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Abstract

The paper discusses the kinematics of manipula-

tors builts of planar closed kinematic chains. A spe-

cial kinematic scheme is extracted from the array of

these mechanisms that looks the most promising for

the creation of different types of robotic manipulators.

The structural features of this manipulator determine

a number of its original properties that essentially sim-

plify its control. These features allow the main control

problems to be effectively overcome by application of

the simple kinematic problems. The workspace and

singular configurations of a basic planar manipulator

are studied. By using a graphic simulation method,

motions of the designed mechanism are examined. A

prototype of this mechanism was implemented to verify

the proposed approach.

KEY WORDS : Kinematics, Manipulator, Closed

Planar Mechanism, Singularity, Workspace

1 Introduction

Closed kinematic chains are promising building
blocks to build novel and effective parallel manipu-
lators. There are two principal directions in the syn-
thesis of these machines. The first is based on the use
of platform spatial manipulators. This approach has
its origin in the Stewart-Gough platform [1] and has
been studied extensively [2]. It is well known that plat-
form manipulators are characterized by high stiffness
and accuracy, but, at the same time, have a restricted
workspace and pose some control difficulties because
of their quite complicated direct kinematics.

Therefore, another direction is now under devel-
opment, based on the use of closed planar kinematic

chains as building blocks of spatial robots. We claim
that this very promising approach has not yet been
fully exploited.

The simplest example of a basic planar manipulator
of this type, shown in Figure 1, has motivated inten-
sive research (e.g., [3]). This mechanism is based on
the use of a dyad, that is, a planar group of the second
class, links 1 and 2, according to the classification of
Assur-Artobolevskii [4].

Rotation about a vertical axis provides this mech-
anism with three-degree-of-freedom (dof) motion ca-
pabilities. The advantages of the mechanism are en-
hanced stiffness and driving motor placement on the
base (joints A and B), both advantages being com-
mon properties of parallel manipulators. However,
only manipulators built on planar closed chains have
the advantages of rather simple kinematics and a rel-
atively large workspace. In fact, the layout of Fig. 1
was so effective that it has been the first closed kine-
matic chain used in one of the versions of the German
“Kuka” industrial robot.

A disadvantage of the scheme shown in Fig. 1 is
its somewhat restricted workspace, determined by the
distance between the base joints A and B. Based on
kinematic considerations, this distance may be chosen
to be near zero, as was practically implemented in the
design of the “Kuka” robot. Another feature of the
basic mechanism (Fig. 1) is that if we need to control
the orientation of the gripper G, it is usually necessary
to mount an additional actuator in the joint C of the
moving link 1.

A solution that allows one to solve this problem
without putting a motor on the moving link involves
the third class group [4] as a basic kinematic chain
(Fig. 2). This mechanism has gained its reputation
thanks to Hunt (e.g., [2]) and the following publica-



Fig. 1: Three-dof manipulator based on planar mech-
anism of second class

Fig. 2: Planar manipulator based on the mechanism
of third class

tions [6, 7]. It is, in fact, very important and interest-
ing because it serves as a link between the two above-
mentioned approaches in organization of robot plat-
form mechanisms. Indeed, it is possible to pass from
the planar closed mechanism (Fig. 2) to the platform
spatial manipulator by changing the revolute joints
(points D, E and F ) by spherical joints and by re-
moving the dyads O1A, AD; O2B, BE; and O3C, CF
onto different planes.

The third-class mechanisms are the most promising
to organize prospective spatial industrial robots, as
demonstrated in a patent [8]. In this design, the mov-
ing platform, link DEF , of the Assur group (Fig. 2)
was attached to the prismatic kinematic pair directed
orthogonally to the plane of group location.

Third-class mechanisms have good prospects be-
cause of a quite simple kinematics. In this connec-
tion, a number of investigations were carried out to de-
termine theirs workspace, singular configurations and
other characteristics ([6, 7]). Currently, some propo-
sitions have been made in which linear actuators of
robotic mechanisms are used as input links [9].

This paper develops this approach in creating

closed structural schemes for platform robot mecha-
nisms. A special variation of the discussed mecha-
nisms with a linear platform link [10] and other pecu-
liarities, ensuring a high level of solution of the manip-
ulation tasks to be performed, is proposed for develop-
ment, their design and control features being analyzed
in this paper.

