START_REF] Seiler | A bounded real lemma for jump systems[END_REF]. By the so-called slack variable method which was introduced in [START_REF] Oliveira | A new discrete-time robust stability condition[END_REF][START_REF] Peaucelle | A new robust D-stability condition for real convex polytopic uncertainty[END_REF], the equivalences of i) and iii), ii) and iii) will be proven.

Remark 7

Due to the slack variables G i , the condition iii) gives potential advantages over condition ii), especially for the design of the free parameters Ki in the following theorem.

Theorem 2 For given discs D i (ξ i , δ i ), if there exist matrices

P i = P T i > 0, G i and Y i for prescribed scalars γ > 0, -1 < -ξ i + δ i < 1, ∀i = θ k ∈ S such that ⎡ ⎢ ⎣ -Pi 0 ĀT G T i -CT Y T i C T Π T 0 -γ 2 I B T 1,i G T i 0 Gi Ā -Yi C GiB1,i Pi -Gi -G T i 0 ΠC 0 0 -I ⎤ ⎥ ⎦ < 0, (26) 
-δ 2 i P i ĀT G T i -CT Y T i -ξ i G T i G i Ā -Y i C -ξ i G i P i -G i -G T i < 0, (27) 
where Ā = A -ωΠC, C = ΣC, then the free parameters are designed as Ki = G -1 i Y i ensuring the SMS of the error system [START_REF] Rao | Generalized inverse of matrices and its applications[END_REF] and the constraints C1 and C2. At the minimal possible value of γ leading to a solution P i = P T i > 0, G i and Y i , the energy ratio between useful and disturbance signal defined on the fault indicators will be maximized.

Proof. If there exist matrices

P i = P T i > 0, G i and Y i = G i Ki such that (26) holds, we obtain: ⎡ ⎢ ⎢ ⎣ -P i 0 A T i G T i C T i 0 -γ 2 I B T i G i 0 G i A i G i B i Pi -G i -G T i 0 C i 0 0 -I ⎤ ⎥ ⎥ ⎦ < 0, (28) 
where

A i = Ā -Ki C, B i = B 1,i , C i = Π C.
By Schur complement, we obtain that (28) implies [START_REF] Willsky | A survey of design methods for failure detection in dynamic systems[END_REF]. So, the free parameter Ki = G -1 i Y i ensures the SMS of the error system [START_REF] Rao | Generalized inverse of matrices and its applications[END_REF] and the constraint C1.

Furthermore, if there exist matrices [START_REF] Yu | An LMI approach to networked control systems with data packet dropout and transmission delays[END_REF] holds, pre-multiplying and post-multiplying δ -1 i I, -δ -1 i ( Ā -Ki Cξ i I) T and its transpose to [START_REF] Yu | An LMI approach to networked control systems with data packet dropout and transmission delays[END_REF] will yield:

P i = P T i > 0, G i and Y i = G i Ki such that
Ā -Ki C -ξ i I δ i T P i Ā -Ki C -ξ i I δ i -P i < 0, (29) 
which immediately implies [START_REF] Yu | An LMI approach to networked control systems with data packet dropout and transmission delays[END_REF] satisfying the constraint C2. In summary, the free parameters are designed as Ki = G -1 i Y i ensuring the SMS of the error system [START_REF] Rao | Generalized inverse of matrices and its applications[END_REF] and the constraints C1 and C2. The proof is complete. 

Remark 8 Given discs D i (ξ i , δ i ), i = θ k ∈ S,
which can be effectively solved by the existing Matlab LMI toolbox [START_REF] Ghainet | LMI Control Toolbox-for Use with Matlab[END_REF].

Illustrative Example

In this section, we will present an example to illustrate the design approach proposed in this paper. We borrow the modified example from [START_REF] Keller | Fault isolation filter design for linear stochastic systems[END_REF] described by [START_REF] Haddad | Controller design with reginal pole constraints[END_REF], where the parameters are as follows:

A = ⎡ ⎢ ⎢ ⎣ 0.2 1 0 0.2 0 0.5 1 0.4 0 0 0.8 1 0 0 0 0.3 ⎤ ⎥ ⎥ ⎦ , B = ⎡ ⎢ ⎢ ⎣ 0 -1 -1 1 1 0 -1 1 ⎤ ⎥ ⎥ ⎦ , F = ⎡ ⎢ ⎢ ⎣ -1 1 1 0 0 -1 1 1 ⎤ ⎥ ⎥ ⎦ , C = ⎡ ⎣ 0 1 0 0 0 0 1 0 0 0 0 1 ⎤ ⎦ ,
and sampling time h = 0.1sec. Therefore, the parameters of original continuous time LTI system (1) can be obtained by the Matlab command d2c, for example, [A, B] = d2c(A, B, h). The transition probability matrix of ( 6) is 

