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This paper presents the construction and the comparison of Galois lattices of topological relations for qualitative spatial representation and reasoning. The lattices rely on a correspondence between computational operations working on quantitative data, on the one hand, and topological relations working on qualitative knowledge units, on the other hand. After introducing the context of the present research work, i.e. the RCC-8 model of topological relations, we present computational operations for checking topological relations on spatial regions. From these operations are derived two sets of computational conditions that can be associated to topological relations through a Galois connection. The associated Galois lattices are presented and compared. Elements on the practical use of the lattices for representing spatial knowledge and for reasoning are also introduced and discussed.

Introduction

This paper presents the construction and the comparison of Galois lattices of topological relations for qualitative spatial representation and reasoning. This research work has been carried out in the context of the design of a knowledge-based system for agricultural landscape analysis. The main objective of this system, named LoLA, is to recognize landscape models on land-use maps extracted from satellite images. Landscape models are abstract models describing agricultural spatial structures as sets of spatial entities and qualitative spatial relations between these entities. They are used to classify zones, Preprint submitted to Elsevier Science 13th March 2005 i.e. collections of raster regions, extracted from the maps. A raster region is characterized by a label denoting the land-use category, e.g. crops, meadows, forest, buildings, etc. [START_REF] Ber | A formal representation of landscape spatial patterns to analyze satellite images[END_REF].

Following these needs, we have designed a hierarchical representation of topological relations based on a Galois lattice or concept lattice structure relying on the Galois lattice theory [START_REF] Barbut | Ordre et classication Algèbre et combinatoire[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF][START_REF] Ganter | Formal Concept Analysis[END_REF]. A Galois lattice is a "multi-faceted structure": it allows the construction of a hierarchical structure both for representing knowledge and for reasoning. In a Galois lattice, a concept is dened by an intension or intent, i.e. the set of properties shared by all instances of the concept, and by an extension, or extent, i.e. the set of individuals being instances of the concept. In our framework, the extension of concepts corresponds to topological relations between regions of an image, and the intension of concepts corresponds to properties computed on that image regions (also called computational conditions ). Thus, the Galois lattice emphasizes the correspondence between qualitative models, i.e. topological relations, and quantitative data, i.e. vector or raster regions.

Actually, linking qualitative models with quantitative data, and implementing these qualitative models for real-world applications such as landscape analysis, land use planning, integrating maps and remote sensing data, etc., is an important question in spatial reasoning. Research works have been mainly carried out in two directions: rst, for linking topological relations with vector or raster data (e.g. [START_REF] Egenhofer | Point-set topological spatial relations[END_REF][START_REF] Egenhofer | Topological Relations Between Regions in 2 and Z 2[END_REF][START_REF] Bennett | A system handling RCC-8 queries on 2D regions representable in the closure algebra of half-planes[END_REF]), second, for implementing topological relations within logical frameworks (e.g. [START_REF] Randell | Exploiting Lattices in a Theory of Space and Time[END_REF][START_REF] Bennett | Spatial reasoning with propositional logics[END_REF][START_REF] Möller | Terminological Default Reasoning about spatial information: A First Step[END_REF]). In these frameworks, boolean lattices have been used for automatic theorem proving and relations inferring [START_REF] Randell | Exploiting Lattices in a Theory of Space and Time[END_REF]. Besides, lattices have been used to represent hierarchical spatial entities (points, lines, triangles) and then to compute topological relations between these entities [START_REF] Kainz | Modelling spatial relations and operations with partially ordered sets[END_REF]. But, as far as we know, Galois lattices have not been studied for spatial reasoning.

Our goal is to show that Galois lattices can be useful for both spatial representation, computation and reasoning. In particular, Galois lattices can be used for linking various sets of relations, and various sets of computational conditions. In this paper, we study two sets of computational conditions, one set of relations, and then compare the structures of the resulting Galois lattices. We then compare the two Galois lattices with a third boolean lattice, and discuss dierent points of view, such as the implementation, the memory occupation, the representation of concepts, and the reasoning capabilities. Practically, a

Galois lattice has been implemented within an object-based knowledge representation system, equipped with a classication process. In this framework, the exploitation of land-use maps for landscape analysis is considered as an instance classication problem, where landscape models correspond to classes, while zones correspond to instances that have to be classied according to landscape model classes [START_REF] Ber | The design of an object-based system for representing and classifying spatial structures and relations[END_REF]. Substantial and encouraging results have been obtained, showing the practicability of the approach.

The paper is organized as follows. The second section introduces the context of the work, i.e. topological relations, especially the RCC-8 theory, and computational operations. We present two sets of computational conditions that are used to check topological relations on vector or raster regions. The third section focuses on the construction of two Galois lattices based on the implication relation between the base relations of RCC-8, and the two sets of computational conditions. The fourth section presents rstly a comparison of the two lattices, and secondly, a comparison of both Galois lattices with the boolean lattice associated with the base relations of RCC-8. The fth section briey shows how a Galois lattice can be implemented and used in practice.

The present research work is then discussed and compared with related work in the sixth section. Finally, we conclude the paper and give research perspectives.

2 Qualitative and quantitative aspects of topological relations 2.1 A logical approach of topological relations: the RCC-8 theory

In the context of qualitative spatial reasoning, topological relations are opposed to distance and orientation relations. The topological relations considered are mostly binary and are independent of the orientation of the entities.

The basic ontological entity is a point or a region. Regions are generally dened as portions of space determined by concrete objects, and are not considered as sets of spatial points [START_REF] Vieu | Spatial Representation and Reasoning in Articial Intelligence[END_REF]. The usual topological relations between regions are the relations of the so-called RCC-8 theory [START_REF] Randell | A Spatial Logic based on Regions and Connection[END_REF][START_REF] Cohn | Representing and reasoning with qualitative spatial relations about regions[END_REF], that relies on a set of eight base relations, namely the B set. The names and iconic representations of the B relations are given in Table 1. The base relations are exhaustive and mutually exclusive, i.e. any conguration of two spatial regions can be described by the B set, and, if one of these relations is true, then the others are false. Moreover, in the RCC-8 theory, the spatial regions considered are 2dimensional, potentially innite in number, and with any degree of connection between them.

