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Functions of ¢g-positive type

Lazhar Dhaouadi *

Abstract

In this paper we characterize the subspace of L, 1, of function
which are the ¢g-Bessel Fourier transform of positive functions in £y 1 4.
As application we give a g-version of the Bochner’s theorem.

1 Introduction and Preliminaries

Given a positive finite Borel measure i on the real line R, the Fourier trans-
form @ of p is the continuous function

Q) = [ e dute).

The function @) is a positive definite function, i.e for any finite list of complex

numbers zq, ..., 2z, and real numbers x,...,z,
n n
> > 2mQ(z, — 1) > 0.
r=1 =1

Bochner’s theorem says the converse is true, i.e. every positive definite func-
tion @ is the Fourier transform of a positive finite Borel measure. In ¢-Fourier
analysis, semelar phenomenon will appear. It is the subject of our article.

In the following we consider 0 < ¢ < 1 and we adopt the standard con-
ventional notations of [2]. We put

+ n
Rq_{qv TLEZ},
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the set of g-real numbers and for complex a

n—1

(a;q)o =1, (aiq), = H(l — aqi), n=1...00.
i=0
Jackson’s g-integral (see [3]) in the interval [0, ool is defined by

o0

Amﬂ@%wZO—q)§:¢7WW

n=—oo

Let C, and C,;, denote the spaces of functions defined on R; continued at 0,
which are respectively vanishing at infinity and bounded. These spaces are
equipped with the topology of uniform convergence, and by £, , the space
of functions f defined on Rj; such that

1/p

rvmmz[A @ | < oo

The g-exponential function is defined by

. 1
e(z,q) = E = — , 2| < L
—~ (000 (%0

The normalized Hahn-Exton g-Bessel function of order v > —1 (see [5]) is
defined by

oo n(n—1)
y n q 2 n
Jo(z,q) = ) _(=1) 2"
; (¢ (g, On

The g-Bessel Fourier transform F,, introduced in [1,4] as follow

Fuud(0) = cqu [ SOt )t
0
where
_ 1 <q2v+2’ q2>oo
1—q (4% ¢%)
Define the g—Bessel translation operator as follows:

Cqu

Tqv,:cf@) = Cq,v/O Fawo(f)(#)gu(at, q2)jv(yta q2)t2”+1dqt, v,y € R;,Vf € Logw,1-
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Recall that T is said positive if T,/ f > 0 for f > 0. In the following we
tack ¢ € @, where

_ v . . . +
Qv ={q€]0,1[, T,, is positive forall zc R }.

The g—convolution product of both functions f,g € £, 1, is defined by

frq9(x) = cn / Towf ()9 (y)y™ dgy.
0
In the end we denote by A, , the ¢-Wiener algebra
Aqﬂ; - {f S Eq,l,vv qu(f) S Lq,l,v} .

The followings results in this sections was proved in [1].

Proposition 1 Let n,m € Z and n # m, then we have

2 < 24 2y, 20+1 g >ty
Cq,U/ Jo(q"z,q%)ju(q"x, ¢ )™ dyx = 175,%.
0 —q
Proposition 2
u(g ) < CL )" ) [ if n>0
= (%% ¢%)oo e LT R (N

Proposition 3 The q— Bessel Fourier transform
fq,v : Cq,l,v - Cq,Oa

satisfying
[ Faw (Pl < Bawll fllg 0,

1 () (0" ¢
I—q (q23q2)oo

where

B

v

Theorem 1 Given f € L1, then we have
Fool)@) = f(2), VzeR]

If f € Ly10 and Fyo(f) € Ly then

|1 F 0 (Nlg2w = 1 fllg.20-



Proposition 4 Let f € L1, then

T ) = [ SEDey ),
0
where
Du(ey2) = [ dulat @)iu(uts it ) .
0
Proposition 5 Given two functions f,g € Lq.1 then

f *q g S £q7U717

and

Foo(f %4 9) = Fau(f) X Fgu(9)-
Proposition 6 The q-Gauss kernel

2U+2t, _q72v/t; qz)oo —2v

v (_q
Gt 47) = (—t,—¢?/t;¢*) o

satisfying
Faw {6(_t?/27 92)} (z) = G"(,t, q2)>
and for all function f € Cyp

1in% Cq,v/ f(2)G¥(z,a®, ¢*)z**dyx = f(0).
0

a—

Theorem 2 Given 1 < p,p’,r <2 and
1 1 1
Sp— 1=
p v r

If feLypoand g € Ly, then

f*qq € Lyro.



2 Functions of g-positive type
Definition 1 A function ¢ is of q-positive type if
¢ € Cq7b N £q71,v

and for any finite list of complexr numbers zi,...,z, and gq-real numbers
T1yeo.y Ty
I )
r=1 =1

Proposition 7 Let ¢ € A,, of q-positive type then F,,¢ is of q-positive
type.

Proof. From Proposition 3 and the definition of the ¢-Wiener algebra
Fon(@) € Cop N Ly

On the other hand, with the inversion formula in Theorem 1 we get

Tt;,qu,v(a(y) :/0 jv(tx,q2)jv(ty,q2)t2v+1¢(t)dqt,

then
ZzerT;%Fq,yg(fEl) = Cq,v/ ZZZTZUU xrt q jv(xlt q )] t2”+1¢( )d t
r=1 [=1 0 [r=11=1

:cqﬂ,/o > zju(it, ¢ ] [Z 2o (it ¢ ]t2”+1¢(t)dt
Lr=1

2
00
= Cqv /
0

() d,t > 0.
This finish the proof. =

n
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r=1

Proposition 8 If ¢ is of g-positive type and f € L2, then
¢ >I<q f S ‘Cq,Q,Ua

and

<¢*qf7f>20



Proof. From Theorem 2 we see that ¢ *, f € £,2,. On the other hand
ot f = [ [T T ] rwe i
0 0

=(1- Q>2cg,v Z Z q(2v+2 "f(q" 2”+2)lf(ql)Tq”,qr<b(ql) > 0.

r=1 =1

This finish the proof. =

Corollary 1 If ¢ is of g-positive type then
Food(z) >0, VzeR].

Proof. Given z € R} and let

fm e Cqﬂ)jv(xta q2)7

then with Proposition 2 we see that f, € £,2, and by Proposition 1

Faule(y) = dq.0(2,y),
which implies (see[1])

1
<fq,v¢ X fq7vfac>~7:q7vfﬂc> - qv¢( ) (:E $) = W"Tq,vgb(x)'

From Proposition 8

<qu,v¢>< fq,vfa‘/rq,vf> = <¢*qfaf> >0
this leads to the result. m
Proposition 9 If ¢ is of g-positive type then Fy,¢ € Ly1 4.

Proof. From Proposition 6

[e o]

lim e(—an, q2)fq7v¢(l‘)l‘2v+1dql‘ = liIT(l) cq,v/ G(x, a?, q2)q§(:p)x2v+1dqx = ¢(0).
a— 0

a—0 0

By the monotone convergence theorem and the preview corollary we see that

| 1 Fo@le® e = [ F, 0@ gz = o0).
0 0

This finish the proof. =



Corollary 2 If ¢ is of q-positive type then there exist a positive function
£ e A, such that
o(x) = Fyoé(z), Vo€ R;.

Proof. From the inversion formula in theorem 1
o(x) = f;vgb(x), Vx € R;.
Define the function £ as follows

§(x) = Food(x).

By the use of Corollary 1 and Proposition 9 we see that ¢ is a positive function

of A;,. ®

Proposition 10 Suppose ¢ is of q-positive type. If f € Ly1., 15 positive
function then the product ¢F, ., f is of q-positive type.

Proof. Proposition 5 and Proposition 9 give

Fow(@Fquf)(t) = Faud xq [(1), VEE R;ra

then

n n

SN aATy, (6Fuf) (3)

r=1 =1

= [ |30 st T | Bl O

Lr=1 =1

n

= Cav /0 SN mdolant, )ajo(it, ¢?) | Foud *q FE)E T dyt

Lr=1 =1
oo
- Cq,v/'
0

From the definition of the g-convolution product we write

2

Faud *q f) 2.

n

> zmjulant. ¢)

r=1

Fynd g £(1) = o / T Fy () Ty f ()2 d,



Proposition 4 give

Tyuf(2) = can [ Dults i) (6)5% s 2 0,
0
This implies with Corollary 1

Fawd *¥q f(t) >0,

which leads to the result. =

Corollary 3 Given two functions ¢1, po which are of q-positive type then the
product ¢1 X ¢o is also of q-positive type.

Proof. Let £ = F,,¢2 then with the inversion formula in theorem 1 we see
that F, ,{ = ¢2. Proposition 9 give

f E £q717U7

and by Proposition 10 we achieved the proof. =

3 ¢-Bochner’s Theorem

We consider the set M;r of positives and bonded measures on R;r. The
q-Bessel Fourier transform of £ € M is defined by

Fpul6)(z) = / Tt @) dE ().

The g—convolution product of two measures &, p € M;L is given by

€5, plf) = / T2, (O ot () dap(1),

and we have
fq,v<§ *q /)) = fq,v(€>fq,v<p)-

The following Theorem (see[1]) is crucial for the proof of our main result.



Theorem 3 Let (§,)n>0 be a sequences of probability measures of M;L such
that

Ty (60) @) = é(a),

then there exists £ € M;L such that the sequence &, converge strongly toward

& and
fq,v(&) = 1.

In the following we consider the function 1 defined by

v(o) = {

Now we are in a position to state and prove the g-analogue of the Bochner’s
theorem

1—2 if z<1
0 otherwise

Theorem 4 Let ¢ be a function defined on R continued at 0. Assume that
the following function

Pn 1 = P(x)p(q ),
satisfy (1) for allm € N then there exist £ € M such that
fq,v(f) = ¢.

Proof. The function ¢, is of ¢-positive type. From Corollary 2 there exist
on, & positive function of A, , such that

fq,v(gn) = ¢n
The measure &, defined by
dg&n(@) = on(z)dyz,
belong to M and

| @) = Fe)(0) = 6,0 = o00)
Assume that ¢(0) = 1. On the other hand

From Theorem 3 there exists { € M such that the sequence &, converge
strongly toward &, and

qu (é) = (bu

which leads to the result. =
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