Λ = ⎡ ⎣ 0.
K1 = ⎡ ⎢ ⎢ ⎣ 0.7900 -0.9002 -1.7999 -0.3003 ⎤ ⎥ ⎥ ⎦ , K2 = ⎡ ⎢ ⎢ ⎣ 0.7834 -0.7293 -1.9742 -0.4672 ⎤ ⎥ ⎥ ⎦ , K3 = ⎡ ⎢ ⎢ ⎣ 0.8038 -1.0827 -1.6090 -0.1293 ⎤ ⎥ ⎥ ⎦ .
The fault associated to the first column of the matrix F occurs at time instant r 1 = 50 with n 1 k = 10 sin(0.1k). The fault associated to the second column occurs at time instant r 2 = 120 with n 2 k = 5. Fig. 2 gives the innovation sequences of Markov chain mode, the networkinduced time-delay governed by such Markov chain and the control decrements

Δu k = [(Δu 1 ) k , (Δu 2 ) k ]
T . It should be noted that the finite scalar set U of the communication scheme S1 is given as U = {-1, 0, 1} when implementing simulation. Fig. 3 shows the innovation sequences of residual

α k = [(α 1 ) k , (α 2 ) k ]
T and

α k = (α 1 ) k , ( α 2 ) k T 
, where (a) and (b), (c) and (d) correspond to the residual obtained by the FIF [START_REF] Oliveira | A new discrete-time robust stability condition[END_REF] with the free parameters Ki (i = 1, 2, 3) and the FIF [START_REF] Oliveira | A new discrete-time robust stability condition[END_REF] without the free parameters, respectively. In order to compare the obtained results by different methods, we propose the root mean square (RMS) of the fault estimation error as a performance index. This error for the scalar variable n i with respect to its estimate α i for N s simulation steps is defined as

RMS i Ns j=1 n j i -α j i 2 N s (31) 
where n j i is the value of the variable n i in the j-th step, α j i is the estimate of n j i , and i = 1, 2. From Fig. 3 and Tab.1 which shows the RMS of the fault estimation errors, we can conclude that the FIF ( 16) with the free parameters Ki (i = 1, 2, 3) works better than the FIF (16) without the free parameters does.

Conclusion

This paper modelled the effect of network-induced delay introducing into the control loop as time-varying disturbance. Based on this model, a fault isolation filter for fault detection of networked control systems with multiple faults was then parameterized. Directional residual generations decoupling from the disturbance ensured the treatment of multiple faults appearing simultaneously or sequentially. The remaining degrees of freedom in the design of the filter's gain were used to satisfy an H ∞ disturbance attenuation and poles assignment constraints within the framework of H ∞ control for Markov jump linear systems. The sufficient existence conditions of the free parameters were formulated as a convex optimization problem over a couple of linear matrix inequalities. An Illustrative example was then given to show the efficiency of the proposed method for NCS. In contrast with the fault isolation filter without free parameters, it can be concluded that the proposed fault isolation filter works better for NCS.

Throughout the paper, only the network-induced delays shorter than one sampling period were taken into account in the model of the networked control system. Since the inherent complexity is concerned with the model of networked control system, much work can be carried out especially for the case where the network-induced delays are longer than one sampling period. On the other hand, the control decrement sequences in this paper are assumed to be known in advance. If the network scheduling algorithm is adopted to optimize the sequences, the fault estimation performance will be expected to increase. Study of integrating network scheduling and fault detection and isolation problem for networked control systems is also encouraged. 
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  the search problem of the lowest possible value of γ can be formulated as the following convex optimization problem:

	OP :	min Pi=P T i >0,Gi,Yi	γ
		s.t. LMI (26), (27)

Table 1 . RMS of the fault estimation errors

 1 Furthermore, the discs D i (ξ i , δ i ) (i = 1, 2, 3) are given as D 1 (0, 0.3), D 2 (-0.2, 0.4), D 3 (0.2, 0.3). According to (α 1 ) k (α 1 ) k (α 2 ) k (α 2 ) k RMS 0.7368 0.8005 0.5378 0.6787 Theorem 2, the minimal possible value of γ is found to be 1.5854 and the free parameters Ki are constructed as:

		67 0.17 0.16	⎤
		0.3 0.47 0.23	⎦ ,
		0.26 0.10 0.64	
	and the corresponding random network-induced delays
	are τ 1 = 0.06sec, τ 2 = 0.07sec, τ 3 = 0.08sec. Accord-
	ing to Theorem 1, we have Ψ = CF and D = F since
	rank(CF ) = q (ρ 1 = 1, ρ 2 = 1). The parametrization
	of the FIF's gain K is given by	
	Σ = -0.333 0.333 0.333 ,
	Π =	0.6667 -0.3333 -0.6667 0.3333 0.3333 0.3333	.
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