The topological relations of the RCC-8 theory are based on the connection relation between two spatial regions [START_REF] Clarke | A calculus of individuals based on `connection[END_REF]: two regions x and y are connected denoted by c(x, y) if they share at least a point. A point is a zero-dimensional spatial element, according to its mathematical meaning. The c(x, y) relation is dened by the following axioms: relation notation icons

x is identical with y eq(x, y)

x is a tangential proper part of y tpp(x, y)

x is a non tangential proper part of y ntpp(x, y)

x tangentially contains as a proper part y tpp -1 (x, y)

x non tangentially contains as a proper part y ntpp -1 (x, y) 00 00 00 11 11 11 x partially overlaps y po(x, y) The names and the icons associated to the eight base relations of the RCC-8 theory.

∀x

: c(x, x) ∀x, y : c(x, y) =⇒ c(y, x) ∀x, y : (∀z : c(z, x) ⇐⇒ c(z, y)) =⇒ x = y
Relying on the connection relation, ve relations can be dened (see 3.

Mathematical operations on topological relations

It is often useful to deduce new facts from a given situation, or to verify the consistency of the available knowledge on a given situation. This inferences can be drawn using the topological relations and the following mathematical operations.

• The converse relation of a relation r is the relation r - Table 2 The set of mereotopological relations [START_REF] Clarke | A calculus of individuals based on `connection[END_REF].

eq(x, y)

≡ def p(x, y) ∧ p(y, x) tpp(x, y) ≡ def pp(x, y) ∧ ∃z : ec(z, x) ∧ ec(z, y) ntpp(x, y) ≡ def pp(x, y) ∧ ¬∃z : ec(z, x) ∧ ec(z, y) tpp -1 (x, y) ≡ def tpp(y, x) ntpp -1 (x, y) ≡ def ntpp(y, x) po(x, y) ≡ def o(x, y) ∧ ¬p(x, y) ∧ ¬p(y, x) ec(x, y) ≡ def c(x, y) ∧ ¬o(x, y) dc(x, y) ≡ def ¬c(x, y)
Table 3 The denitions of the base relations of RCC-8 rely on the mereotopology. ∀x, ∀y, r(x, y) ⇐⇒ r -1 (y, x) • Two relations r 1 et r 2 are said to be disjoint if: ∀x, ∀y, (r 1 (x, y) =⇒ ¬r 2 (x, y)) ∧ (r 2 (x, y) =⇒ ¬r 1 (x, y)) • The complement of a relation r is the relation r c such that : r and r c are disjoint and ∀x, ∀y, r(x, y) ∨ r c (x, y) holds. • Given three spatial regions x, y, z, and a pair of relations r 1 and r 2 , such that r 1 (x, y) and r 2 (y, z), the composition of r 1 and r 2 is the disjunction r of all the possible relations holding between x and z.

The last operation is especially interesting: rules of composition, as proposed in [START_REF] Randell | Exploiting Lattices in a Theory of Space and Time[END_REF], may be used for inferring relations holding between two regions x and z, from the knowledge of the relations holding between the two regions x and z, and a third region y. For instance, Figure 1 depicts two congurations where three regions x, y and z are drawn with respect to the relations tpp(x, y) and ec(y, z). Thus dc(x, z) or ec(x, z) can be deduced. The two schemas of the gure correspond to the two possible relative locations of x and z. by tpp(x, y) and ec(y, z). In the left case, dc(x, z) is true, and in the right case, ec(x, z) is true.

The rules of composition on the topological relations are represented in composition tables : such a table is dened for 9 relations in [START_REF] Randell | Computing Transitivity Tables: A Challenge For Automated Theorem Provers[END_REF], and for 22 relations in [START_REF] Cohn | Qualitative Spatial Reasoning and Representation[END_REF]. A method for building large composition tables based on several theories is described in [START_REF] Randell | Building Large Composition Tables via Axiomatic Theories[END_REF].

The computation of topological relations

In this section we present computational operations that can be used for checking RCC-8 relations on vector or raster data (e.g. data from geographic information systems, or aerial or satellite images). We present two sets of computational operations from which we derive two sets of computational conditions, namely CE-8 and CM -8. These conditions apply on a set D of regular closed regions that are non empty, internally connected, and that may overlap, i.e. a point may belong to several regions. Topological problems linked to discrete representations are studied in [START_REF] Ber | Design and comparison of lattices of topological relations for spatial representation and reasoning[END_REF].

A rst set CE-8 of computational conditions

In [START_REF] Egenhofer | A Formal Denition of Binary Topological Relationships[END_REF], an n-dimensional region x is characterized by two sets, the interior (of dimension n), denoted by x • , and the boundary (of dimension n -1), denoted by ∂x. Two regions are characterized by four sets whose intersections dene four computational operations : ∂x ∩ ∂y, x • ∩ y • , ∂x ∩ y • and x • ∩ ∂y.

These computational operations can be used to check or to characterize the RCC-8 relations in the following way. When a topological relation, say x partially overlaps y or po(x, y) holds between two regions x and y, then the four computational operations applied to regions x and y give the following results: ∂x

∩ ∂y = ∅, x • ∩ y • = ∅, ∂x ∩ y • = ∅ and x • ∩ ∂y = ∅. Conversely,
if the four computational operations give the previous results when applied to two regions x and y, then the relation po(x, y) holds (see Figure 2). The relationship between these operations and the base relations of RCC-8 is described in Table 4.

