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[1] Stellar scintillations observed through the Earth
atmosphere are caused by air density irregularities
generated mainly by internal gravity waves and
turbulence. We present global analysis of scintillation
variance in two seasons of year 2003 based on GOMOS/
Envisat fast photometer measurements. Scintillation
variance can serve as a qualitative indicator of intensity of
small-scale processes in the stratosphere. Strong increase of
scintillation variance at high latitudes in winter is observed.
The maximum of scintillation variance can be associated
with the polar night jet. The simplified spectral analysis has
shown the transition of scintillation spectra toward small
scales with altitude, which is probably related with
turbulence appearing as a result of wave breaking. The
breaking of gravity waves in the polar night jet seems to
start in the upper stratosphere, a predicted, but not
confirmed by observations before, feature. Weaker
enhancements in tropics are also observed; they might
be related to tropical convection. Citation: Sofieva, V. F.,

et al. (2007), Global analysis of scintillation variance: Indication

of gravity wave breaking in the polar winter upper stratosphere,

Geophys. Res. Lett., 34, L03812, doi:10.1029/2006GL028132.

1. Introduction

[2] Propagation of internal gravity waves (IGW) and
their breaking into turbulence are of fundamental impor-
tance for mean circulation and mixing of the middle
atmosphere [Fritts and Alexander, 2003; Gavrilov and
Fukao, 2004]. The global general circulation models still
exhibit significant deviations from observations, which are
assumed to be due to inadequate parameterization of gravity
waves drag [Austin et al., 2003; Hamilton et al., 1999].
Using satellite measurements of stellar scintillation is a new
approach that allows studying small-scale processes in the

stratosphere. IGW and turbulence create fluctuations of air
refractivity (which are proportional to fluctuations of air
density) that are observable by remote sensing instruments.
When a star is observed on board a satellite, the stellar flux I
passed through the atmosphere exhibits scintillation. Due to
almost exponential decrease of air density with altitude, the
irregularities close to ray perigee produce the main contri-
bution to the observed scintillations.
[3] Analyses of previous stellar scintillation measure-

ments on board the MIR station have allowed determination
of statistical and spectral properties of scintillation [Gurvich
et al., 2001a, 2001b], and retrieval of parameters of IGW
and turbulence spectra [Gurvich and Kan, 2003a, 2003b].
An important advantage of using scintillation measurements
is that they allow probing small-scale air density irregular-
ities (from few kilometers down to fractions of a meter
(MIR)/fewmeters (GOMOS)) and provide information about
IGWand turbulence activity at altitudes �30–50 km, where
other measurements of air density fluctuations at these
scales are very scarce. However, the man-controlled
photometer on board MIR has provided only a small
number of observations. In addition, stellar occultations at
latitudes outside the band ±60� were not possible with the
MIR orbit.
[4] The scintillation measurements became available

with global coverage since the launch of the Envisat
satellite in March 2002. The GOMOS (Global Ozone
Monitoring by Occultation of Stars) instrument on board
Envisat is equipped with two fast photometers operating
at blue (470–520 nm) and red (650–700 nm) wave-
lengths with a sampling frequency of 1 kHz http://
envisat.esa.int/instruments/gomos). The photometers re-
cord stellar flux continuously as a star sets behind the
Earth limb.
[5] The main parameter attributed to scintillation is the

variance b2 of relative fluctuations of measured flux I:

b2 ¼ I � Ih ið Þ2

Ih i2

* +
: ð1Þ

Angular brackets in (1) denote the sample mean. The
quantity b is usually called (also in this paper) the
scintillation index. The scintillation variance can serve as
an indicator of strength of the small-scale processes in the
atmosphere.
[6] In this paper, we consider global distribution of the

scintillation variance in two seasons of year 2003 with the

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L03812, doi:10.1029/2006GL028132, 2007

1Finnish Meteorological Institute, Helsinki, Finland.
2A. M. Oboukhov Institute of Atmospheric Physics, Moscow, Russia.
3Service d’Aeronomie du CNRS, Verrieres-le-Buisson, France.
4Institut d’Aeronomie Spatiale de Belgique, Brussels, Belgium.
5ACRI-ST, Sophia-Antipolis, France.
6European Space Research Institute, European Space Agency, Frascati,

Italy.
7European Space Research and Technology Centre, European Space

Agency, Noordwijk, Netherlands.
8EADS-Astrium, Toulouse, France.

Copyright 2007 by the American Geophysical Union.
0094-8276/07/2006GL028132

L03812 1 of 7



aim of finding indications of IGW and turbulence activity in
the stratosphere.

2. Data Selection and Processing

[7] Locations of 4510 occultations of 30 brightest stars in
two seasons of 2003 selected for analysis are shown in
Figure 1. We consider dark limb occultations only (scattered
solar light prevents star observations during day time),
therefore the summer polar atmosphere is not covered.
The scintillation variances of blue and red photometer
signals are practically identical at altitudes above 30 km.
Therefore, we present results only for the red photometer
measurements, as they are less affected by absorption and
scattering in the atmosphere.
[8] Examples of scintillation measurements by the red

photometer are shown in Figure 2, top. The scintillation
variance, as well as the maximal altitude, at which scintil-
lation become observable over the noise background, can be
very different depending on location and season. This is
illustrated in Figure 2, where signals from the red photom-
eter in two occultations of Sirius carried out in different
geographic locations and seasons are shown. In this exam-
ple, the difference in scintillation index (Figure 2, bottom)
reaches an order of magnitude at altitudes 50–55 km. The
theory [Tatarskii, 1971] predicts growth of average scintil-
lation index with decreasing altitude nearly proportional to
air density until saturation, which occurs usually at altitudes
25–30 km for GOMOS. This saturation corresponds to the
regime of strong scintillation. In our analysis, we concen-
trate on altitude range above 30 km. At lower altitudes, the
saturation complicates significantly the ability to obtain
information about air density irregularities from scintillation
measurements [Gurvich et al., 2006].
[9] For each occultation, the photometer signal was

divided into sections corresponding to a vertical range of
�3 km for ray perigee altitudes. The scintillation variance
for each section can be computed using the standard
formula for sample variance or as s0

2 =
R
W( f )df, where

W( f ) is the power spectrum of relative fluctuations of
photometer signal. The frequency spectrum W( f ) is related
with the spatial wave-number spectrum V(k) via the relation
W( f ) df = V(k) dk, where k = f/u, u is the ray perigee vertical
velocity). Although we selected only occultations of very
bright stars (magnitude < 1.6) for the analysis, the signal-
to-noise ratio (the ‘‘signal’’ means scintillations) depends
on the stellar brightness, especially at higher altitudes
(above �45 km). Therefore, the estimated instrumental
noise variance is subtracted from the scintillation variance
values:

b2 ¼ s2
0 �

s2
noise

Ih i2
: ð2Þ

[10] Here noise of photometers (shown in Figure 2,
bottom) consists of photon noise, sphot

2 �hIi, and dark current
noise of CCD, sdark

2 : snoise
2 = sphot2 + sdark

2 . For the selected
occultations, instrumental noise snoise /hIi does not exceed
1%. Thus the profile of scintillation variance corresponding
to each occultation is obtained.
[11] In case of the GOMOS photometer, the contributions

to scintillation variance caused by gravity waves and by
turbulence depend on altitude and can be of similar mag-
nitude [Gurvich et al., 2005]. The spectral model that
describes scintillation spectra is discussed in detail in
[Gurvich and Kan, 2003a; Gurvich and Chunchuzov,
2005]. It assumes that the scintillation spectrum is the
sum of two components, anisotropic (corresponding to
IGW) and isotropic (corresponding to turbulence). Obser-
vational data [Gurvich and Kan, 2003a; Gurvich and
Chunchuzov, 2005] show that GOMOS photometers suit
well for study of the anisotropic component. The sampling
rate of GOMOS photometers does not allow observing the
isotropy spectrum at high wave numbers (the upper limit is
defined by the Fresnel scale): at wave numbers k < kN (kN is
the wave number corresponding to the Nyquist frequency)
available from GOMOS measurements, the isotropy spec-
trum is practically constant (Figure 3). In order to separate

Figure 1. Location of occultations used for analysis.
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wave and turbulent contributions to the scintillation
variance, we calculated the high-frequency variance:

b2
high ¼

ZkN
khigh

V kð Þdk; ð3Þ

where the wave number khigh is chosen equal to khigh =
1/8 cyc/m (Figure 3). The corresponding vertical scale
lhigh = 8 m is smaller than the typical inner scale lW =
1/kW of the IGW spectrum [Gurvich and Kan, 2003a;
Gurvich and Chunchuzov, 2005]. The shape of the
isotropy spectrum allows removal of the turbulent
contribution from the scintillation variance and comput-
ing low-frequency variance blow

2 that contains mainly
IGW contribution (see Figure 3 for illustration):

b2
low ¼ b2 � b2

high

kN

kN � khigh
: ð4Þ

[12] To estimate the variance corresponding to turbulent
component, biso

2 , we approximate the isotropic spectrum by
the equivalent rectangle with area equal to biso

2 (Figure 3,
right). It is bounded at high wave numbers by kFr, the wave
number corresponding to the Fresnel scale (Fr =

ffiffiffiffiffiffi
lL

p
, l is

wavelength and L is the distance from ray perigee to the
satellite, Fr �1.4 m for the GOMOS red photometer). Then

the scintillation variance corresponding to the turbulent
component biso

2 can be computed as

b2
iso ¼ b2

high

kFr

kN � khigh
: ð5Þ

[13] Only oblique (off orbital plane) occultations were
selected for this analysis, in order to better separate wave
and turbulent contributions to scintillation variance
[Gurvich and Kan, 2003a]. Since the chromatic smoothing
over the finite wavelength band of optical filters reduces
slightly the spectral density of isotropic scintillations at
lowermost altitudes, we applied a normalization that takes
into account the chromatic distortion.
[14] Assuming that the scintillations result from air

density irregularities generated by a random ensemble
of IGW with one-dimensional vertical spectrum VT (k) =
AwBV

4 g�2 k�3 (the saturated gravity waves model [e.g.,
Fritts and Alexander, 2003]), the scintillation variance
bIGW
2 can be estimated as

b2
IGW � 2pREAL

2kWw4
BV g

�2n2q2; ð6Þ

where RE is the Earth radius, wBV is the Brunt-Väisälä
frequency, g is acceleration of gravity n is refractivity
and q is refractive dilution. The formula (6) is obtained
using approximation of geometric optics and phase screen
model of the atmosphere [Gurvich and Brekhovskikh,

Figure 2. (top) Photometer signals by the GOMOS red photometers in occultations R07741/S001 (62�S, 7�E, 23 August
2003 23:51 UTC) and R02908/S001 (37� S, 106�W, 20 September 2002 07:01 UTC). (bottom) Scintillation index (b) for
these two occultations.
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2001]. The estimate bIGW
2 corresponds to the experimental

variance blow
2 . As follows from (6), blow

2 can serve as a
qualitative indicator of gravity waves activity: it depends
on combination of parameters defining IGW spectrum.
[15] The scintillation variance corresponding to the

Kolmogorov’s model of locally isotropic turbulence is
proportional to the structure characteristic Cn

2 of refractivity
fluctuations: biso

2 / Cn
2 = v2C2 (here C2 is the structure

characteristic of relative refractivity fluctuations). Therefore,
variations of experimental scintillation index biso normalized
on refractivity are caused mainly by variations in C2 .

3. Results and Discussion

[16] Figures 4a and 4b (color, logarithmic scale) show the
zonal mean scintillation index b in two seasons of year
2003. For data averaging, we calculated zonal mean in
latitudinal bins distributed in accordance with available data
(Figure 1). The width of latitudinal bins is mainly �10�, but
it ranges from 5� to 30�. The maps are almost symmetric for
these two seasons. The scintillation index rapidly grows
with decreasing altitude. The saturation (b � 1) is achieved
at �30 km in winter mid- and high-latitude atmosphere and
at �25 km in equatorial regions. The enhanced scintillation
index is clearly observed at mid- and high latitudes in winter
and in tropical summer atmosphere. The overlaid contours
in Figures 4a and 4b show the logarithm of the model
scintillation index bIGW (6) computed using ECMWF tem-
perature and air density analysis data at the occultation
locations, the mean experimental value A = 0.1 and the
inner scale of the scintillation spectra lW = 15 m. Although
(6) explains well the mean dependence on altitude, the
latitudinal variations in air density and Brunt-Väisälä
frequency do not explain the observed latitudinal dependence
of the scintillation index, as seen in Figures 4a and 4b.

[17] Figures 4c and 4d (color, linear scale) show the
scintillation index blow divided by refractivity n (with
scaling factor 10�5). This normalization removes the main
altitude dependence of the scintillation index and the
variations caused by differences in air density at different
locations (equation (6)). Strong maxima at winter polar and
mid-latitude atmosphere and significantly weaker enhance-
ments in the tropical atmosphere are observed. These
enhancements in blow are to be related to internal gravity
waves. The annual cycle in gravity wave energy at altitudes
30–50 km at high and middle latitudes with maximum in
winter and minimum in summer was observed previously in
rocket sounding (at �1 km resolution) [Hirota, 1984;
Hamilton, 1991, Eckermann et al., 1995] and lidar data
(resolution �1km) [Wilson et al., 1991; Whiteway and
Carswell, 1995]. It has been discussed that the mean
atmospheric conditions largely induce the horizontal, verti-
cal and temporal variations of the gravity wave field in the
stratosphere and mesosphere through filtering of gravity
waves [Wilson et al., 1991; Fritts and Alexander, 2003]. We
can expect a larger scintillation index in the high-latitude
winter stratosphere due to increased Brunt-Väisälä frequen-
cy (the overlaid contours in Figure 4c and 4d represent
wBV
2 � 104 (rad2s�2) computed at the occultation locations

using ECMWF temperature data and averaged in the same
way as the scintillation index). However, the variations in
the thermal structure, as measured by Brunt-Väisälä fre-
quency, cannot explain quantitatively the 3–4 times in-
creased scintillation index at winter high latitudes
(compared to other locations) and its latitudinal pattern with
the sharp maximum at latitude �70�. The position of the
scintillation index maxima prompts us assuming that the
increased scintillation variance might be also related with
the dynamical processes close to the edge of polar vortex
(see also below). IGW with vertical scales from few meters

Figure 3. (left) Scintillation spectrum for two-component model of air density irregularities [Gurvich and Kan, 2003a;
Gurvich and Chunchuzov, 2005] consists of two components: Vaniso, which is generated by anisotropic irregularities
(corresponding to IGW), and Viso, which is generated by isotropic irregularities (mainly turbulence). Shaded areas
indicate the high-frequency and low-frequency variances. The area under the curve Viso corresponds to the correction
term bhigh

2 kN
kN�khigh

in (4). (right) Scintillation spectrum for the occultation R02908/S001 at 40 km. Shaded areas indicate

bhigh
2 , blow

2 and biso
2 given by (3), (4) and (5), respectively.
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to few kilometers that generate observed scintillations seem
to have favorable conditions for propagating in the polar
winter atmosphere.
[18] Figures 4e and 4f (color, logarithmic scale) show biso

normalized on refractivity, which corresponds to the turbu-
lent component of the scintillation index. Strong enhance-
ments at high latitudes in winter are observed; they are the
extensions of the corresponding IGW maxima in Figures 4c
and 4d to higher altitudes. The transition of the scintillation
spectra toward smaller scales with altitude allows us to
suggest that it is related with breaking of gravity waves and
consecutive appearance of turbulence at altitudes above
�45 km. The capability of gravity waves to propagate from
tropospheric sources to the stratosphere is largely deter-
mined by the interaction with wind. A relatively good
correlation of biso with mean zonal winds calculated from
ECMWF analysis data is observed (contours in Figures 4e
and 4f). The enhancement of biso at winter high latitudes is
much larger in Southern Hemisphere. This is probably
related to larger wind speed in Antarctic polar jet. Several
previous observational studies [Duck et al., 1998, 2001;
Jiang and Wu, 2001] found increased IGW activity associ-
ated with polar vortex jet and pointed out that the gravity
waves should break in the polar night jet at altitudes close to
stratopause, in order to explain the thermal balance in the
polar vortex area. The GOMOS observations provide first
observational support for this hypothesis.
[19] Intensity of gravity waves and mixing processes are

expected to be low in the core of the polar vortex, due to
isolation of this part of the atmosphere and strong critical
level filtering of gravity waves. Conversely, high activity of
gravity waves observed in scintillation data might be
associated with the polar night jet, where less critical level
filtering is encountered. Figure 5, which shows distribution
of scintillation index as a function of potential vorticity, for
occultations located 50–75� S in July and August 2003,
illustrates this: scintillation variance has a maximum at

�36–37 PVU (these potential vorticity values are associ-
ated usually with the polar vortex edge). The transition of
the scintillation spectra toward smaller scales in the regions
of high scintillation index (Figure 4) seems to be related
with the gravity waves breakdown into turbulence.
[20] There are also enhancements in scintillation index

(both in blow and biso) over tropical regions, which are
significantly weaker compared to that in polar regions. They
might be associated with enhanced IGW activity above
tropical convective clouds as reported in previous studies
[Karoly et al., 1996; Shimizu and Tsuda, 1997].

4. Summary

[21] The scintillations in stellar occultation experiment,
which are influenced by small-scale internal gravity waves
and turbulence, are a sensitive tool for studying small-scale
processes in the stratosphere. In this paper, we have pre-
sented first global distributions of scintillation variance in
two seasons of 2003 based on scintillation measurements by
GOMOS. Strong increase of scintillation variance at high
latitudes in winter and less strong enhancements in tropics
are observed, which might be related to the polar night jet
and tropical convection, respectively.
[22] The analysis has shown that the enhancements of

scintillation variance in winter polar atmosphere are related
not only with the variations in thermal structure, but also
with critical level filtering for gravity waves. The observa-
tions show that the maximum of scintillation variance can
be associated with the polar night jet. The simplified
spectral analysis has shown the transition of scintillation
spectra toward small scales with altitude, which is probably
related with the turbulence appearing as a result of wave
breaking. The breaking of gravity waves seems to start in
the upper stratosphere (above �40–45 km) in the polar
night jet. This was predicted [Duck et al., 2001; Jiang and
Wu, 2001], but, to our knowledge, has not been confirmed

Figure 5. Scintillation index b with normalization on refractivity as a function of potential vorticity, for occultations
located at 50–75� S in July and August 2003. The value 36 PVU is often used as a boundary of the polar vortex.
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by observations before. Quantitative analysis of scintillation
spectra, as proposed by Gurvich and Kan [2003a], Gurvich
and Chunchuzov [2005], and V. F. Sofieva et al. (Recon-
struction of internal gravity wave and turbulence parameters
in the stratosphere using GOMOS scintillation measure-
ments, submitted to Journal of Geophysical Research,
2006), will refine these findings and allow reconstruction
of parameters of IGW and turbulence spectra in the strato-
sphere in future.
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