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Abstract

Letr, s > 0. For a given probability measuf@onR?, let (v, ),,>1 be a sequence of (asymp-
totically) L" (P)- optimal quantizers. For all € R? and for every) > 0, one defines the sequence
(%) s by :¥n > 1, al# = p+0(ay, — i) = {u+0(a—p), a € ay}. Inthis paper, we are
interested in the asymptotics of thié-quantization error induced by the sequefieg”),,>1. We
show that for a wide family of distributions, the sequefieé*),,~; is L*-rate-optimal. For the
Gaussian and the exponential distributions, one shows ba@kidose the parametérsuch that
(af;“)nzl satisfies the empirical measure theorem.

1 Introduction

Let (2, A, P) be a probability space and léf : (2, 4, P) — R? be a random variable with
distributionPy = P. Leta C R? be a subset (a codebook) of sizeA Borel partitionC, () 4eq Of
R? satisfying

Ca(@) C {z €R?: |z —af = min [|lz — |},

wherel| - || denotes a norm oR is called a Voronoi partition dR? (with respect tax and|| - ||).
The random variabl& @ taking values in the codeboakdefined by

X =" alixecu ()

aco

is called a Voronoi quantization df. In other words, it is the nearest neighbour projectiotXabnto
the codebook (also called grid)

Then-L" (P)-optimal quantization problem fdP (or X)) consists in the study of the best approx-
imation of X by a Borel function taking at most values. FotX € L"(P) this leads to the following
optimization problem:

enr(X) =inf {|| X — X°||,, ¢ R, card ) < n}

with
| X — )A(“H; = E(d(X, a))’" = /Rd d(z,a)"dP(x).



Then we can write

1/r
enr(X) =é€n,(P)= inf </ d(:ﬂ,oz)rdP(:U)> . (1.1)
aCR? Rd
carda)<n

We remind in what follows some definitions and results thditlvd used throughout the paper.

e For alln > 1, the infimum in(@) is reached at one (at least) gud; «* is then called a
L"-optimaln-quantizer. In addition, if card(supp)) > n then carda*) = n (see[ or [{).

e Let X ~ P andletP = P, + P be the Lebesgue decomposition Bfwith respect to the
Lebesgue measurg;, whereP, denotes the absolutely continuous part &dhe singular part
of P.

Zador Theorem (seefd]) : SupposeE|| X ||"*" < +oo for somen > 0. Then

lim n"/%(e,.(P))" = Q.(P).

n—-400
with

d+r

QP) = ga [ 700a) T = Dall g, € 0. 400)

Jra = inf ¢ (U(0,1]) € (0,+00),

whereU ([0, 1]¢) denotes the uniform distribution on the $&t1]¢ and f = fi%. Note that the

moment assumptionE|| X ||" ™" < +oc ensure thal f|| « is finite. Furthermore,.(P) > 0
d—+r

if and only if P, does not vanish.

e A sequence ofi-quantizerg ay, ),>1 is

- L"(P)-rate-optimal (or rate-optimal for X, X ~ P) if

limsupnl/d/ d(z, )" dP(x) < 400,
Rd

n—-4o0o
- asymptotically L"(P)-optimal if

lim p/e / d(w, an) dP(x) = Q. (P)

n—-+oo Rd

- L"(P)-optimal if for all n > 1,
e:”n(P):/ d(z,an)" dP(x).
b Rd

e Empirical measure theorem (see[d) : Let X ~ P. SupposeP is absolutely continuous

with respect to\; andE|| X||"*" < +oco for somen > 0. Let («,),>1 be an asymptotically
L"(P)-optimal sequence of quantizers. Then

1 > b 5P (1.2)
n

acon
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where— denotes the weak convergence and for every BorellstR?, P, is defined by

Pr(4) =

<$ANWWMHMh%FAJmﬁM@. (1.3)

e In [{ is established the following proposition.

Proposition : Let X ~ P, with P, # 0, such thaff|| X ||"*" < oo, for somen > 0. Let(«,)
be anL" (P)-optimal sequence of quantizetss (0,1/2) and lety, : R — R U {+o0} be
the maximal function defined by

Aa(B(z,bd(z, an)))

(@) = 89D B Bl b, an))) 4)
Then for everyr € R,
vn>1, nld(@, 0n) < CB)y(x)/ @) (1.5)

whereC'(b) denotes a real constant not depending:on

e The next proposition is established . It is used to compute th&"-optimal quantizers for
the exponential distribution.

Proposition Letr > 0 and letX be an exponentially distributed random variable with scale

parameten > 0. Then for alln > 1, the L"-optimal quantizerv,, = (a1, - , ay) IS UNIQUE
and given by
a n—1
ank:7”+_z ai, 1<k<n, (1.6)
i=n+1—k

where(ay),>1 is aR-valued sequence defined by the following implicit reciesdquation:
ap == +00, P(—ags1) = ¢(ag), k>0

with ¢(x) := 0:”/2 |u|"~sign(u)e*du ( convention :0° = 1).

Furthermore, the sequen¢e,);>; decreases to zero and for al> 1,

r+1
—

c 1
1+~ 4+0(—=
++ (k2))

ap =
for some real constant..

NOTATIONS

e Leta, be a set of: points of R? . For everyu € R? and every > 0 we denote
Al = 4 O(an — p) = {pu+0(a—p), ac€ oyl

e Let f : RY — R? be a Borel function and lgt € R%,6 > 0. One notes byf, , (or fy if
1 = 0) the function defined by ,(z) = f(u + 0(z — p)), = € RY.

o If X ~ P, Py, will denote the probability measure of the random varia&gﬂ + p, 6>
0,1 € RZ. In other words, it is the distribution image #fby z — 5+ + . Note that if
P = f . )‘d thenP(m = f@,,u . )\d-



e If Ais a matrixA’ shall denote its transpose.

d Setl’ = (.%'1,--- ,.Z'd); Yy = (y17”' 7yd) € Rd’ we denthw7y] = [wlvyl] X X [xdvyd]'

Definition 1.1. A sequence of quantizefs,, ),,>1 is called adilatation of the sequencgv,, ), >1 with
scaling number # andtranslating number 1 if, for everyn > 1, 3, = ol withe > 1. If 6 < 1,
one defines likewise tlwntraction of the sequencgy,, ), >1 with scaling number # andtranslating
number L.

