BILLIARDS IN POLYGONS AND HOMOGENEOUS
FOLIATIONS ON C=2.

FERRAN VALDEZ

ABSTRACT. In this article we construct a new framework for the
study of polygonal billiards. To every polygonal billiard we asso-
ciate a holomorphic foliation on C?. The dynamics of the billiard
ball is linked to the directional flow of the complex vector field
defining the associated holomorphic foliation.

1. INTRODUCTION

For simplicity the main results and ideas in this article are stated,
proved and developed in the context of triangular billiards. An ap-
pendix for the general case is given at the end in section §5.

Let P be a triangle having angles \im, A\om and A3m. We avoid de-
generated cases, so 0 < \; < 1, Vj and Z?:l A;j = 1. A frictionless
point inside P describes a billiard trajectory, as time runs from —oo to
oo, if it moves with constant velocity in the interior of P, reflects off
edges so that speed is unchanged and the angle of incidence is equal
to the angle of reflection. Motion stops if the point hits the vertices
of P, for reflection is not well defined. A unique translation surface
S = S(P) corresponds to such a dynamical system. Itis generated by
P through a standard unfolding process [12]. A translation surface, is
a real surface whose transition functions are translations. In this arti-
cle the surface S(P) is smooth and not closed, for it is supposed to be
generated by a triangle with no vertices. Unless stating the contrary,
henceforth P is supposed to be with no vertices. The billiard dynamics in
P is equivalent to the geodesic flow on the unitary tangent bundle of
S(P). This surface has trivial holonomy, therefore one can consider,
without ambiguity, the set of geodesics parallel to a given direction
6 € R/2nZ. This set defines a real foliation on S(P), usually called
the geodesic foliation on S(P) defined by the direction §. We denote it by
Dy.

The aim of this article is to describe the set of foliations Dy in terms
of a special class of holomorphic homogeneous foliations on C? and
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their projections to RP(3).

Let F), be the foliation on C? defined by the holomorphic 1-form
Wi,

1)

Wy ., dzn dzy d(zy — z1)
2’12’2(22 - 2’1) 21 22 22— 2

where A = (A1, A2, A3). This foliation is homogeneous, i.e. invari-
ant under the natural action of the homothetic transformation group
{Ti(z1,22) = k(z1,22) | k € C*}. The foliation F, presents an
isolated singularity at the origin. It leaves three complex lines in-
variant through the origin. This set of complex lines is commonly
called the tangent cone of the foliation; it is described by the equation
2122(29 — z1) = 0. In the complement of the tangent cone, any two
leaves, L, L' € F,, are diffeomorphic, for there always exists £ € C*
such that T} ; : £ — L' is a diffeomorphism. Every leaf of F) in the
complement of the tangent cone will be called a generic leaf. Up to
diffeomorphism, F, presents three kinds of leaves: a point, C* and a
generic leaf.

Theorem 1. If the submodule Res(\) = {(ni,ng,n3) € Z3 |
>, miA\; = 0} of Z? is equal to zero, then the generic leaf of F) is homeo-
morphic to a plane with a countable set of handles. This topological surface
is also known as the Loch Ness monster.

Fios

Loch Ness monster

This nomenclature can be found in [5]. When the angles of the trian-
gle are rational multiples of 7, the generic leaf of F) is homeomor-
phic to S\ E, where S is a finite genus orientable surface and £ C S
is a finite set of points [8].

The integral curves of the holomorphic vector field X}, solving the
equation iy, dz; Adzy, = w), are the leaves of F,. Let F) o be the real fo-
liation on C? defined by the integral curves of the real analytic vector
field Re(X,). This vector field is quadratic and homogeneous. The
foliation ) o has an isolated singularity at the origin and, for every
non-singular leaf £ € F), the restriction F) ¢ ~ is a real foliation with
no singularities. Let k£ be the image of the homothecy T}, ., k € C*.
Our main result is the following:
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Theorem 2. For every generic leaf L & F) there exists a direction
0 € R/27Z such that the foliation F, ) . is holomorphically conjugated
to the geodesic foliation defined by the direction 6 on the translation sur-
face S(P). Furthermore, for every 6 € R/27Z and p € R*, F| o ppier 1 1S
holomorphically conjugated to the geodesic foliation defined by the direction
6+ 6" on S(P).

This theorem sets the foundation for constructing a dictionary be-
tween the billiard game in a triangle and the holomorphic foliations
Fy and F, . For example, we obtain results on the existence of peri-
odic orbits:

Theorem 3. Let A € Q?, then periodic orbits in F) o are dense in C.

As for billiards, the main application of the dictionary contained in
this article is the topological classification of the translation surfaces
generated by non rational “generic” triangles with no vertices.

1.1. Billiards on RP(3). In a canonical way, we associate to the holo-
morphic foliations F) and F) , singular foliations on the projective
space RP(3), G, and G, o, with respective real codimension 1 and 2.
Also, any two leaves £, L' € G, in the complement of the singular
locus of G, are diffeomorphic. As with F), such leaves will be called
generic leaves. Under additional hypothesis for ), the generic leaves
of G, and F, are diffeomorphic. In such a case we will say that A is
not strongly resonant. The diffeomorphism is achieved by the canon-
ical projection IIgp(s) : C*\ 0 — RP(3). In this context, for every
generic leaf £ € F), the projection Ilgp(s) conjugates the foliation
Fo| ¢ to the restriction of Gy to Ilgp(s)(£). For strong resonant pa-
rameters ), the projection Ilgp(3),when restricted to a generic leaf of
F), defines a 2-sheeted covering over its image that semiconjugates
Fo c to the restriction of Gy o to IIgps)(L).

For every leaf Ilgp(3)(L') = £ € G, with £ € F) generic, we
denote pe L := IIrp s (pe L).

Corollary 1. Let A be non strongly resonant. Then, for every generic leave
L € G, there exists a direction 0 € R/2nZ, such that the foliation G | .
is holomorphically conjugated to the geodesic foliation defined by the direc-
tion 6 on the translation surface S(P). Furthermore, for every 6’ € R/2nZ,
G0 eie’ ¢ 18 holomorphically conjugated to the geodesic foliation defined by
the direction 6 + 6" on S(P).
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The result above is just a projective version of theorem 2. The
advantage of working in RP(3) is that this variety and the phase
space of the billiard game on P have the same real dimension. We
recall that the phase space of the billiard is naturally identified with
P x R/2nZ. From [7] we know that the billiard flow in a typical
polygon is ergodic. Using this fact we deduce the following

Corollary 2. There exist a dense G in the space of triangles for which
almost every (LEBESGUE) point in RP(3) is contained in a leaf of Gy o
which is dense in RP(3).

We begin this paper with a general survey of quadratic homoge-
neous holomorphic foliations of C? having an isolated singularity
and a reduced tangent cone. Also, in section §2.2, we describe the
topology of their leaves as well as the foliations they naturally in-
duce in the projective space RP(3). In section §3, theorem 2 is proved
and later, in section §4, we show the main applications of this re-
sult to polygonal billiards and homogeneous foliations. Finally, in
section §5, we prove that the main results obtained for triangles and
quadratic homogeneous foliations remain valid for general polygons
under certain hypotheses.

2. HOMOGENEOUS FOLIATIONS ON C?

Homogeneous holomorphic foliations on C? constitute the natural
setting for the framework which we construct for studying polygo-
nal billiards. Every holomorphic homogeneous foliation on C? hav-
ing an isolated singularity is given by a PFFAFIAN form w = A;dz; +
Asdzy, where A; € Clz, 23] are homogeneous polynomials having
the same degree and such that gcd(A;, A;) = 1. Let R¢ be the ra-
dial vector field on C?. The holomorphic foliation presents only
v + 1 invariant complex lines through the singularity, if and only
if 21 A1 + 2 A, is an homogeneous irreducible polynomial of degree
v + 1. The zero locus of this polynomial is called the tangent cone
of the foliation and the natural number v is the degree of the folia-
tion. As a consequence of the decomposition of rational fractions
in one variable, w can be writen in the same form as (1) except that
all \; € C*,j =1,2,3, and Z?zl A, equals to a given normalization
constant [3]. Thus, F, is a special type of quadratic homogeneous fo-
liation: where {\;7}3_, are the angles of a non degenerated triangle
P and the normalization constant is equal to one. We observe that

(2) Fx(z1,20) = 211252 (22 — 21)
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is a first integral for F,. This expression is usually multivaluated.
Let ~) be the equivalence relation induced by the action of (Z?,+)
on C*, defined by Z x C 3 ((n;, ng, n3), 2) ~» > 2" 2. As proved
in [9], the normalization Z?Zl Aj = 1, implies that the fibers F} ' (k),
k € C*/ ~, are the (connected) leaves of F) in the complement of
the tangent cone. A straightfoward computation shows that if k, k' €
C*, the homothecy Tj /s defines a diffeomorphism between F (k)
and Fy'(k'). In particular, each leave in 7, is invariant under every
homothecy T 2rix; 5, We will call every leave in the complement of
the tangent cone of F) a generic leaf.

2.1. Topology of generic leaves. As studied in [2], the generic leaf
of a generic holomorphic homogeneous foliation on C? is dense in
C?2. That is not the case for the foliation, F,, associated to the billiard
in the triangle.

Let IT : CP(2) — CP(2) be the complex surface obtained by
blowing up the origin of the affine chart C? = {(z1, 22)} of CP(2).
This surface is well known: it is HIRZEBRUCH's first surface. The fo-
liation ), extends to a foliation 7, on CP(2). Let 7 be the projection

of CP(2) onto the exceptional divisor CP(1). In the complement of

[I1(2129(29 — 21) = 0), the foliation F) is transversal to the fibration
defined

by m. Using the first integral, F), one can calculate explicitly the
generators of the holonomy of F), relative to this fibration. They are

given by the maps z ~» e*™iz, j = 1,2,3. Here z € C is the variable
of the fiber 77!(¢), with t € CP(1) \ {0, 1, 00}.

Proposition 1. [3] If \; = p,;/q € Q, ged(p1,p2,ps,q) = 1, then the
closure in CP(2) of every generic leaf L € Fy is an algebraic curve defined
by 2" 252 (29— 21)P* = k, k € C*. On the other hand, if for some j = 1,2,3
the parameter \; is irrational, then the closure in CP(2) of every generic
leaf L € F) is a real Levi-Flat singular manifold of dimension 3 given by
H_1(| 21 |)‘1| 29 |>\2| 29 — 21 |>\3: k’), k € R*.

Proof of Theorem 1. We calculate the space of ends of the generic
leaf £. This space is a topological invariant for noncompact surfaces
[10].

Let U be the complement in CP(1) of three infinitesimal neigh-
bourhoods containing the points {0, 1, co}. We define U as the com-

plement on U of the segments A =|oo,0[ and B =]1, oo contained
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in RP(1) ¢ CP(1). Using U and the monodromy of the covering
m ¢ L — I, we construct a surface having the same topological
type as L. Let vy, 71 be the generators of 7 (CP(1) \ {0,1,00},1/2)
given by the circles of radius 1/2 and centers at 0 and 1, respectively.
The monodromy action of the covering ,m » : L — FE, is given by

the holonomy of F) relative to the fibration 7. Without loss of gen-
erality, we suppose that 7, and ~; determine the holonomy maps
z ~ €™z and 2 ~ ™3 2, respectively. Let m be a word in this two
generators. We denote by U, the lifting of the fundamental domain
U to the leaf beginning at a fixed point in the fiber 7*(1/2) and fol-
lowing the path given by the word m. Let [,] be the commutator of
two loops in the fundamental group. We remark that U, ,,; is home-
omorphic to the open ring 1 <| z [< 2. This implies that U,
is homeomorphic to a punctured torus.

Consider the additive subgroup of Z x Z given by
{(ne,n3) € Z X Z | nody+ ngs € Z}. If Res(\) is equal to zero
then this additive subgroup is equal to zero as well. The base space
of the covering 7 admits a retraction to the set of generators {~,,71}.
This retraction induces a retraction on the covering constructed from

Yom1]lve o]

U onto a subspace homeomorphic to the Cayley graph of Z x Z.
Clearly, this graph has only one end. Therefore, the generic leaf of
F) has only one end. Note that {U(hom”,ya1m]),yéon}nez is a family of
disjoint punctured tori in £. We conclude that the only end of the
leaf £ must be non planar. O

2.2. Homogeneous foliations on RP(3). Let Ry be the radial vector
field on R* and z; = x; + v/—1y;, for j = 1,2. The real integrable
homogeneous 1-form

3) X gy LRe(X3) Urm(x,) A1 A dyy A dzg N dys

defines a real codimension 1 singular foliation G, on the projective
space RP(3). The projection of the real cones, {pL | p € R*, L €
Fx \ 0}, to the projective space RP(3) are the leaves of G,. A leaf of
this foliation is called generic if and only if it originates from the pro-
jection of a real cone whose basis is a generic leaf of 7). The singular
locus of the foliation G,, that we denote by Sing(G,), is given by three
projective real lines, RP(1), corresponding to the projection of the ir-
reducible components of tangent cone of 7. Any two leaves of G,
in RP(3) \ Sing(G,) are diffeomorphic. The homogeneous real vec-
tor field Re(X)) defines a singular codimension 2 real foliation G, g
on RP(3). A direct calculation on Re(X)) restricted to each complex
line in the tangent cone of F) shows that the singular locus of G, g is
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given, in homogeneous coordinates [z1 : y; : 22 : ya], by the points
pr:=100:0:1:0,p:=[1:0:0:0andps:=[1:0:1:0]
Let C; note the projective real line in Sing(G,) containing the point
p; € Sing(Gyro). For every L € G, \ Sing(G,), the restriction G, ) . is
a real foliation with no singularities.

Definition 1. A point A\ € R? in the hyperplane Y~ \; = 1 is strongly
resonant if and only if there exists a non trivial solution, (nq,ns, n3) € Z°,
to the equation ) nj\; = 1/2(mod 7Z).

When the parameter defining the 1-holomorphic form w, is

strongly resonant, the holonomy of the foliation F), relative to the
tibration defined by the projection 7 contains the involution z ~» —z.
This implies that, for strongly resonant parameters, the restriction of
the projection, Ilgp(s), to a generic leaf of 7, defines a two-sheeted
covering of its image.

Lemma 1. If \ is not strongly resonant, the generic leaves of the foliations
Fy and G are diffeomorphic. The diffeomorphism is achieved by the re-
striction of the projection llgps) to the leaves of F\. Moreover, for every
generic leaf L € F), this projection conjugates the restriction F) o . to the
restriction of Gy o| Tigp s (£)-

This lemma implies the projective version of theorem 2, which we
will prove in the following section.

Let RP(1) — RP(3) — S? be the fibration naturally defined by
HOPF’s fibration. The action of the holonomy of G, , relative to this fi-
bration is generated by the maps (in local coordinates)
RP(1)>[1:s] ~ [1:s+2rA],j=1,23.

Proposition 2. The point X = (Ay, Ao, \3) is not rational if and only if
every generic leaf of G, is dense in RP(3).

In the homogeneous coordinates of RP(3), the analytic multivalu-
ated function .J := F)/F) is a first integral for the foliation G,. In par-
ticular, the differential 1-form dJ/J defines this foliation.
POINCARE's linearization theorem implies that in a small neighbour-
hood of every point in the singular locus of G, this differential form
is conjugated to ydx — xdy. This is just a manifestation of the KUPKA
phenomenon. In other words, the local model for the foliation, Gy,
in a point of its singular locus is given by an open book.

In order to understand better the global geometry of this open

book, let Il : RP(3) — RP(3) be the projection map from the alge-

—_——

braic variety RP(3) that results from blowing-up the singular locus
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of the foliation G,. Each exceptional divisor T; := II;'(C;) is home-
omorphic to a torus RP(1) x RP(1). The closed 1-form II}.d.J/J,

defines a real codimension 2 non singular foliation, G,. Up to diffeo-
morphism, this foliation has only one leaf which we also call generic,
such generic leaf is not homeomorphic to the generic leaf of the foli-
ation G,.

Proposition 3. The restriction of G to each torus T; defines a linear foli-
ation.

This proposition follows from the fact that, in homogeneous coor-
dinates, Aarctan (y/x1) + Xoarctan (yo/12)
+Asarctan ((y2 — y1)/(z2 — x1)), is also a first integral for the folia-
tion Gy. The normalization, ) ; \; = 1, implies that the slope of the

lines in G), restricted to T;, depends only on ;. A direct computa-
tion in local coordinates shows that, up to a permutation of indexes,
this slope is given by (1 — A;)/A;.

The real foliation, G, defines a real singular foliation, G,,, on

—~——

RP(3). This two foliations are isomorphic in the complement of
U3_,T;. The singular locus of G, is {II;'(p;)}7_,. Each connected
component of this singular locus is homeomorphic to a circle, RP(1),
contained in an exceptional divisor, T;. From the preceding propo-

sition, we conclude that the singular locus of é;o, restricted to the
torus, is formed by apparent singularities. