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Functions of q-positive type

Introduction and Preliminaries

Given a positive finite Borel measure µ on the real line R, the Fourier transform Q of µ is the continuous function

Q(x) = R e -itx dµ(t).
The function Q is a positive definite function, i.e for any finite list of complex numbers z 1 , . . . , z n and real numbers x 1 , . . . , x n n r=1 n l=1 z r z l Q(x r -x l ) ≥ 0.

Bochner's theorem says the converse is true, i.e. every positive definite function Q is the Fourier transform of a positive finite Borel measure. In q-Fourier analysis, semelar phenomenon will appear. It is the subject of our article.

In the following we consider 0 < q < 1 and we adopt the standard conventional notations of [START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications 35[END_REF]. We put

R + q = {q n , n ∈ Z},
the set of q-real numbers and for complex a

(a; q) 0 = 1, (a; q) n = n-1 i=0 (1 -aq i ), n = 1...∞.
Jackson's q-integral (see [START_REF] Jackson | On a q-Definite Integrals[END_REF]) in the interval [0, ∞[ is defined by

∞ 0 f (x)d q x = (1 -q) ∞ n=-∞ q n f (q n ).
Let C q,0 and C q,b denote the spaces of functions defined on R + q continued at 0, which are respectively vanishing at infinity and bounded. These spaces are equipped with the topology of uniform convergence, and by L q,p,v the space of functions f defined on R + q such that

f q,p,v = ∞ 0 |f (x)| p x 2v+1 d q x 1/p < ∞.
The q-exponential function is defined by

e(z, q) = ∞ n=0 z n (q, q) n = 1 (z; q) ∞ , |z| < 1.
The normalized Hahn-Exton q-Bessel function of order v > -1 (see [START_REF] Swarttouw | The Hahn-Exton q-Bessel functions[END_REF]) is defined by

j v (z, q) = ∞ n=0 (-1) n q n(n-1) 2 
(q, q) n (q v+1 , q) n z n .

The q-Bessel Fourier transform F q,v introduced in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF][START_REF] Koornwinder | On q-Analogues of the Hankel and Fourier Transform[END_REF] as follow

F q,v f (x) = c q,v ∞ 0 f (t)j v (xt, q 2 )t 2v+1 d q t,
where

c q,v = 1 1 -q (q 2v+2 , q 2 ) ∞ (q 2 , q 2 ) ∞ .
Define the q-Bessel translation operator as follows:

T v q,x f (y) = c q,v ∞ 0 F q,v (f )(t)j v (xt, q 2 )j v (yt, q 2 )t 2v+1 d q t, ∀x, y ∈ R + q , ∀f ∈ L q,v,1 .
Recall that T v q,x is said positive if T v q,x f ≥ 0 for f ≥ 0. In the following we tack q ∈ Q v where

Q v = {q ∈]0, 1[, T v q,x is positive for all x ∈ R + q }.
The q-convolution product of both functions f, g ∈ L q,1,v is defined by

f * q g(x) = c q,v ∞ 0 T v q,x f (y)g(y)y 2v+1 d q y.
In the end we denote by A q,v the q-Wiener algebra

A q,v = {f ∈ L q,1,v , F q,v (f ) ∈ L q,1,v } .
The followings results in this sections was proved in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF].

Proposition 1 Let n, m ∈ Z and n = m, then we have

c 2 q,v ∞ 0 j v (q n x, q 2 )j v (q m x, q 2 )x 2v+1 d q x = q -2n(v+1) 1 -q δ nm . Proposition 2 |j v (q n , q 2 )| ≤ (-q 2 ; q 2 ) ∞ (-q 2v+2 ; q 2 ) ∞ (q 2v+2 ; q 2 ) ∞ 1 if n ≥ 0 q n 2 +(2v+1)n if n < 0 .
Proposition 3 The q-Bessel Fourier transform

F q,v : L q,1,v → C q,0 , satisfying F q,v (f ) C q,0 ≤ B q,v f q,1,v ,
where

B q,v = 1 1 -q (-q 2 ; q 2 ) ∞ (-q 2v+2 ; q 2 ) ∞ (q 2 ; q 2 ) ∞ .
Theorem 1 Given f ∈ L q,1,v then we have

F 2 q,v (f )(x) = f (x), ∀x ∈ R + q . If f ∈ L q,1,v and F q,v (f ) ∈ L q,1,v then F q,v (f ) q,2,v = f q,2,v . Proposition 4 Let f ∈ L q,1,v then T v q,x f (y) = ∞ 0 f (z)D v (x, y, z)z 2v+1 d q z,
where

D v (x, y, z) = c 2 q,v ∞ 0 j v (xt, q 2 )j v (yt, q 2 )j v (zt, q 2 )t 2v+1 d q t.
Proposition 5 Given two functions f, g ∈ L q,v,1 then

f * q g ∈ L q,v,1 , and 
F q,v (f * q g) = F q,v (f ) × F q,v (g).
Proposition 6 The q-Gauss kernel

G v (x, t, q 2 ) = (-q 2v+2 t, -q -2v /t; q 2 ) ∞ (-t, -q 2 /t; q 2 ) ∞ e(- q -2v t x 2 , q 2 ), satisfying F q,v e(-ty 2 , q 2 ) (x) = G v (x, t, q 2 ),
and for all function

f ∈ C q,b lim a→0 c q,v ∞ 0 f (x)G v (x, a 2 , q 2 )x 2v+1 d q x = f (0).
Theorem 2 Given 1 < p, p ′ , r ≤ 2 and

1 p + 1 p ′ -1 = 1 r .
If f ∈ L q,p,v and g ∈ L q,p ′ ,v then f * q g ∈ L q,r,v .

2 Functions of q-positive type Definition 1 A function φ is of q-positive type if

φ ∈ C q,b ∩ L q,1,v
and for any finite list of complex numbers z 1 , . . . , z n and q-real numbers

x 1 , . . . , x n n r=1 n l=1 z r z l T v q,xr φ(x l ) ≥ 0. ( 1 
)
Proposition 7 Let φ ∈ A q,v of q-positive type then F q,v φ is of q-positive type.

Proof. From Proposition 3 and the definition of the q-Wiener algebra

F q,v (φ) ∈ C q,b ∩ L q,1,v .
On the other hand, with the inversion formula in Theorem 1 we get

T v q,x F q,v (ξ)(y) = ∞ 0 j v (tx, q 2 )j v (ty, q 2 )t 2v+1 φ(t)d q t, then n r=1 n l=1 z r z l T v q,xr F q,v ξ(x l ) = c q,v ∞ 0 n r=1 n l=1 z r z l j v (x r t, q 2 )j v (x l t, q 2 ) t 2v+1 φ(t)d q t = c q,v ∞ 0 n r=1 z r j v (x r t, q 2 ) n l=1 z l j v (x l t, q 2 ) t 2v+1 φ(t)d q t = c q,v ∞ 0 n r=1 z r j v (x r t, q 2 ) 2 t 2v+1 φ(t)d q t ≥ 0.
This finish the proof.

Proposition 8 If φ is of q-positive type and f ∈ L q,2,v then φ * q f ∈ L q,2,v , and φ * q f, f ≥ 0.

Proof. From Theorem 2 we see that φ * q f ∈ L q,2,v . On the other hand

φ * q f, f = c 2 q,v ∞ 0 ∞ 0 T v q,x φ(y)f (y)y 2v+1 d q y f (x)x 2v+1 d q x = (1 -q) 2 c 2 q,v ∞ r=1 ∞ l=1
q (2v+2)r f (q r )q (2v+2)l f (q l )T v q,q r φ(q l ) ≥ 0.

This finish the proof.

Corollary 1 If φ is of q-positive type then

F q,v φ(x) ≥ 0, ∀x ∈ R + q .
Proof. Given x ∈ R + q and let

f x : t → c q,v j v (xt, q 2 ),
then with Proposition 2 we see that f x ∈ L q,2,v and by Proposition 1

F q,v f x (y) = δ q,v (x, y),
which implies (see [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF])

F q,v φ × F q,v f x , F q,v f x = F q,v φ(x)δ q,v (x, x) = 1 (1 -q)x 2v+2 F q,v φ(x).
From Proposition 8 F q,v φ × F q,v f, F q,v f = φ * q f, f ≥ 0, this leads to the result.

Proposition 9 If φ is of q-positive type then F q,v φ ∈ L q,1,v .

Proof. From Proposition 6 lim a→0 ∞ 0 e(-a 2 x, q 2 )F q,v φ(x)x 2v+1 d q x = lim a→0 c q,v ∞ 0 G v (x, a 2 , q 2 )φ(x)x 2v+1 d q x = φ(0).
By the monotone convergence theorem and the preview corollary we see that

∞ 0 |F q,v φ(x)|x 2v+1 d q x = ∞ 0 F q,v φ(x)x 2v+1 d q x = φ(0).
This finish the proof.

Theorem 3 Let (ξ n ) n≥0 be a sequences of probability measures of M + q such that lim

n→∞ F q,v (ξ n )(x) = ψ(x),
then there exists ξ ∈ M + q such that the sequence ξ n converge strongly toward ξ and F q,v (ξ) = ψ.

In the following we consider the function ψ defined by

ψ(x) = 1 -x if x < 1 0 otherwise .
Now we are in a position to state and prove the q-analogue of the Bochner's theorem Theorem 4 Let φ be a function defined on R + q continued at 0. Assume that the following function

φ n : x → φ(x)ψ(q n x), satisfy (1) 
for all n ∈ N then there exist ξ ∈ M + q such that F q,v (ξ) = φ.

Proof. The function φ n is of q-positive type. From Corollary 2 there exist ̺ n a positive function of A q,v such that

F q,v (̺ n ) = φ n .
The measure ξ n defined by d q ξ n (x) = ̺ n (x)d q x, belong to M + q and ∞ 0

x 2v+1 d q ξ n (x) = F q,v (̺ n )(0) = φ n (0) = φ(0).

Assume that φ(0) = 1. On the other hand

lim n→∞ F q,v (ξ n )(x) = lim n→∞ φ n (x) = φ(x).
From Theorem 3 there exists ξ ∈ M + q such that the sequence ξ n converge strongly toward ξ, and F q,v (ξ) = φ, which leads to the result.

Corollary 2 If φ is of q-positive type then there exist a positive function ξ ∈ A q,v such that φ(x) = F q,v ξ(x), ∀x ∈ R + q .

Proof. From the inversion formula in theorem 1

Define the function ξ as follows

By the use of Corollary 1 and Proposition 9 we see that ξ is a positive function of A q,v .

Proposition 10 Suppose φ is of q-positive type. If f ∈ L q,1,v is positive function then the product φF q,v f is of q-positive type.

Proof. Proposition 5 and Proposition 9 give

From the definition of the q-convolution product we write

Proposition 4 give

This implies with Corollary 1

which leads to the result.

Corollary 3 Given two functions φ 1 , φ 2 which are of q-positive type then the product φ 1 × φ 2 is also of q-positive type.

Proof. Let ξ = F q,v φ 2 then with the inversion formula in theorem 1 we see that F q,v ξ = φ 2 . Proposition 9 give

and by Proposition 10 we achieved the proof.

3 q-Bochner's Theorem

We consider the set M + q of positives and bonded measures on R + q . The q-Bessel Fourier transform of ξ ∈ M + q is defined by

The q-convolution product of two measures ξ, ρ ∈ M + q is given by

T v q,x f (t)t 2v+1 d q ξ(x)d q ρ(t), and we have F q,v (ξ * q ρ) = F q,v (ξ)F q,v (ρ).

The following Theorem (see [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF]) is crucial for the proof of our main result.