2 Lower estimate

Letr,s > 0. Consider an asymptotically” (P)-optimal sequence of quantizes,, ),,>1 . For every

© € R4 and everyd > 0, we construct the sequen(mﬁ’“)nzl and try to lower bound asymptotically
the L*-quantization error induced by this sequence. This esiimatrovides a necessary condition of
rate-optimality for the sequencﬁaf;“)nZL

Theorem 2.1. Letr,s € (0,+00), r # s, and letX be a random variable taking values Rf' with
distribution P such that P, = f.\; # 0. Suppose thd|| X ||"*" < oo for somen > 0. Let(ay,)n>1
be an asymptotically.” (P)-optimal sequence of quantizers. Then, for every 0 and every: € R,

liminf n*/? || X = X213 = QME(P.0), (2.1)
with p
nf(P,6) = 654, (/ fﬁrd}\d> / fouf T dAg.
R4 {r>0}

Proof. Letm > 1 and

m2"—1 I
=y om LEpPNGT
k,1=0
with
k E+1 l [+1
E]T = {2_m <f< Q—m} ﬂB(O,m) andG{” = {2_m < f97u < Q—m} ﬂB(O,m)

The sequencef,fg“)mzl is non-decreasing and

hm for=fo  Xapp
Let
I = {(k,1) € {0,--- ,m2™ — 1} : \g(EP") > 0; \a(GT") > 0}.

For every(k, 1) € I,, there exists compact sek§* and L;" such that :

1

Ki' C B L C G Aa(EP\KY') < andAq(Gi"\ L") < Il

mAo2m+1



Then

(B OGN N L) = By 0G0 (K1) U (L))
C (BB U(GIM\L").

Hence

Aa(ER N GINE N L") < Aa(BP\KY") + Aa(GIMLT")

1 1
S dgemil T pagamtd
_ 1
- ma9o2m”

For everym > 1 and every(k,l) € I,,,, set
e = KL

m2™—1

~ l
O . _
m. T Z om 1Ak I
k,1=0
and
~ m2™—1 k
fm = Z 2_m1Ak I
k,1=0
We get

(St # Joy © U ((EF" N GIM\ATY) -

k,1€{0,-- ,m2m—1}
Therefore, for everyn > 1,

m2™—1

M £ < S =L

mi22m  m

k,1=0
hence

Z 1{f0 N#.fg’lﬂ} < 0 )\d pp

m>1
Consequentiy\(dz)-p.p, fo"(x) = f%" (x) for large enoughn. Then fo* 424 2PV fp, when

m — +oo0. Since in addition4}”’; C Em N G}* we obtain
fg{u S fg{u S f@#;-

For everyn > 1,

nX = R = el [ ek O+ ) Ald2)
R

> [ win e = o 0= WIS Ma(d2)
> WS”/?ggHz— /6 + 1 — al|* F(2)hald2).
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Using the change of variable:= (z — )/6 + u, one gets :

ol X — Kot s > gotdps/d / Az, 0m)* fo () Ma(d)
]Rd

> ot [ i, ldn)  (by @D)
m2"—1

Y sz/m d(x, on)* Mg (dz). (2.3)
k=0 oo

Letm > 1and(k,1) € I,,. Define the closed setd]”, by A", = 0 if A4(Aj";) = 0 and otherwise by
flgfl ={z eR?: d(z, AY) < em}

wheres,, € (0,1] is chosen so that

/

Since Ay, is compact( Ay, C B(0,m + 1)) V(k, 1), there exists ( ref[J1],emma 4.Ba finite
" firewall” set 3;"; such that

Famdrg < (1+ 1/m)/ FE AN,

m m
kel Ak,l

Vn>1, Vxé€ Aﬂza d(z, an U Bry) = d(z, (o U Bi7) N Akn,z)-

The last inequality is in particular satisfied for alle A}, sinceAy, C A7
Now set3™ = |J,, 87, and n}, = card (o, U 3™) N A7Y). The empirical measure theorem (see
([L.2)) yieds

~ _d_ _d_
) card o, N AYY) fanﬁf&?l farrdig fAZml farrdNg
lim sup = = : < : .

n n [fT5dNg [ [T

Moreover R
nyy,  carda, N AYY)
kb2 T RE S whenn — 400
n n

then . .
[ fatrdAg . _m [ farrdAg

_d_ - _d_ ’
Jap JirdAg L[, farrdAg

.. n
liminf — >
n e

(2.4)

On the other hand,

/ d(x, o)’ Ag(dz) > / d(z, (o U Br7) N Aﬂl)s)\d(dx)
A A

e e
= AR [ o (U B N AR Lag, () 20
> )\d(AZfl)engfl,s(U( k1))

whereU (A) = 14/X4(A) denotes the uniform distribution in the Borel setvhen);(A) # (. Then
we can write for everyk,l) € I,,,

s/d
liminf ns/d/ d(z, o)’ Ng(dz) > Ag(AY) lim inf <Lm> lim inf n®/%es (U (A7),
n—too A oo My " ’ ’



since
lim inf n*/%es, (U(AW)) > Joq - Aa(Ag)™ "

We finally get, considering EquatiqR-4),
s/d

d
dr d\
liminfns/d/ d(z, an)* Xa(dx) > Ng(A7) i 1 If pi d Js.d - N km,z)s/d.
n—-4o00 Ap, m + fAL”l farrdig

-1 .
On the sets!}’;, wehave +> (%) sincef < &5l on Ej". Hence

1 $/d (4 1\ "t
liminfns/d/ d(z, ) Ng(dx) > Jsd<ﬂ/fﬁAd(dx)> <i> " (A7),
n—-+o00 A ’ m oam s

From the previous result and by taking into account the sagditivity of the liminf, one deduces
from Equation(p.J) that, for everym > 1,

m
kel

o 1 [ a4 MM 1\ T
lim inf n*/? X — X > e, <%/fdimd(dm)> > 2—m<2im> Aa(AL)
k,1=0

m41 u s/d ~ _ .
> gy, <— / f d_“Ad(d@) / O (fo +27™) T AN,
m {f>0}

Finally, applying Fatou’s Lemma yields

n—-400

N s/d .
liminf n®/? | X — X" |2 > 95+, ( / fdird)\d> / fouf T d)g.
R4 {f>0}

3 Upper estimate

Letr,s > 0; s # r. Let(ay)n>1 be an (asymptoticallyL”(P) - optimal sequence of quantizers.
In this section we will provide some sufficient conditionsIof P)-rate-optimality for the sequence

(Oéf{“)nzy
Definition 3.1. Letd > 0, 1 € R? and letP be a probability distribution such tha® = f - \;. The
couple(d, u) is said P-admissible if

{f>0}cCcu(l—-0)+6{f >0} Aa-p-p. (3.1)

Theorem 3.1. Letr, s € (0,+00),s < r and letX be a random variable taking values Rf' with
distribution P such thatP = f - \;. Suppose thatd, 1) is P-admissible, fo® > 0;u € R, and
E|| X"t < oo, for somen > 0. Let(a,),>1 be an asymptotically.”-optimal sequence. If

/ ol f 7T AN < +o0 (3.2)
{r>0y



then,(aﬁ’“)nzl is L*(P)-rate-optimale and

1—3
limsup n*/4 || X — "5 < 057 (Q ()" </ femf_*isd&) )
{r>0}

n—-4o00 ’

Remark 3.1. Note that iff = 1 andp = 0 then

(>0} {r>0} {r>0

In this case the theorem is trivial singeX — X ||, < || X — X ||,.

Proof. Let P? denotes the distribution of the random variablé. P? is absolutely continuous with
respect to\g, with p.d. f gg(z) = 6-4f(%).
For everyn > 1,

s/ X —)?ag’“lli _ ns/d/ d(m,ava)SdP(x)
R4
= [ min e~ (1 - 0) — Gl ) Na(o).
{f>0} acany

Make the change of variable:= = — u(1 — ) to have

e (2, 000)° £ + (1 — 0))dra(2)
{f>0}—p(1-0)
<ol [ A0 1+ (1 - )y (P (2 (3.4)
0{f>0}

s/r r
Sns/d (/Rd d(z,&an)rdP9(2)> </9{f>0} (f(z + ,U'(l — 9))90—1(3))rsdpe(2)>

T—s

S

—~ Oaun s/r I v
< (o — X" ) ([ g+ uti-0)7 g ()
0{f>0}

where we used th&-admissibility of(6, ) in the first inequality. The second inequality derives from
Holder inequality applied wittp = r/s > 1andg =1 — s/r.
Moreover

— Oaup,

10X = 0X"" |7 = E( min 0 — fall") = 0"|X — K. (3.5)

Then

Sadk s s r v an || s/r = "
WX =R | < 07 ()X - Ko ( [ ent -0y, <z>dxd<z>> .



By taking into account that the sequerieg,) is asymptoticallyL” (P)-optimal and setting  x :=
z/0, we get,

r—s
T

n—-400

lim supn®/* || X — X" |[3 < 6% (Q,(P))*/" (er : /9 {f>0}f(2+ﬂ(1 —9)))*3#(2/9)”;%01(2))

/ fe,u<x>ﬂf<x>rssdAd<m>>
{f>0}

T—s
T

rT—Ss
T

=6 (Q:(P)’ (e

= 0" (Qu(P))*" ( / fe,u(x)rrsf(u’ﬂ)rssd)‘d(w)>
{f>0}

O

Whens > r, the next theorem provides a less accurate asymptotic lpgperd than the previous
one since, beyond the restriction on the distributionXgf we need now the sequence,,) to be
(exactly) L™ (P)-optimal.

Theorem 3.2. Letr,s € (0,4), s > r, # > 0 and letX be a random variable taking values
in R% with distribution P such thatP = f - \;. Suppose thaE| X||"*" < oo for some; > 0 and
Py, <P (i.e Py, is absolutely continuous with respectltb) for somey € R%. Let(ay,)n>1 be an
L™ (P)- optimal sequence and suppose that the maximal functie([(s§) satisfies

G/ e LY(Py,), forsomeb € (0,1/2). (3.6)

Then,
lim sup n®/¢ || X — Xa%ﬂ”i < 95+dC(b)/f9,ufdird)\d < 400 (3.7)

whereC'(b) is a positive real constant not depending ®andn.
Note that in this theorentf, 1) is not necessarily?-admissible.
Proof. One deduces from differentiation of measures that
f’di*r < 1/;;% Py ,-as
Then, under Assumptiof.q),
/f_d-SH"dPg,u - /fg,uf_d-swd)\d < 4o0.
Foralln > 1,
e e A ) I O OYE

= S/dHS/ min ||(z — p)/0 + p — al]* f(2)dAq(2)

d acany



We make the change of variable= (z — 11)/0 + p. Then
WX - R = et [ 00 o+ 0 - )N
Rd

= n*/%° / d(x, 00,)*dPy ().
Rd
Besides, the following inequalities are establishefin
limsupn®%d(-, a,)® < C(b)ffﬁ

and n*/d(-, 0,) < OO  P-as(hencePy ,-a.s., sincéd,, < P).

Under Assumption(B.g) we can apply the Lebesgues dominated convergence theoréra &bove
inequalities, which yields

IN

limsupns/d/d(x,an)sdpe,u(x)

n

/lim supn®/%d(z, o)’ dPy ()

IN

C(b) [ f=a dPy i (x).

= 0C0) [ foplalf T @dNi(o).
O

For a given distribution, Assumptiof.g) is not easy to verify. But when # r + d, the lemma
and corollaries below provide a sufficient condition so thasumption(B.q) is satisfied. The next
section extends the results obtained[#fj). For details we then refer td)]).

Lemma 3.1. Let P = f - A\g andr > 0 such thatf ||z||"P(dz) < 4oo. Assume(ay,),>1 IS a
sequence of quantizers such thai(z, o, )"dP — 0.
Lety € RY, 6 € (0, +00) such that

(1) the coupled, 1) is P-admissible;
(i3) YM > 0,

sup flu+0(z—p))

Loges < +o0.
z€B(0,M) f(z) {()>0}

Then

(a) foreveryp € (0,1) and for everyp, M € (0, +00),
/ T;Z)[I:dpe,u < +00,
B(0,M)

(b) ifeven)y(-NsupP)) < P and supgP) is a finite union of closed convex sets then, for every
p € (1,+oc] such thaty € Li.(P), ¥ € Lipe(Pa,)-

loc loc
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Proof. (a) and(b). It follows from i) that
Py u(dz) = 6% (1 + 6(= — p))Aa(dz) = g(2) P(dz),

whereg(z) = ¢ Wl{ﬂ )>03- Theng is bounded on everys (0, M) by 7).

We know from([d], Lemma J that? € L .(P) and from([], Lemma 2 that«y, € L (P), if
f € L¥ .(P). This completes the proof.
O

Corollary 3.1. (Distributions with unbounded supports ) Let- 0, s € (r,d + r),0 > 0 and letX
be a random variable with distributio® such thatP, # 0 and E| X |"*" < +o0o for somen > 0. Let
6 > 0, € R? such that(f, 1) is P-admissible and

s/(d+r)
)‘d(B(:Cat))
sup ————— 7 dPy, < 400
/B(o,M)c <t<2b|x|| P(B(z,t)) g

for someb, M € (0, +o0). Then Assumptio(B.d) of Theorenfs.g holds true.