2 Structure of the Three-DOF Mani-

pulator

The design of a robot based on third-class chains
becomes practical when the mechanism is specially
constructed as discussed below. This section consid-
ers a special kind of the basic third-class planar chain,
shown in the mechanism of Fig. 3. Specifically, its
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Fig. 3: A scheme of the proposed base planar manip-
ulator

moving platform C1G carries three collinear joints,
and its actuated joints are prismatic. The actuators of
these joints are placed in different parallel planes. The
collinear form of the platform element prevents colli-
sions among the links. This base manipulator per-
forms spatial motions by means of additional joints
with suitably-oriented axes. Such a structure leads
to a considerable simplification of the control as com-
pared with the initial mechanism of Fig. 2.

3 Kinematics

The actuated joint variables are ρ1 = ||A1B1||,
ρ2 = ||A2B2|| and ρ3 = ||A3B3|| while the Carte-
sian variables are the (xG, yG, θG) coordinates of the
end-effector (Fig. 3). Lengths L11 = ||B1C1||,
L22 = ||B2C2||, L33 = ||B3C3||, L1G = ||C1G||,
L2G = ||C1G|| and L3G = ||C1G|| define the geom-
etry of this manipulator entirely.

The velocity ġ of the point G can be obtained in
three different forms, depending on the direction in

2



which the loop is traversed [11, 12], namely:

ġ = ḃ1 + α̇1E(c1 − b1) + ˙θGE(g − c1) (1)

ġ = ḃ2 + α̇2E(c2 − b2) + ˙θGE(g − c2) (2)

ġ = ḃ3 + α̇3E(c3 − b3) + ˙θGE(g − c3) (3)

with matrix E defined as

E =

[

0 −1
1 0

]

(4)

and bi and ci denoting the position vectors in the
frame x-y of Fig. 3 of the points Bi and Ci respectively,
for i = 1, 2, 3.

Furthermore, note that vectors ḃi are given by

ḃi = ρ̇i

ρi

||ρi||
. (5)

We would like to eliminate the three idle joint rates
α̇1, α̇2 and α̇3 from eqs.(1-2-3), which we do upon dot-
multiplying their two sides by ci − bi, thus obtaining

(c1−b1)
T ġ = (c1−b1)

T ρ̇1

ρ
2

||ρ1||
+(c1−b1)

T ˙θGE(g−c1),

(6)

(c2−b2)
T ġ = (c2−b2)

T ρ̇2

ρ
2

||ρ2||
+(c2−b2)

T ˙θGE(g−c2),

(7)

(c3−b3)
T ġ = (c3−b3)

T ρ̇3

ρ
3

||ρ3||
+(c3−b3)

T ˙θGE(g−c3).

(8)
Equations (6-7-8) can now be cast in vector form:

Aṗ = Bq̇ (9)

with q̇ defined as the vector of actuated joint rates, of
components ρ̇1, ρ̇2 and ρ̇3 and ṗ defined as the planar
twist vector of components ẋG, ˙yG and ˙θG. More-
over A and B are, respectively, the direct-kinematics
and the inverse-kinematics matrices of the manipula-
tor, defined as

A =





(c1 − b1)
T (c1 − b1)

T E(g − c1)
(c2 − b2)

T (c2 − b2)
T E(g − c2)

(c3 − b3)
T (c3 − b3)

T E(g − c3)



 (10)

and

B=





(c1−b1)
T
ρ

1
/||ρ1|| 0 0

0 (c2−b2)
T
ρ

2
/||ρ2|| 0

0 0 (c3−b3)
T
ρ

3
/||ρ3||





(11)

3.1 Control of Simple Motions

An original property of the manipulator under
study is its ability to carry out simple motions either
without performing any preliminary calculations, or
by using some simple kinematic relationships [13]. We
summarize below these results:

Horizontal Translation

In this case, ẏG = 0, θ̇G = 0 and ẋG is ar-
bitrary. The solution leads to a simultaneous mo-
tion of all actuators with the same velocities, that is,
V1 = V2 = V3 = VG, while VG is the prescribed gripper
velocity.

Vertical Translation

In this case, ẋG = 0, θ̇G = 0, and ẏG is arbitrary.
Thus,

ρ̇i = VG tan αi, i = 1, 2, 3. (12)

while VG is the prescribed gripper velocity.
In the general case, in order to obtain the vertical

end-effector velocity, it is necessary to use the simple
expressions (12) for calculations and to measure angles
αi, for i = 1, 2, 3.

Gripper Rotation

Here, θ̇G is arbitrary and ẋG = ẏG = 0, thus ob-
taining

Vi = LiGθ̇G

sin(αi − θG)

cosαi

, i = 1, 2, 3. (13)

It is apparent that the values αi and θG have to be
measured. The αi values were already used for other
calculations, but angle θG has to be measured only
for this problem. This can be done by measuring the
angle of rotation of one of the Ci joints (Fig. 3), with
the ensuring calculation of the angle θG:

θG = β + α1 − 180◦.

Thereafter, a pure rotation of the gripper can be im-
plemented, which cannot be realized for any other de-
sign of spatial platform manipulators.

3.2 Singular Configurations of the Pro-
posed Manipulator

A singularity occurs whenever A or B in (9) van-
ishes. Three types of singularities exist [6]:

det(A) = 0 or

det(B) = 0 or

det(A) = 0 and det(B) = 0.
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Parallel singularities occur when the determinant of
the direct kinematics matrix A vanishes. The corre-
sponding singular configurations are located inside the
workspace. They are particularly undesirable because
the manipulator cannot resist any force and control is
lost.

For the manipulator study, there are two types of
parallel singularities.

The first type is reached whenever the lines BiCi

intersect (Fig. 4). In such configurations, the manipu-
lator cannot resist a wrench applies at the intersecting
point.
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Fig. 4: A parallel singularity

The second type is reached whenever the lines BiCi

are parallel (Fig. 5). That is when (c1 − b1) × (c2 −
b2) = 0 and (c1 − b1) × (c3 − b3) = 0.
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Fig. 5: A parallel singularity

Serial singularities occur when the determinant of
the inverse kinematics matrix B vanishes. When the
manipulator is in such a singularity, there is a direction
along which no Cartesian velocity can be produced.

For the manipulator at hand, serial singularities oc-
cur whenever at least one of the lines AiBi is per-
pendicular to BiCi, i.e (ci − bi)

T
ρi/||ρi|| = 0, for

i = 1, 2, 3 (Fig. 6). These singularities yield the
boundary of the Cartesian workspace.
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Fig. 6: A serial singularity

4 Manipulator Workspace

It is important to determine the manipulator
workspace to exactly match its working zone. Gen-
erally, the planar manipulator workspace is limited by
a rectangle with height h and width w. The value h
may be determined as

h = min{L1G + L11, L2G + L22, L3G + L33},

where we refer to variables defined in Section 3 and
Fig. 3. The value of w is estimated as w = 2h + L,
where L is the length of the actuator strokes.

To study manipulator workspace properties, a spe-
cial numerical procedure has been developed. Ac-
cording to this procedure, the space of the above-
mentioned rectangle was divided with a certain res-
olution into a number of points. For each of these
points, a test was then done whether the mechanism
with a corresponding set of parameters exists with a
manipulator end-effector G position at this point. If
this condition is satisfied at least for one orientation of
the output link or not satisfied for all orientations of
the output link, a passage to the next point of the rect-
angle is performed. This numerical procedure gives us
the possibility to obtain not only an envelope of the
manipulator working zone but also configurations of
its dead points.

One example of these results is displayed in Fig. 7.
From this graph as well as from geometric considera-
tions, it is obvious that the value of the stroke L influ-
ences the shape of the manipulator workspace. When
L decreases, dead zones appear inside the manipulator
envelope. This study has been conducted and corre-
sponding results are recorded in graph form (Fig. 8).
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Fig. 7: Example of a manipulator workspace (a part
above the x axis) for the following set of its model
parameters: L11 = L22 = L33 = 25.0, ||C1C2|| =
||C2C3|| = ||C3G|| = 5.0, L = 10.0

Fig. 8: The relative value S of the manipulator
workspace vs stroke length L

A study was carried out for the following set of ma-
nipulator parameters: L11 = 1.7, L22 = 1.8, L33 =
1.9; ||C1C2|| = ||C2C3|| = ||C3G|| = 1.0; the value
of L was changed from 1 to 3. A characteristic of the
value S of the manipulator workspace was defined as a
relation of the number of points, where there is at least
one inverse kinematics solution, to a general quantity
of the points studied in the rectangle. When study-
ing the value S dependence on the stroke length L, one
should take into account that an increase in the stroke
length will lead to an increase in the workspace. How-
ever, too long stroke value may lead to a bulky mech-
anism. This is why, when searching for the optimal
value of the stroke, it would be worth to chose it not
longer than the length allowing to exclude some dead
zones inside the manipulator workspace (if there are
no special requirements to manipulator performance).
Then, from the graph of Fig. 8, it may be seen that
the best result is obtained for L = 3 (89.07%), but a
result for the value L = 2.5 (87.08%) is quite near to
this maximum value.

Fig. 9: Rendering of the manipulator

Based on these data, one may conclude that this ap-
proach allows us to determine manipulator optimum
parameters which lead to the design of the most ver-
satile and compact device.

5 Simulation and Prototyping of the

Proposed Manipulator

A graphic simulation of the proposed 3D manip-
ulator based on the mechanism of Fig. 3 was per-
formed by using an advanced robotics package on a
Silicon Graphics workstation [13]. Typical position-
ing tasks were simulated and successive spatial mo-
tions of the robot from one location to another were
tested. The kinematic structure was evaluated by an-
imated, graphical representation of the time-varying
solutions that includes built-in evaluation of trajecto-
ries to avoid collisions, and reachability. One render-
ing of the simulation results is shown in Fig. 9.

A prototype of the planar mechanism discussed
here was also built (Fig. 10) when the first author was
working at Kazakh State University (Alma-Ata, Kaza-
khstan, the former USSR). The mechanism is driven
by three DC motors with on-off control. The proto-
type allowed, for instance, to validate issues of mecha-
nism singularities and approaches to their avoidance.

6 Conclusions

This paper deals with closed-chain planar mecha-
nisms with the purpose of using them for the design of
3D parallel robotic manipulators. The paper proposes
some principles of spatial manipulator design via these
mechanisms. A paradigm is proposed that appears to
be the most promising for the design of multi-dof in-
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Fig. 10: Manipulator prototype

dustrial robots. Its peculiarities are the platform link
in the form of a collinear array of attachment points
and actuators that are designed in the form of sliders
placed in different parallel planes.

While using this mechanism as a basis for multi-dof
manipulator design, the indicated structural features
determine a number of its original properties that es-
sentially simplify its control. A parallel manipulator
of a practical form of this design has been previously
developed, which was rather similar to one recently
called the H-Robot [9]. This manipulator allows one
to solve the principal control problems almost without
the need to solve their inverse kinematics. In fact, the
kinematic solutions are either extremely simple or do
not require any calculations. For instance, the trans-
lation of the gripper along the x axis (Fig. 3) may be
obtained with the aid of the translation of the actu-
ators in the required direction with equal velocities,
that is, without performing any calculations. A verti-
cal displacement of the end-effector is accomplished by
moving the actuators by implementing some very sim-
ple calculations. These special features allow one to
develop rather simple control algorithms for the robot.

Workspace and singular configurations were also
studied for purpose of robot design. By using graphic
simulations, the motions of the designed mechanism
were examined. A prototype of the discussed mecha-
nism was also built in order to test the proposed ap-
proach.

References

[1] D.A. Stewart, “Platform with six degree of free-
dom,” Proceedings of the Institute of Mechanical

Engineering, 66, Vol. 180, Part 1, No. 15, pp.
371-386, 1965.

[2] K.H. Hunt, “Structural kinematics of in-parallel-
actuated robot-arms,” ASME Journal of Mech-

anisms, Transmissions, and Automation in De-

sign, Vol. 105, pp. 705-712, 1983.

[3] A. Bajpai and B. Roth, “Workspace and mobility
of a closed-loop manipulator,” The International

Journal of Robotics Research, Vol. 5, No. 2, pp.
131-142, 1986.

[4] I.I. Artobolevskii, Theory of Mechanisms and

Machines, Nauka, Moscow, 1988 (in Russian).

[5] G.N. Sandor and A.G. Erdman, Mechanical De-

sign: Analysis and Synthesis, Prentice Hall, 1984.

[6] C. Gosselin and J. Angeles, “Singularity analysis
of closed loop kinematic chains,” IEEE Transac-

tions on Robotics and Automation, Vol. 6, No. 3,
pp. 281-290, 1990.

[7] G. Pennok and D. Kassner, “The workspace of a
general geometry planar three-degree-of-freedom
platform-type manipulator,” ASME Journal of

Mechanical Design, Vol. 115, pp. 269-276, 1993.

[8] U.A. Djoldasbekov, M.S. Konstantinov, M.D.
Markov, and L.I. Slutski, “Executing mechanism
of a robot-manipulator,” USSR patent, author’s

certificate # 1081919, 1983 (in Russian).
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