We call CE-8 the set {nfo, fo, nof, of, dr, o, na, a} of the eight conditions derived from these operations, according to the emptiness or non-emptiness of the result: x,y ∂x ∩ ∂y x

• ∩ y • ∂x ∩ y • x • ∩ ∂y eq = ∅ = ∅ ∅ ∅ tpp = ∅ = ∅ = ∅ ∅ ntpp ∅ = ∅ = ∅ ∅ tpp -1 = ∅ = ∅ ∅ = ∅ ntpp -1 ∅ = ∅ ∅ = ∅ po = ∅ = ∅ = ∅ = ∅ ec = ∅ ∅ ∅ ∅ dc ∅ ∅ ∅ ∅ Table 4
Relationship between the RCC-8 relations and the operations on interior and boundary sets proposed in [START_REF] Egenhofer | A Formal Denition of Binary Topological Relationships[END_REF].

• ∂x ∩ y • = ∅: the border of x is disjoint from the interior of y is denoted by nfo(x, y),

• ∂x ∩ y • = ∅ is denoted by fo(x, y), • x • ∩ ∂y = ∅ is denoted by nof(x, y), • x • ∩ ∂y = ∅ is denoted by of(x, y), • x • ∩ y • = ∅: x is discrete from y is denoted by dr(x, y), • x • ∩ y • = ∅: x overlaps y is denoted by o(x, y),
• ∂x ∩ ∂y = ∅: x does not share a boundary with y is denoted by na(x, y),

• ∂x ∩ ∂y = ∅: x shares a boundary with y is denoted by a(x, y).

A second set CM -8 of computational conditions

Following the work presented in [START_REF] Egenhofer | A Formal Denition of Binary Topological Relationships[END_REF], another set of computational operations based on the set-dierence and the intersection of interior sets and boundaries has been proposed in [START_REF] Mangelinck | Représentation et classication de structures spatiales. Application à la reconnaissance de paysages agricoles[END_REF]. The following four computational operations are taken into account: the intersection of the interior sets, x • ∩y • ; the intersection of the boundary sets, ∂x ∩ ∂y; the two dierences of the interior sets, x • -y • and y • -x • . These four computational operations allow to check the RCC-8 relations on the images, and the correspondence between each relation and the results of the operations are described on Table 5.

x,y

x 5 The correspondence between the computational operations dened in [START_REF] Mangelinck | Représentation et classication de structures spatiales. Application à la reconnaissance de paysages agricoles[END_REF] for checking relations on raster regions, and the RCC-8 relations.

• -y • y • -x • x • ∩ y • ∂x ∩ ∂y eq ∅ ∅ = ∅ = ∅ tpp ∅ = ∅ = ∅ = ∅ ntpp ∅ = ∅ = ∅ ∅ tpp -1 = ∅ ∅ = ∅ = ∅ ntpp -1 = ∅ ∅ = ∅ ∅ po = ∅ = ∅ = ∅ = ∅ ec = ∅ = ∅ ∅ = ∅ dc = ∅ = ∅ ∅ ∅ Table
From these four operations eight conditions are derived that compose the CM -8 set, namely {p, np, p -1 , np -1 , dr, o, na, a}. It can be noticed that four conditions in CE-8, namely dr, o, na, and a, remain in CM -8:

• x • -y • = ∅: x is a part of y is denoted by p(x, y) 1 , • x • -y • = ∅: x is not a part of y is denoted by np(x, y), • y • -x • = ∅: x contains y ( y is a part of x ) is denoted by p -1 (x, y), • y • -x • = ∅ : x does not contain y ( y is not a part of x ) is denoted by np -1 (x, y), • x • ∩ y • = ∅ is denoted by dr(x, y) as indicated previously, • x • ∩ y • = ∅ is denoted by o(x, y), • ∂x ∩ ∂y = ∅ is denoted by na(x, y), • ∂x ∩ ∂y = ∅ is denoted by a(x, y).
Besides, it is important to notice that some conditions of CM -8 (or imply others because of the properties of the spatial regions (this will be discussed further in 4.1). For example, each of the conditions x • -y • = ∅ or y • -x • = ∅ separately implies the condition x • ∩ y • = ∅ (the regions are non empty); the condition ∂x ∩ ∂y = ∅ is implied by the conjunction of the same conditions (the regions are non empty and closed). 1 The regions are closed and thus x • -y • = ∅ ⇐⇒ x -y = ∅.

Two Galois lattices of topological relations

In this section, we present the construction of two Galois lattices of topological relations. The lattices have to satisfy the following requirements: rstly, to include the set of relations B, and, respectively, the condition sets CM -8 and CE-8, and secondly, to make explicit the relationship between the eight relations of B, and the eight conditions of CM -8 or CE-8. The two lattices are built thanks to a Galois connection between B, and the sets of conditions CM -8 and CE-8 respectively.

Hereafter, we rst give details on the design of the Galois lattice based on B × CM -8, that actually constitutes our own research work. The second Galois lattice construction, based on B × CE-8, can be read and understood in the same way.

The Galois lattice based on B × CM -8

The presentation of the Galois lattice based on B × CM -8 proposed hereafter relies on the classical presentation of concept lattices given in [START_REF] Ganter | Formal Concept Analysis[END_REF] p np p -1 np -1 dr o na a eq

1 0 1 0 0 1 0 1 ntpp 1 0 0 1 0 1 1 0 tpp 1 0 0 1 0 1 0 1 ntpp -1 0 1 1 0 0 1 1 0 tpp -1 0 1 1 0 0 1 0 1 po 0 1 0 1 0 1 0 1 ec 0 1 0 1 1 0 0 1 dc 0 1 0 1 1 0 1 0 Table 6
This table shows the formal context (B,CM -8,I), where an element (r, c) = 1 whenever ∀(x, y) ∈ D 2 , r(x, y) =⇒ c(x, y), otherwise (r, c) = 0, with r ∈ B (line) and c ∈ CM -8 (column).