Proof. Letxy € supdP). Then (sedff)), for everyb > 0, z € B(0, M)¢ (with M = |zo|| +
sup,,>1 d(o, ),

" su )\d(B(.%',t))
volo) < t§2b|I|)mH P(B(z,t))

Hence, for every > 0,
/ P/ ap, < o0,
B(0,M)°

We conclude by LemmB.1], a). O

Corollary 3.2. (Distributions with radial tails) (a) Letr >0, s € (r,d +7), > 0, u € R? and
let X be a random variable with probability measufesuch thatP = f - Ay and f = (]| - ||) on
By (0, N)¢with b : (R,+00) — Ry, R € Ry, a decreasing function anfi- || any norm onR¢,
Suppose thatf, i) is P-admissible andz|| X ||"*" < +oo for n > 0. If

/ flex)" @ dPy ,(x) < 400 (3.8)

for somec > 1. Then Assumptio(B.g) holds true.

(b) Letd =1, s € (1,1 +7),0 > 0andu € R? Let X be a random variable with probability
measureP such thatdP = f - \4. Suppose thatd, i) is P-admissible and?| X |" " < +oo for some
n > 0. If supp(P) C [Ry, +oo[ for some Ry € R and f|(R +00) decreasing forR, > Ry. Assume

furthermore thatB.§) is satisfied for some > 1. Then Assumptlo@ holds true.

Prior to the proof, note that Assumpti@BLgd) holds true for every’ € (1, ¢, sincef (¢'z)~/(¢+7) <
f(CCC)_S/(d+T).

Proof. (a) Letb € (0,1/2). SetM = N/(1 — 2b). Then (sedld)) for everyz € B(0, M)®

(B(z, 1)) 1
oD P(B( 1) = Fa(i+2D)




Hence

Ma(Blaz, )\

d )

sup ————= APy, < +00.
/B(O,M)c <t§2b|x|| P(B(Sﬂ,t))> o

And Corollary (B.1) gives the assertion.
(b) Follows from(a). O

The next corollary provides a usefull criterion for distriltons which does not have radial tails.

Corollary 3.3. LetP = f-Agand [ || X||"*" < +oc for somen > 0. Lety € R%, 6 € (0, +00)
such that the coupl@, ) is P-admissible and

sup flp+0(z—p)
z7#0 f(Z)

1{f(z)>0} < +00. (3.9)

Assume furthermore that

 A(SupP) N B(z.p)
inf < 400
w€SUpg P),p>0 Ma(B(zx, p))

and that f satisfies the local growth control assumption : there exised numberss > 0, n €
(0,1/2), M,C > 0 such that

Va,y € SUpRP), ||z = M, |ly — z|| < 29z = f(z) = Cf(z)"**.

Then, for every € (r, ££) such that

/ fl@)~ T dP(z) < +o0,

the assertion(.q) holds true. If in particular f satisfies the local growth control assumption for
e = 0 or for everye € (0,¢], withe > 0, and if for everys € (r,d + 1),

[ @ i@ = [ @) i) < +o.
{r>0}
then, the assertio.q) holds true for every € (r,d + r).
Proof. It follows from the P-admissibility of (6, 1) that
Py(dz) = 0Uf (4 + 0= — i) Aa(dz) = g(2)P(d2),

whereg(z) = 64 Wl{ﬂz)w} and from(B.9) that g is bounded on everny (0, M)°. We

conclude by([f§], Corollary4).
U
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4 Toward a necessary and sufficient condition for.* ( P)-rate optimality
whens > r

Before dealing with examples, let us make some comments ategualities(R.1) and (B.7). Note
first that the moment assumptid|| X ||"*" < +oco for somern > 0, ensure thafp, fd;ird)\d < 400
(cf [B]). Consequently, iff fg,uf’tﬁrd)\d = 400 one derives from inequalit{.])) that

~ 0,
lim || X — X" ||2 = +o0.
n

Then the sequendex,"),,>1 is not L*-rate-optimal.

On the other hand iff fg,uf’d%rd)\d < +o0 one derives from Inequality7) that (a5*),>1
is L5-rate-optimal. Fos > r, this leads to a necessary and sufficient condition so tleasdlquence
(a%"),>1 is L*-rate-optimal.

Remark 4.1. Lety € R%, 0 > 0,7 > 0, s > r and let P be a probability distribution such
that P = f - \;. Assumgd, ) is P-admissible. Le{«,),>1 be anL”(P)-optimal sequence of
n-quantizers and suppose that Assumptis]) of TheorenB.q holds true. Then

(af;“)nzl is L°-rate-optimal <—- /fmfﬁd)\d < +o0. 4.2)

Remark 4.2. If s < r, the inequality(B.d) provides a sufficient condition so that the sequence
(Q%M)nZl is L*-rate-optimal, which is :ffgi_lff’ﬁd)\d < +oo (always satisfied bya,,)n>1
itself).

Now, for s # r, is it possible to find & = 6* for which the sequenc@xﬁ’“)nzl is asymptotically
L*(P)-optimal? (whens < r this is the only question of interest since we know that),>1 is
L#(P)-rate-optimal for every < r).

For a fixedr, b andy, we can write from inequalitie.3) and (B.7) :

limsupn®/? | X — X" |2 < QSU(P,6) (4.2)
n

" d s/r L s 1*% .
Su(P,0) = 0 (@ (P)) (ff>o fo " f T*Sd)\d) if s<r
5 63+dc(b) f f,guufiﬁsrd)\d |f s> 7

One knows that for a given > 0, we have for alln > 1,

~ 0O,n
€n,s(X) <X — X <.

n,s
Then for everyd > 0, s > 0,
Qs(P) < QY(P,0).

Consequently for a fixed > 0, in order to have the best estimation of Zador’'s constari‘inwe
must minimize ove#, the quantitnyfép(P, 0). In that way, we may hope to reach the sharp rate of
convergence in Zador Theorem and so construct a asympipticaoptimal sequence.

For 1, well chosen, the examples below show that, for the Gaussidithee exponential distribu-
tion, the minimunmg* exists and the sequen(:ef:’“)nzl satisfies the empirical measure theorem and
is suspected to be asymptotically-optimal.
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5 Examples

Let (o, )n>1 be anL” (P)-optimal sequence of quantizers, for a given probabilistribution P, and
consider the sequenc(ezﬁ’“)nzl. For a fixedu ands, we try to solve the following minimization
problem

6" = argmin {Q2U(P,0), (a%"),>1 L*(P)-rate-optimal}. (5.1)
1 : >

In all examplesC' will denote a generic real constant (not dependingpwhich may change
from line to line. The choice of: depends on the probability measure. In practice, we shall se
u = E(X) whenX is a symmetric random variable otherwise we will usually;set 0.

5.1 The multivariate Gaussian distribution
5.1.1 Optimal dilatation and contraction
Proposition 5.1. Letr > 0 and letP = N (m; %), m € R% ¥ € S*(d,R). Then, fors > 0,

a)lfs € (r,r+d)U(r+ d,+o00), the sequenceaﬁ’m)nzl is L*(P)-rate-optimal iff § €
(v/'s/(d+r),+00) and

0 =+/(s+d)/(r+d) €(1,+)
is the unique solution of5.1)) on the sef(/s/(d + 1), +o0).

b) If s € (0,7), the sequenc@f;m)nzl is L*(P)-rate-optimal if § € (/s/r, +00)
and
0* =+/(s+d)/(r+d) €(0,1)

is the unique solution of5-1]) on the se(/s/r, +o0).

Proof. Since the multivariate Gaussian distribution is symmetie setg, = m. Keep in mind that
the probability density functiorf of P is given for everyr € R? by,

f(x) = ((2r)idets) "Eemt@mm/ = @mm),

a) Lets € (r,d + ). For everyd > 0, u € R?, the couple(d, i) is P-admissible { > 0) and f
is radial sincef (z) = ¢(||lx — m||s) with ¢ : (0, +00) — R defined by

—-1/2 1 . _1
P exp(—5 |e?), with [Je]s = £ 7l

p(€) = ((2m) dets)
Then Assumptior{B.d) of Theoren.2 holds.
If s > d + r, Assumption(B.6)) of Theorenp.2 holds by Lemm#.1 b).
In the other hand

/ fom(@)f(2) Trde = | f(m+6(x—m))f(z) T da
Rd Rd

YS: 6—%(92—d+7‘)(x—m)’271(x—m)dx
R4

14



so that

/Rdfgm(m)f(x)_ﬁ<+oo L

Now we are in position to solve the problefl). Letd € (y/s/(d + 1), +o0),

95+d/ fom(@)f(z) #rde = ((2m)*det 2)7%(17%“) 95+d/ e~ 2P wmm) 2T o) g,
R4 Rd

d
2

_ d 2 gstd (g2 S\
((2m)%det ) 0 (9 d—i—r>

Ford € (\/s/(d +r),+00), we want to minimize the functioh defined by

h(o :98+d HQ—L N
©) ( d+r

[S][~%

The functionh is differentiable on(y/s/(d + ), +00) with derivative

—1-d/2
1 () = 56+ <92 __S > <92 st d> .

d—+r r+d

One easily checks thatreaches its unique minimum ¢r/s/(d + r), +oo) atd* = /(s + d)/(r + d).
b) Let s < r and consider the inequalif}.). We get

L/:ﬂﬁf(x)f_ﬁi%aﬂdx::(j 3T ) D ) g
) Rd

Soif 6 € (y/s/r,+o0) then [ f; = (2)f 7 (z)dx < +o0. This proves the first assertion.
To prove the second assertion, k&t (/s/r,+oc). Then

- s 1_% T s I — 1_$
gi+s </ fgtms (x)frs(x)dx) — g5t </ 30— @—m)'s l(xm)dx>
) Rd

. —L(rs)
C g+ (92 - ;) SR

We proceede as before setting

— oo (62— %\ witha = _ 4

h(f) =10 (9 7“) , Witha = d + sandf = 2T(7“ s).
Forall § € (y/s/r,+00),
oy pa—1 (g2 S\P! 2  as

W(0) =0 (9 T) ((a+2ﬁ)6 - )
The sign of?’ depends on the sign ¢fa + 23)6% — <2). Moreovera + 23 = 2(d + r) > 0 then
K vanishes af* = /(s + d)/(r + d), is negative on the sét,/s/r,0*) and positive on(6*, +c0).

Thereforeh reaches its minimum ofy/s/r, +oo) at the unique poing*.
O
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Remark 5.1. Let X ~ N (m; ).

If s < r, then 6* < 1. Hence, (aff’m)nzl is a contraction of{ v, ),>1 With scaling numbef* and
translating numbern. In other hand, ifs > », then 6* > 1. In this case the sequeno(exﬁ*’m)nzl
is a dilatation of(ay,),>1 with scaling numbef* and translating numberm. Also note that* does
not depend on the covariance matkix

What we do expect from the resulting seque(w,%*’m)nzl ? The proposition below shows that it
satisfies the empirical measure theorem (keep in mind tigathtborem is satisfied by asymptotically
optimal quantizers although the converse is not true inigéne

Proposition 5.2. Letr,s > 0 and letP = N(m;X). Assumga,,),>1 IS asymptoticallyL” (P)-
optimal. Then the sequen¢e’? ™),,>1 (as defined before with* = /(s + d)/(r + d)) satisfies the
empirical measure theorem.

In other words, for every, b € R,

Lcard{z € o™ N [0, 5]}) — 1/ F@) T da.
n Cf,s [G,b}

Proof. Foralln > 1,
{z € ozf;’m Nla,b]} ={x € a,N[(a—m)/0" + u, (b —m)/0*] +m}.

Since(ay,),>1 is asymptoticallyL"-optimal; by applying the empirical measure theorem to e s
quence(ay, )n>1, We obtain:

lCarc({alc € apN[(a—m)/0*+m, (b—m)/0*+m]}) — ! / f(x)ﬁrdx.
" Crir Ji(a—m)/0*+m,(b—m)/6*+m]
It remains to verify that
1 _d_ 1 d_
/ f(@)atrde = / f(z) T+ du.
Cf,r [(a=m)/0*4+m,(b—m)/0*+m] Cf,s [a,b]
Remind that L )
f(z) = ((2n)ddets) ze 2@ m)E " @=m)
and( ref. (L.9))
Cf,r = f(x)#dx
R4
Hence, for alr > 0, .
0y, = (mpaasyia (12)
By making the change of variable= m + 6*(z — m), one gets :
! / Fad: = @) [ f((@ - m)/0 + m)itda.
Crr Jl(a—m)/6*+m,(b—m)/6* +m] Crr [a,b]

It is easy to check that
(F (G = m)0* +m) 57 = (@) (2m)dets) ~Hlae b
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and that

d
2

1 —d d —ld _ _dy d __s _(d+s\
2 2\d+r d+s/ — 2 2(s+d)
cr (0)%((2m)“det) = ((2m)"detX) 7

The last term is simply equal t@){— We then deduce that

! / f(x)ﬁdm: 1 / f(x)ﬁdx.
Ctr Jl(a=m)/0%+m,(b—m) /0% +m] Cts Jiay

O

We have just built a sequen(:eﬁ*’m)nzl verifying the empirical measure theorem. The question
we ask know is : is this sequence asymptoticdlfyoptimal?

Proposition 5.3. Lets > 0 and letd = 6* = /(s + d)/(r + d). Then, the constant in the asymptotic
lower bound for the® error induced by the sequen(:eﬁ*’m)nzl (see(R-1)) satisfies :

ns (P,0%) = Qs(P). (5.2)
Proof. Keep in mind that ifP ~ N(m; %) then, for allr > 0,

d+r

>” (detx) ¥

d+r

gl

QPN = (Jra)""V2r <

We have on one hand

d s/d 1. 1 d " s/d
( / fm(:v)d(ﬂc)> = <((2w)ddet2) 2T+ / e~ 2@ (FT™m) <$—m>d;g>
R4 R

d

- d+r)g>s/d

_ <(<2W)ddetz)%d+r( ’

and on the other hand

/fe*,u(m)fdir(x)d(m) = ((27r)ddet2)7é dir/ e (G ST @) gy
R4 R4

— ((2m)'detx) air (LT

Combining these two results, one gets,

s/d .
QM(P.0*) = (04 (/ fd;ird)\d> /f9*7uf—md)\d
R4 Rd

La\ S +a\ 5
_ S d QS_d T
Js.d <T+d> ((2m)"detx) < y >

d+s

= Jua (‘SZd) " ((2n)%detx)

- QS(P)'




After some elementary calculations, it follows from thegosition above and inequaliti€@.1)), ({.9),
the corollary below :

Corollary 5.1. LetX ~ N (m;%) and 6* = \/(s+d)/(r +d). Then,

Qs(P)Y* < liminfn!/® | X — X | < limsupn!/? | X — X% 7|, < QSW(P,6*)/* (5.3)

n—0oo n—o0

with

(stdy= g, ((2w)ddet2)% if s < r
(£4)2, /54 O(b) ((2r)idets) @ if s > 7.

QP 07)'* = {

Remark 5.2. (a) If s > r, we cannot prove the asymptotically (P)-optimality of(aﬁ*’m)nzl using
(B1) since the constant'(b) is not explicit.

(b) Whens < r, the corollary above shows that the upper boundfird]) does not reach the
Zador constant. Then our upper estimate does not allow usdw shat the sequenc{eyff’m)nzl is
asymptoticallyL® ( P)-optimal.

Moreover, usingd élder inequality (withp = r/(r — s) andq = r/s), we have for every > 0,

/ fo @) [T (2)dAa(a / Fo (@) /" (@) f7H (2)dAa()

( [ i@ <m>dAd<x>>% ( Rdfdi%m)czxd)
and (forf = 6*)

/ for (@) f~ 77 ()dNa(x </ gr s (JU)d)\d(x)> - </Rd f#(fﬂ)dAdY-

Hence, according t(5.9), one gets for every < r

T—s

0y ([ SE5 @5 i) T - Q) 55)

Then, to reach the Zador constantp3)) we rather have to prove (if possible) that

rT—s

~ 0, _r_ __s T s/r
imsupnt X - X4 < 0 ([ 57 @ s @@ ) A

n—oo

Which will be coherent since for afl < r, J/* < J'/T.

5.1.2 Numerical experiments

For numerical example, supppose that 1 andr € {1,2,4}. Let X ~ N(0,1) and, for a fixed
n,letay, , = {z1,, - ,z,,} be then-L"-optimal grid for X (obtained by a Newton-Raphson zero
search). For every € {20, 50, --- ,900} (ref. Tablefl) and for (s,r) = (1,2) and(4, 2), we make a
linear regression af,, , onto oy, , :
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Tjs ™ UspXip + bspy, =1, ,n.

Tablef] provides the regression coefficients we obtained for diffevalues of.. We note that when
n increases, the coefficients, tend to the valug /(s + 1)/(r + 1) = 0* whereas the coefficients,
almost vanish. For example, far= 900 and for(r, s) = (2,1) (resp.(2,4)) we geta,, = 0.8170251
(resp. 1.2900417). The expected values asg2/3 = 0.8164966 (resp.\/5/3 = 1.2909944). The
absolute errors are thém285 x 10~ (resp.9.527 x 10~*). We remark that the error mainly comes

from the tail of the distribution.

n a12 b12 € 42 ba2 €
20 | 0.8250096| 1.826E-14 | 0.0003025 1.2761027| - 3.650E-12| 0.0008607
50 | 0.8211387| - 1.021E-13| 0.0006870 1.2828110| 3.733E-10 | 0.0020110
100 | 0.8193424| 8.693E-14 | 0.0009909 1.2859567| 4.059E-09 | 0.0029445
300 | 0.8177506| - 1.045E-11| 0.0013601 1.2887640| 0.0000004 | 0.0041021
700 | 0.8171428| - 7.219E-11| 0.0015111 1.2898393| - 0.0000089| 0.0048006
800 | 0.8170775| - 6.725E-11| 0.0015247 1.2900041| 0.0000216 | 0.0040577
900 | 0.8170251| 4.564E-11 | 0.0015346 1.2900417| - 0.0000141| 0.0048182

Table 1:Regression coefficients for the Gaussian.

The previous numerical results, in addition to Equatiprg), strongly suggest that the sequence
(afL ™) ,>1 is in fact asymptotically.* ( P)-optimal. This leads to the following conjecture.

Conjecture 1. Let P ~ N(m;X) and let(«y,),>1 be anL"(P)-optimal sequence of quantizers.
Then, for everys > 0, the sequenc(aaff’m)nzl (with 0* = /(s +d)/(r + d)) is asymptotically
L*(P)-optimal.

5.2 Exponential distribution

5.2.1 Optimal dilatation and contraction

Proposition 5.4. Letr,s > 0 and X be an exponentially distributed random variable with rate
parameter\ > 0. Sety = 0. Then, fors > 0, s # r,

a) If s € (r,r +1) U (r 4+ 1,400), the sequencé,”),>1 is L*-rate-optimal iff § € (s/(r +
1),+00) and
0 =(s+1)/(r+1)

is the unique solution of5-1)) on the set(s/(r + 1), +o0).
b) If s € (0,r), the sequencény’),> is L*-rate-optimal for all 6 € (s/r, +oc) and
0 =(s+1)/(r+1)

is the unique solution dff-1]) on (s/r, +00).
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Proof. a) Lets € (r,r+1). Foralld > 0, u € R?, the coupld, ;1) is P-admissible and the function
f is decreasing o0, +-0c0). Forf > s/(r + 1), Assumption(B.§) of CorollaryB.3 holds true for
all c € (1,6(1 +r)/s). Hence, hypotheses of Corollgy] are satisfied, consequently, Assumption
(B.6) holds true.

If s > 7+ 1, Assumption(B.6)) still holds true because of Lemrfial] b).

In the other hand, we have

+o00
/ F(0x) f (z)=*/ "+ Vdz = C/ e MO/t DT gy < 400 =0 > s/(r +1).
R 0
Now, let us solve the probleifp.1) Forall § > s/(r + 1),

S +OO S
98+1/f(9x)f(:c)‘mdx = 095“/ e M=) gy
R 0
-1
olas (9— > ) .
r+1

-1
_ ps+1 . S
h(f) =6 (9 T+1> )
s -2 s+1
! _ S _ _
h'(0) = s0 (9 7qu1> (6 7qu1>.
Hence,h reaches its unique minimun c(@/(r +1),400)atf* = (s+1)/(r +1).
b) Lets < r. Then

Let

Then

/ s (o) f s (@)de = C | e s 079 gy
R

Ry

Then, for alld > s/r, fRfﬁ(az)f_ﬁ(:c)dm < +4o00. This gives the first assertion.
Foralld > s/r, then

1—8 r—s

ge < / fef:f(x)fﬁ(:c)dx> L= oot < / emﬂ(regdx) '
R Ry

= COT (rh—s) .

We easily check that the functidr(¢) = 65t! (r6 — s) + reaches its minimum ofs/r, +oc) at the
unique pointh* = (s +1)/(r + 1).
]

Remark 5.3. Let X ~ E(\). If s < r, then 6* = (s + 1)/(r + 1) < 1. Hence, the sequence
(aﬁ ’O)nzl is a contraction of o, ),>1 With scaling numbeé*. In the other hand, i§ > r, then 6* >

1and then(aff’o)nzl is a dilatation of(c, ),>1 with scaling numbe#*. Note tha®* does not depend
on the parameten of the exponential distribution.

One shows below that the sequeria& ), 1, with 6* = (1 + s)/(1 + r), satisfies the empirical
measure theorem.
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Proposition 5.5. Letr, s > 0 and letX be an exponentially distributed random variable with rate
parameter\ > 0. Assuméa,, ), > is an asymptotically.”-optimal sequence of quantizers f&rand

let (o, °),>1 be defined as before, with* = (s + 1)/(r + 1). Then, the sequende?, ) satisfies
the empirical measure theorem.

9*,0)

Proof. Since(ay, ™ )n>1 = (6*ay)n>1, It amounts to show that

card o, N [a/0%,0/6%]) 1 b =
- — Cf,s/a f(z)Tsdx

i.e that for alla,b € R,

1 1 /[ ol 1 b 1
@ﬁ/a flx/0")THrde = Cf,s/a f(x)Tsdx.

Elementary computations show that > 0,

Cpp= AT (147).
so that

11/ ol 1 147 [P/ i\ 1
Cf,rg/a f(x/0")Trde = Cf,r1+5/a ()\e 1+s) dx
1

b 1
_ ! 1+T,\1irlis/ (Ae—”)“s dx
Cf7r1+s a

1

b 1
= Cf’s/af(x)Hde.

O

Is the sequenc(aaff’o)nzl asymptoticallyZ*-optimal? The remark.d is also valid for the ex-
ponential distribution. Our upper bounds (fr3) and (B.7) do not allow us to show thab*«,,) is
asymptoticallyL?-optimal because of the corollary below. But the numeriealits strongly suggest
that it is.

Corollary 5.2. LetX ~ &(A\) and 6* = (s+1)/(r +1). Then,

Qu(P)/* < limint n1/4| X — R "), < limsupnl/ ||X — X", < QSRP,0)/* (5.6)
with
QSUP(P, 0*)! /5 = o (s + D)0+ l)fﬁ 1 fo<r
nE (s+ D)V ((r+ DAT) OV if s>
Proof. We easily prove, like in propositioh 5.2, th@ﬂ,’jL(P, 0*) = Qs(P). The corollary follows
then from(E-1) and ([3) (keep in mind that for allr > 0,  J;.1 = Gy ). O
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5.2.2 Numerical experiments

For numerical examples, Tadlegives the regression coefficients we obtained by regreshing?
grids onto the grids we obtain with the' and L* norms, for different values of. The notations
are the same as the previous example. We note that for lameykn, the coefficientsi,, tend to
(s+1)/(r+1) = 0*. For example, if» = 900, we geta;2 = 0.6676880; a4o = 1.6640023 whereas
the expected values are respectivefi3 = 0.66666667 and5/3 = 1.6666667. The absolute errors
are in the order ol0~3. Like the Gaussian case, we remark that the error of the astimresults
mainly from the tail of the exponential distribution.

n a12 b12 € 42 bao €
20 | 0.6765013| - 0.0104881| 0.0019489 1.6396807| 0.0288348| 3.081E-33
50 | 0.6726145| - 0.0082123| 0.0045310 1.6502245| 0.0225246| 1.149E-28
100 | 0.6706176| - 0.0062439| 0.0070734 1.6556979| 0.0172020| 1.573E-27
300 | 0.6686428| - 0.0036234| 0.0114628 1.6611520| 0.0100523| 1.508E-27
700 | 0.6677864| - 0.0022222| 0.0146186 1.6635261| 0.0061356| 1.222E-25
800 | 0.6676880| - 0.0020482| 0.0150735 1.6638043| 0.0057199| 2.020E-26
900 | 0.6676079| - 0.0019043| 0.0154634 1.6640023| 0.0053173| 9.683E-25

Table 2: Regression coefficients for exponential distribution.

Conjecture 2. Let X be an exponentially distributed random variable with ratggmeter) and let
(am)n>1 be anL”-optimal sequence of quantizers f&r. Then fors > 0 and 6* = (s +1)/(r + 1)
the sequenceocff’o)nzl is asymptoticallyZ*-optimal.

These conjectures could suggest that a contraction (oatatidn) parametet*, solution of the
minimisation problem(F.1]), always leads to asymptotically*-optimal quantizers. The following
example shows that it is not so.

5.3 Gamma distribution

5.3.1 Optimal dilatation and contraction

Proposition 5.6. Letr > 0 and letX be a Gamma distribution with parameteisand\ : X ~
I'(a,\), a >0, A > 0. Then, fors > 0, s # r,

a) if s € (r,r + 1), the sequencény’),,>; is L*-rate-optimal iff § € (s/(r + 1), +0c) and for
all a > 0,
0= (s+a)/(r+a)

is the unique solution of5.1)) on the sef(s/(r + 1), +o0).

b) if s >r+1andifa € (0,s/(s— (r+1))), the sequenc&?),>1 is L*-rate-optimal for every
0 € (s/(r+1),+00) and
0 =(s+a)/(r+a), forac(0,s/(s—(r+1)),

is the unique solution of5.1)) on the se(s/(r + 1), +o0).
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c) if s < r, the sequenc&?,),,>; is L*-rate-optimal for everyd € (s/r,+o0) and for alla > 0,
0 =(s+1)/(r+1)

is the unique solution of5.1)) on the se{(s/r, +00).

Proof. We setu = 0. Keep in mind that the density function is written

)\a

f(x):m

+o00
x“ilef)‘ml{xw}, with I'(a) = / 2 e % dr.
0

a)andb) Lets € (r,r 4+ 1) and setRy, = max(0, (a — 1)/A). The functionf is decreasing on
(Ro, +0o0) and for everyd > 0, i, the couple(#, i) is P-admissible. Fof > s/(r + 1), Assumption
(B-9) of CorollaryB:3 holds true for every € (1,6(1 +r)/s). Then the hypotheses of Corollgy)
are satisfied. Consequently, AssumptiBrt]) of Theorem holds true.

Whens > r + 1 then Assumptior{B.§) is satisfied by Lemm.1 b)

Foralld > 0,

a 1*8/(7‘+1) +00
/ f(ex)f(w)iﬁsrdw = A— / x(afl)(lfril)e’(ef%ﬂ))‘mdx
R I'(a) 0

and then
/f(@x)f(ac)_rildm<+oo iff 0>s/(r+1) anda(r+1—s)+s>0.
R

Letd > s/(r +1). Then

. 2@ 1—s/(r+1) +o00 11— s 05 )
HSH/f(Gm)f(x)wdw — ( ) 98+19a1/ w(“* )( 71‘“")67( *m) xdm
R ['(a) 0

s -8
= 097<9— > .
147

y=s4+aandf=(a—-1)(1—-s/(r+1))+ 1
We define orR*. the functionh by

ho) = 6 (9— 1ir>ﬁ.

The functionh is differentiable for alp > s/(1 + r) and

with

Hence, the minimum of is then unique orfs/(r + 1), +-00) and is reached a&k".
c) Lets < r. Then

. s )\a —+00 e (g
fo"—s 9.17 f r—s(xq d(E — —/ xafle r_S(T‘ S)dx
[ 575001 @e = s |
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ThereforefRfﬁ(ax)f_ﬁ(a:)dm < +oo iff 6> s/r.
Letd > s/r. Then

r—s

r s 1-2 +o0 - T
o1+s (/ fo, (Cﬂ)f”(x)dx) = Ot </ % e TXS(Tes)dx>
R 0

—T

— Coro—s)"

S lw

Considering the functioh defined by (6) = 05 (rf — s)“¥ we show that reached its minimum
on (s/r,+oc) at the unique point* = (s + a)/(r + a).
O

Remark 5.4. Let X ~ T'(a,\). If s < r, then * = (s + a)/(r + a) < 1. Then the se-
guence (af;’o)nzl is a contraction of(«a,,),>1 with scaling numbeg*. On the other hand, if
s > r, then 9~ > 1 and the sequence(aﬁ*’o)nzl is a dilatation of (a,),>1 with scaling num-
ber 6*. Moreover there is no constraint on the parameieas long ass < r + 1. In this case when
we seta = 1 (exponential distribution with parameter) we retrieve the result of the exponential
distribution. Note that* does not depend on the parametefThat is expected sindg1, \) = &(\)
and, in the exponential case we know that the scaling numtbes dot depend ok.

Let0* = (s + a)/(r + a) and consider now the sequer(@éf’o)nzl defined as previously. Does
this sequence verify the empirical measure theorem?2 # 1 we boil down to the exponential
distribution. On the other hand, when+# 1, one shows below that there exists> 1, s > 0 and
r > 0 such that the sequen(:eﬁ*’o)nzl does not verify the empirical measure theorem.

Suppose tha(aﬁ*’o)nzl satisfies the empirical measure theorem. Then we must havell f
u € Ry,

1 1 [ L 1 u 1
c, 7/ f(x/0 )1+rdx:Cf ; f(x)Tsdx. (5.7)
with f(z) = F)\Z) x“_le_)‘“”l{x>0} and Cy, = ff(:v)ﬁdac forall » > 0.
Moreover, ietr > 0. Then,

a 1 +oo A
Cp, = AHT(a) T / LD/ 4 T gy
0

1

—+00
_ Alirr(a)m/ x(r—l—a)/(r-{—l)—leflj%r:vdw
0

= At D(a) T T (”“) = =

1) L (r 1)

r+a

r+a _1 o __r
- F<r+1>F(a) T (r 4 1) T

Equation(p.7) is written down for all: € R,

r+a
r a\ 71 U a1 A(r+a) UL
C('I") + rr+le (r+1)(s+a)mdx — C(S) It le S+1md.’E

s+a 0 0

r+a

with C(r) =T (;i—clb)flml (r+1)7H, Ve,
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Letm € N anda > 0. We show by induction that, far > 0,

/u e ¥ dr = — (lu” + %u”_l + MUH_Q 4+ 4 Eu + n_'> e v 4 n!
0 (6%

o a3 am antl ant1’
Consider > 1 such that— and“— are integers. Set = “—, m = %=, a = % andg =
=3. Then Equatior(.7) is finally written down
fa\ri[ /1 (n—1) ! ! !
r+a\r n ., nn- _9 n! n! _ n!
¢ <+> [(a“”@“" T et am) e F}
1 m ... mm-—1) ., m! m! 5 m!

Seta =7, s=1,r=2, A =1andu = 1. Thenn = 2,;m = 3, = 3/8,3 = 1/2 and this lead,

after some calculations to :

128 48 512

which is clearly not satisfied. We then deduce that(far, s) = (7,2,1), the sequenceaff’o)nzl
does not satisfy the empirical measure theorem. Hence, wedumstructed ai®( P)-rate-optimal
sequence which does not satisfy the empirical mesure timeore
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