• E G is the set of all pairs (R, C) where R is a subset of B closed for , with R = C, and where C is a subset of CM -8 closed for , with C = R.

• The partial ordering between two elements (R 1 , C 1 ) and (R 2 , C 2 ) is dened as follows: (R 1 , C 1 ) (R 2 , C 2 ) ⇐⇒ R 1 ⊆ R 2 (or, equivalently C 2 ⊆ C 1 ).
• The greatest lower bound (denoted by ) of two elements is dened as follows:

(R 1 , C 1 ) (R 2 , C 2 ) = (R 1 ∩ R 2 , (C 1 ∪ C 2 ) )
• The least upper bound (denoted by ) of two elements is dened as follows:

(R 1 , C 1 ) (R 2 , C 2 ) = ((R 1 ∪ R 2 ) , C 1 ∩ C 2 )
• The top element is (B, ∅) and the bottom element is (∅, CM -8 ).

In the following, the concepts of the T GM lattice may be named either as a topological relation (i.e a disjunction of B relations) or as a conjunction of conditions. Moreover, the writing a denotes a topological relation or a condition, while A denotes the associated lattice concept.

The T GM ordering and the implication between relations

In this paragraph, we dene two projection functions mapping a concept (R, C) of the T GM lattice onto either a disjunction of relations or onto a conjunction of conditions. These two projections derive from the fact that, as introduced in section 2.3, each relation is equivalent to a conjunction of conditions, and, reciprocally, a condition is equivalent to a disjunction of relations.

These two projections, named π r and π c are dened as follows:

Figure 3. The Galois lattice T GM built on the basis of Table 6.

• π r maps a concept (R, C) of T GM onto the disjunction of the relations belonging to R:

∀(x, y) ∈ D 2 , π r (R, C)(x, y) = def r∈R r(x, y)
• π c maps a concept (R, C) of T GM onto the conjunction of the conditions belonging to C:

∀(x, y) ∈ D 2 , π c (R, C)(x, y) = def c∈C c(x, y)
These projections are introduced for fullling our original and concrete purpose, namely spatial computation and reasoning. Indeed, based on the construction of the T GM lattice, the relation π r (R, C) is logically equivalent to the condition π c (R, C). In other words:

(R, C) ∈ T GM =⇒ (∀(x, y) ∈ D 2 , r∈R r(x, y) ⇐⇒ c∈C c(x, y))
This equivalence can be interpreted as follows. Each topological relation represented in the lattice can be computed on image data, thanks to computational conditions. Conversely, each conjunction of conditions computed on spatial regions can be associated to a topological relation. For example, the topological relation pp(x, y), x is a proper part of y , is equivalent to the disjunction of the two relations tpp(x, y) and ntpp(x, y), and is represented by the concept ({tpp, ntpp}, {o, np -1 , p}). When the conditions o, np -1 , and p, on two regions x and y hold, then tpp ∨ ntpp holds, and thus pp holds on the two regions.

The π c and π r projections make explicit the links between the lattice ordering and the implication relations between topological relations. Actually the following property may be proved for all pairs of elements of T GM , due to the denition of partial ordering between the lattice concepts [START_REF] Ber | Design and comparison of lattices of topological relations for spatial representation and reasoning[END_REF]:

(R 1 , C 1 ) (R 2 , C 2 ) ⇐⇒          ∀(x, y) ∈ D 2 , r∈R 1 r(x, y) =⇒ r∈R 2 r(x, y) ∀(x, y) ∈ D 2 , c∈C 1 c(x, y) =⇒ c∈C 2 c(x, y)
Thus, if an element E 1 = (R 1 , C 1 ), e.g. EQ = ({eq}, {o, a, p, p -1 }), is less in T GM than another element E 2 = (R 2 , C 2 ), e.g. TP = ({tpp, eq}, {o, a, p}), then the disjunction of the relations in R 1 implies the disjunction of the relations in R 2 , and the conjunction of the conditions in C 1 implies the conjunction of the conditions in C 2 .

EQ TP ⇐⇒ ∀(x, y) ∈ D 2 , eq(x, y) =⇒ (eq ∨ tpp)(x, y)

and (o ∧ a ∧ p ∧ p -1 )(x, y) =⇒ (o ∧ a ∧ p)(x, y)
The following properties characterize the glb ( ) and the lub ( ) in the Galois lattice T GM (proofs are given in [START_REF] Ber | Design and comparison of lattices of topological relations for spatial representation and reasoning[END_REF]).

• The glb operator in the lattice is equivalent to the conjunction operator (∧) on relations, i.e.

E = E 1 E 2 in T GM if and only if π r (E) is equivalent to π r (E 1 ) ∧ π r (E 2 ), or, dually, E = E 1 E 2 if and only if π c (E) is equivalent to the conjunction π c (E 1 ) ∧ π c (E 2 ).
• By contrast, the lub operator is not equivalent to the disjunction operator (∨) on relations, because the lub of two closed sets is generally not a closed set, whereas the glb is always a closed set [START_REF] Barbut | Ordre et classication Algèbre et combinatoire[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF]. However, for all pairs of lattice concepts (E 1 , E 2 ), the lub F = E 1 E 2 is such that the disjunction π r (E 1 ) ∨ π r (E 2 ) implies the relation π r (F).

The Galois lattice based on B × CE-8

The second Galois lattice, named T GE , is based on the computational operations proposed in [START_REF] Egenhofer | A Formal Denition of Binary Topological Relationships[END_REF], and is built in the same way as T GM . The Galois connection between the sets B and CE-8 is given in the Table 7, and the resulting Galois lattice T GE is displayed on Figure 4. The concepts in T GE are pairs (R, C), where R is a subset of B, and C is a subset of CE-8, e.g.

({po, tpp}, {fo, o, a}) and ({eq}, {nfo, nof, o, a}). fo nfo of nof dr o na a eq 0 1 0 1 0 1 0 1

ntpp 1 0 0 1 0 1 1 0 tpp 1 0 0 1 0 1 0 1 ntpp -1 0 1 1 0 0 1 1 0 tpp -1 0 1 1 0 0 1 0 1 po 1 0 1 0 0 1 0 1 ec 0 1 0 1 1 0 0 1 dc 0 1 0 1 1 0 1 0 Table 7
The Galois connection between the B relations and the CE-8 conditions. 

Elements for a comparison between lattices of topological relations 4.1 Comparing the concepts in the two B-based Galois lattices

Since they rely on the same set B of relations, the distinction between the T GM and T GE Galois lattices is mainly due to the dierent sets of conditions, i.e. CM -8 and CE-8, on which T GM and T GE are built.

Examining the T GM lattice, it can be remarked rst that the eight atoms of the lattice, i.e. the immediate ancestors of ⊥, are the eight B relations (see Figure 3). The atoms are also join-irreducible elements [START_REF] Barbut | Ordre et classication Algèbre et combinatoire[END_REF][START_REF] Ganter | Formal Concept Analysis[END_REF][START_REF] Duquenne | Latticial structures in data analysis[END_REF]. Then, it can be remarked that ve conditions of the CM -8 set are expressed within coatoms, i.e. concepts that are immediate descendants of in the T GM lattice. These concepts are NA, A, NP, NP -1 , and O, whose sets of conditions are closed: ∀c ∈ {na, a, np, np -1 , o}, {c} = {c}. The coatoms are also meet-irreducible elements in the lattice. The other meet-irreducible elements are P and P -1 that are less than O, and DR that is less than the glb of NP and NP -1 :

{p} = {p, o} {p -1 } = {p -1 , o} {dr} = {dr, np, np -1 }
Examining the T GE lattice, it can be remarked rst, as this is the case for T GM , that the eight atoms of the lattice are still the eight B relations (see Figure 4). Then, it can be remarked that ve conditions of the CE-8 set are expressed within coatoms, namely NOF, NFO, A, NA, O, whose sets of conditions are closed: ∀c ∈ {nof, nfo, a, na, o}, {c} = {c}. The coatoms are also meet-irreducible elements in the T GE lattice. The three other meet-irreducible elements behave as follows: {of} = {of, o} {fo} = {fo, o} {dr} = {dr, nof, nfo} Furthermore, the Galois lattices can be compared on the basis of their sets of meet and join-irreducible elements [START_REF] Davey | Introduction to Lattices and Order[END_REF], that are respectively B and CM -8 for T GM , and B and CE-8 for T GE . Thus, the two lattices can be directly compared with the help of the tables 6 and 7: when the two lines of the relations eq and po are switched, we obtain two identical tables, wrt the following conditions correspondences: fo ↔ p, of ↔ p -1 , nfo ↔ np, and nof ↔ np -1 . Thus, the comparison of meet and join-irreducible elements allows to conclude that the two lattices are isomorphic.

Besides, both lattices have 34 concepts, among which 28 are identical wrt the extensions of the concepts, i.e. the sets of relations R associated to each concept (R, C) (the intensions C within (R, C) are not necessarily the same as the sets CM -8 and CE-8 are dierent). Only 6 elements of the lattices are dierent wrt both the extensions and the intensions. They belong to the lter of EC EQ in T GE , and to the lter of EC PO in T GM (see Figure 5). The intents of these concepts respectively are:

{nfo} {nof} {nfo, nof} {nfo, a} {nof, a} {nfo, nof, a} Based on these observations, we can dene a bijective map Φ M E between the two lattices:

Φ M E : T GM → T GE (R M , C M ) → (R E , C E )
with the following mappings: p

∈ C M → fo ∈ C E , p -1 ∈ C M → of ∈ C E , np ∈ C M → nfo ∈ C E and np -1 ∈ C M → nof ∈ C E for the intents, and eq ∈ R M → po ∈ R E , po ∈ R M → eq ∈ R E
for the extents; the other conditions and relations map onto themselves.

Φ M E is order-preserving and also join-and meet-preserving according to the properties of lattice-isormorphisms [START_REF] Davey | Introduction to Lattices and Order[END_REF].

Comparing the computation skills of the two B-based Galois lattices

In a general way, the higher is a condition c in the lattice, the higher is the number of relations that can be tested using c. More precisely, a relation, say R, expressed in the Galois lattices T GM or T GE , is associated to a set C of conditions that can be interpreted as a necessary and sucient set of conditions to be tested for checking R. For example, the relation eq in T GM is associated to the set of conditions C = {o, a, p, p -1 } (see Table 6). Thus, ∀(x, y) ∈ D 2 , if eq(x, y) holds then (o ∧ a ∧ p ∧ p -1 )(x, y) holds, and the converse is also true. Actually, for checking eq(x, y) in T GM , it is sucient to check only a subset of conditions of C = {o, a, p, p -1 }, namely C 1 = {p, p -1 }. Indeed, EQ is the glb in T GM of elements P and P -1 , that respectively represent the conditions p and p -1 . By contrast, EQ is in T GE the glb of O, NFO, and NOF, meaning that the three corresponding conditions have to be checked.

These properties can be linked to the Duquenne-Guigues (DG) basis associated to each lattice [START_REF] Guigues | Familles minimales d'implications informatives résultant d'un tableau de données binaires[END_REF][START_REF] Duquenne | Contextual implications between attributes and some representational properties for nite lattices[END_REF]. Actually, for T GM , the rules of the DG basis are the following:

(

1) p =⇒ o (2) p -1 =⇒ o (3) dr =⇒ np ∧ np -1 (4) na ∧ o ∧ p =⇒ np -1 (5) na ∧ o ∧ np =⇒ p -1 (6) na ∧ o ∧ p -1 =⇒ np (7) na ∧ o ∧ np -1 =⇒ p (8) na ∧ np ∧ np -1 =⇒ dr (9) o ∧ p ∧ p -1 =⇒ a (10) o ∧ np ∧ np -1 =⇒ a
For example, these rules lead to the following implications:

p ∧ p -1 =⇒ (1,2) o ∧ p ∧ p -1 =⇒ (9) o ∧ p ∧ p -1 ∧ a ⇐⇒ eq
Depending on the Galois lattice T GM and T GE , there exists minimal sets of conditions for checking a B relation. Thus, it can be worth comparing the cardinality of these minimal sets of conditions. Table 8 summarizes the subsets of relations, the associated minimal subsets, and their cardinalities. It appears that, except for eq and po, checking a base relation requires to check the same number of conditions in the two lattices. For example, checking the relations ntpp or dc requires two conditions both in T GM and in T GE : {p, na} vs. {fo, na}, and {dr, na} vs. {dr, na} respectively. By contrast, checking eq requires two conditions in T GM , and three conditions in T GE as discussed hereabove, checking po requires three conditions in T GM , namely {np, np -1 , o}, and only two conditions in T GE , namely {fo, of}.

E E / E M C E C M n E n M EQ {nfo, nof, o, a} {p, p -1 , o, a} 3 2 TPP {fo, o, a, nof} {p, o, a, np -1 } 3 3 NTPP {fo, o, na, nof} {p, o, na, np -1 } 2 2 TPP -1 {of, o, a, nfo} {p -1 , o, a, np} 3 3 NTPP -1 {of, o, na, nfo} {p -1 , o, na, np} 2 2 PO {fo, of, o, a} {np, np -1 , o, a} 2 3 EC {dr, nof, nfo, a} {dr, np, np -1 , a} 2 2 DC {dr, nof, nfo, na} {dr, np, np -1 , na} 2 2
Table 8 Sets of conditions associated to the base relations in T GE and T GM . The rst column gives the names of the corresponding elements in the two lattices. The two following columns give the sets of conditions C E (in T GE ) and C M (in T GM ). The two last columns give the minimal numbers n E , n M of conditions to be used for checking the relations. The conditions to be checked are underlined.

From the point of view of minimal sets of conditions to be checked, the T GM and T GE lattices have also similar characteristics: the same number of conditions has to be checked in both lattices T GE and T GM . More precisely, among the 26 sets of relations common to both lattices (∅ and B excluded), 16 require the same number of conditions, 5 require one additional condition in T GE , and 5 require one additional condition in T GM . Thus, the choice of using one Galois lattice rather than another cannot be based on the average number of necessary tests to be performed for checking the base relations. This choice depends more on the adequacy of the lattice with the needs of the application:

it can be preferable to compute either the intersection of a boundary set and an interior set (∂x ∩ y • , x • ∩ ∂y), or the dierence of two interior sets (x • -y • , y • -x • ), as discussed for raster data in [START_REF] Ber | Design and comparison of lattices of topological relations for spatial representation and reasoning[END_REF].

4.3

The Galois lattices T GM and T GE wrt the boolean lattice T P Let us now introduce the boolean lattice T P = 2 B , ⊆, ∩, ∪, B, ∅ , whose cardinality is 2 8 = 256. Being boolean, this lattice is distributive and complemented, and thus includes the representation of all the conjunctions, the disjunctions, and the negations of the relations of B. In the following, we compare the Galois lattices T GM and T GE with the boolean lattice T P from three points of view: implementation, concept representation, and reasoning.

Considering the implementation and memory occupation point of view, the Galois lattices T GM and T GE are much easier to implement and to manage than the T P lattice. Actually, the implementation of the T P lattice leads to the design of 256 classes of relations in the framework of an object-based knowledge representation system. By contrast, the two Galois lattices T GM and T GE have a smaller size of 34 concepts. Thus, if the memory occupation may be a problem, e.g. an object-based knowledge representation system has to be reasonably sized in terms of memory occupation, the choice of one of these Galois lattices seems to be obvious.

In terms of representation, by construction, the Galois lattices T GM and T GE include the representation of the conditions used to check the relations on spatial regions, and the representation of the implication relations holding between the conditions and the relations. By contrast, the duality relations conditions (or extent intent) is not explicitly present in the T P lattice. Actually, the conditions could be included in T P as formal attributes because they are equivalent to disjunctions of relations in B. Moreover, for the main part, the relations represented in T P cannot be associated with the usual conditions. This shows that the T P lattice is not very useful for taking into account quantitative data.

The last comparison point holds on reasoning within the lattices. Reasoning is complete wrt conjunction, disjunction, negation, and composition in T P whereas it is not in the Galois lattices, except for conjunction. The reasons of the incompleteness are the following:

• The whole set of compositions of the base relations is not present in the Galois lattices T GM and T GE . The T P lattice includes all the disjunctions of B relations, and thus it contains all the relations of the composition table of B. The T GM and T GE lattices lack respectively three and vr relation compositions.

• The Galois lattices are not complemented, i.e. each concept in T GM and T GE does not necessarily have a complement and thus reasoning is not complete wrt negation.

• The lub of two concepts is not equivalent to the disjunction of the corresponding relations (see paragraph 3.2), and thus reasoning is not complete wrt disjunction.

Thus, if completeness of reasoning is mandatory, the T P lattice has to be preferred. For combining the advantages of the Galois lattices, i.e. memory occupation and concept representation, and the advantages of the T P lattice, i.e. completeness of reasoning, it is possible to extend the Galois lattices with the lacking relation compositions. However, this cannot be done straightforwardly, because the relation sets associated to the concepts to be added in the Galois lattices do not correspond to any condition set (details are given in [START_REF] Ber | Design and comparison of lattices of topological relations for spatial representation and reasoning[END_REF]).

5 Using lattices for qualitative spatial representation and reasoning in practice

From a knowledge representation and reasoning point of view, a Galois lattice can be viewed as a hierarchical conceptual clustering of individuals, and as a representation of all implications between the attributes of the concepts [START_REF] Wille | Concept lattices and conceptual knowledge systems[END_REF].

Moreover, Galois lattices are well adapted to the classication of topological relations, because they combine computational capabilities involving computational conditions, and reasoning capabilities involving relations. In addition, the T GM and T GE lattices have the great advantage of being minimal in terms of memory occupation. Thus, it can be practical to implement a Galois lattice for applications dealing with spatial data. In our framework, the T GM lattice has been implemented within an object-based knowledge representation system, namely the Y3 system [START_REF] Ducournau | Y3 : YAFOOL, the object oriented language[END_REF], and used for analyzing land-use maps.

The Y3 system is based on a frame language where classes and instances are implemented as frames, composed of slots, representing both attributes and methods. Attributes are characterized by declarative and procedural facets : A complete description of the LoLA system, its implementation and the results that have been obtained, are detailed in [START_REF] Ber | The design of an object-based system for representing and classifying spatial structures and relations[END_REF][START_REF] Ber | Design and comparison of lattices of topological relations for spatial representation and reasoning[END_REF].

Related work

Our proposition is related to several research domains. From a theoretical point of view, it is related to qualitative spatial reasoning and relation computation.

It aims at taking advantage of the structure and properties of Galois lattices for representing and managing topological relations, their mathematical and computational properties. Most of the work in qualitative spatial reasoning focuses on the denition of logical formalisms, whose concern is automated reasoning [START_REF] Clarke | A calculus of individuals based on `connection[END_REF][START_REF] Randell | Exploiting Lattices in a Theory of Space and Time[END_REF][START_REF] Bennett | Spatial reasoning with propositional logics[END_REF][START_REF] Möller | Terminological Default Reasoning about spatial information: A First Step[END_REF]. In this research work, boolean lattices have been used

for representing spatial relations, for automatic theorem proving and for relation inferring: the composition of two arbitrary relations may be inferred from the lattice structure and a composition table [START_REF] Randell | Exploiting Lattices in a Theory of Space and Time[END_REF]. Fewer works deal with the computation of topological relations on spatial region, with respect to quantitative data. In these works, topological relations are dened as the result of computational operations on the regions, their interiors and boundaries. Vector or raster regions are considered [START_REF] Egenhofer | Point-set topological spatial relations[END_REF][START_REF] Egenhofer | Topological Relations Between Regions in 2 and Z 2[END_REF][START_REF] Bennett | A system handling RCC-8 queries on 2D regions representable in the closure algebra of half-planes[END_REF][START_REF] Ligozat | Simple Models for Simple Calculi[END_REF]. Our work combines both aspects through concept lattices, that emphasize the links between qualitative models and computational operations, and thus quantitative data. Furthermore, we show that the specic properties of Galois lattices are useful for managing the properties of qualitative relations, and thus for spatial reasoning. Finally, this work is original because it considers Galois lattices as an actual basis for object-based representation systems, contrasting with their usual applications in formal concept analysis [START_REF] Ganter | Formal Concept Analysis[END_REF], or in knowledge discovery [START_REF] Godin | An incremental concept formation approach for learning from databases[END_REF][START_REF] Simon | Building viewpoints in an object-based representation system for knowledge discovery in databases[END_REF][START_REF] Valtchev | Formal concept analysis for knowledge discovery and data mining: The new challenges[END_REF].

From the application point of view, our approach can be compared to works in the elds of geographic information or image understanding. Actually, the problem of representing and recognizing spatial structures has been studied both for images and cartographic maps. In particular, lattices have been used in geographic information systems to represent hierarchical spatial entities (points, lines, triangles), and then to compute topological relations between these entities [START_REF] Kainz | Modelling spatial relations and operations with partially ordered sets[END_REF]. For example, the lattice in Figure 6 describes two regions A and B, and four sub-regions 1, 2, 3, 4, where A includes the sub-regions 3, 4, 1, and B the sub-regions 2, 3, 4. This last approach is dierent from ours, since we do not model data but we use the lattice structure to represent concepts, and especially spatial relations and their properties.

Figure 6. Two regions including sub-regions [START_REF] Kainz | Modelling spatial relations and operations with partially ordered sets[END_REF].

Our approach also presents similarities with the approach used in the VEIL system for the recognition of objects in an image [START_REF] Price | Knowledge Representation for Computer Vision: The VEIL Project[END_REF][START_REF] Russ | VEIL: Combining Semantic Knowledge with Image Understanding[END_REF]: the domain model is described within hierarchies of concepts implemented within the loom system [START_REF] Macgregor | Inside the LOOM Description Classier[END_REF][START_REF] Macgregor | Recognition Algorithms for the Loom Classier[END_REF]. The loom classier is used to classify the image objects into concepts according to the available information, but there does not exist a specic representation of spatial relations as in our research work.

Finally, let us mention related work holding on qualitative spatial representation for managing map databases and spatial query processing. In [START_REF] Haarslev | A description logic with concrete domains and a role-forming predicate operator[END_REF], spatial reasoning is performed within a description logic framework, and relies on two main operations, namely consistency checking and classication. In [START_REF] Möller | Terminological Default Reasoning about spatial information: A First Step[END_REF],

spatio-temporal default reasoning is introduced: a specic query completion problem is studied and default knowledge is used for completing and making queries more precise. These two research works have same objectives as ours, but they do not rely on an explicit lattice-based representation of spatial relations.

Conclusion and Future Work

In this paper, we have presented and compared two Galois lattices representing topological relations for spatial reasoning. These Galois lattices provide an ecient framework for classifying topological relations, and for designing a connection between computational conditions linked with numerical data and topological relations of the RCC-8 theory used for qualitative spatial reasoning. This connection is of main importance and general interest. Furthermore, Galois lattices are not only theoretical tools: they provide a practical framework for implementing hierarchical knowledge-based systems, and give adequate guidelines for implementing object-based knowledge representation systems.

Following the present research work, there is a number of research perspectives among which the comparison with Galois lattices organizing other sets of topological relations or conditions (e.g. [START_REF] Ligozat | Simple Models for Simple Calculi[END_REF]), the study of the complexity of qualitative spatial reasoning in Galois lattices, and the possible extensions of Galois lattices to ensure a complete reasoning. Indeed, there is a trade-o between completeness of reasoning and the size of the lattice organizing topological relations. From the application point of view, this work can be extended to hierarchical case-based reasoning for landscape analysis; rst elements in this research direction are proposed in [START_REF] Ber | Modeling and comparing farm maps using graphs and case-based reasoning[END_REF].
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 1 Figure 1. Composition of topological relations. The two congurations are described

Figure 2 .

 2 Figure 2. Relationship between the relation po(x, y) and the computational operations dened in [21].

  . The formal context (B,C M -8,I ) consists of the set of objects B and the set of attributes CM -8, and the incidence relation I that establishes a correspondence between the relations in B and the conditions in CM -8 as indicated below: • For a set of relations R ⊆ B, let us dene R = {c ∈ CM -8 /∀(x, y) ∈ D 2 : ∀r ∈ R, r(x, y) =⇒ c(x, y)}, i.e. for a pair (x, y) ∈ D 2 , R is the set of conditions c(x, y) that are implied by all the relations r(x, y) ∈ R. • For a set of conditions C ⊆ CM -8 , let us dene C = {r ∈ B/∀(x, y) ∈ D 2 : ∀c ∈ C, r(x, y) =⇒ c(x, y)}, i.e. for a pair (x, y) ∈ D 2 , C is the set of relations r(x, y) implying all the conditions c(x, y) ∈ C.

Figure 4 .

 4 Figure 4. The Galois lattice T GE based on CE-8 and B.

Figure 5 .

 5 Figure 5. Comparing the concepts of T GE (left) and T GM (right): the dierences are highlighted.

  the former are used to represent the range and the value of the attributes while the latter are used to specify local behaviors. Binary relations are special kinds of attributes characterized by a domain and a range classes, and possibly other information such as the inverse relation. Reasoning is mainly based on (i) the subsumption relation between classes, that can be likened to the partial ordering of a lattice, (ii) on the inheritance mechanism, i.e. property sharing between classes, (iii) on classication (for classes), and on identication or recognition (for individuals). The classication process is used for inserting a (new dened) class in the class hierarchy by searching for its most specic subsumer classes, and its most general subsumee classes. The identication process consists in searching for the classes an individual may be instance of. The classication and inheritance mechanisms are based on attribute unication. When classifying a class or identifying an individual, say x, the system checks whether the pairs (attribute,range) or (attribute,value) of x are conform to the pairs in the reference classes: if this is the case, the classication or identication process succeeds and goes on until all attributes in a class have been checked, and then until the most specic class has been checked within the class hierarchy. The concepts of T GM have been represented within relation classes organized according to the lattice ordering. The classes are described by attributes representing the properties of the lattice concepts, such as complement, converse, condition, etc. The composition of relations is implemented as a method dened for the base relations. Furthermore, methods for checking the conditions on the image regions are dened in the classes representing computational conditions, e.g. P P -1 , A, etc. These methods are inherited by more specialized relation classes, according to the lattice ordering. The representation of the T GM lattice has been used in the context of the LoLA system for landscape analysis. The main objective of this system is to recognize landscape models on land-use maps extracted from satellite images. With respect to this task, models describing landscape structures in the Lorraine region (East of France), e.g. territories and elds, have been represented as classes and organized within several class hierarchies. The regions of the land-use maps are then classied according to the model class hierarchies: actually, landscape structures are nested structures, and the classication of a particular image region requires the classication of a set of interrelated regions and the corresponding relations. In this way, the classication mechanism manages interrelated class hierarchies: one is the lattice of relation classes based on the T GM lattice, and the others are the hierarchies of models classes.
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	x overlaps y ; dr(x, y) x is discrete from y . The
	theory based on these relations is interesting because it makes a dierence
	between a point and a region, thanks to the relations c(x, y) x and y share
	a point , and o(x, y) x and y share a region . This dierence allows the
	denition of three additional relations: ec(x, y) x is externally connected with
	y , tp(x, y) x is a tangential part of y , ntp(x, y) x is a non tangential part of
	y (see Table 2). Finally this dierence is used to introduce topological notions
	interior, boundary into purely set-based notions, constituting the so-called
	mereotopology. The denitions of the base relations of RCC-8 in terms of the
	mereotopological theory are given in Table

): dc(x, y) x is disconnected from y ; p(x, y) x is a part of y ; pp(x, y) x is a proper part of y ; o(x, y)

  CM -8 onto itself, and that are closure operators[START_REF] Barbut | Ordre et classication Algèbre et combinatoire[END_REF][START_REF] Ganter | Formal Concept Analysis[END_REF]. The mapping R -→ R from 2 B onto 2 CM -8 , and the mapping C -→ C from 2 CM -8 onto 2 B , dene a Galois connection between 2 B and 2 CM -8 (see Table6). The Galois (or concept) lattice T GM is built on the basis of these two closure operators. A concept in the Galois lattice is a pair (R, C) where the extension or extent R is such that R ⊆ B and R = C, and the intension or intent C is such that C ⊆ CM -8 and C = R. The algebraic denition of the Galois lattice T GM is

	given hereafter.

The two derivation operators, i.e. R -→ R and C -→ C , can be combined in a pair of composite operators, denoted by , that respectively map 2 B onto itself, and 2 Denition 1 The Galois lattice T GM based on the formal context (B,C M -8,I ) is the structure E G , , , , (∅, B), (CM -8 , ∅) where: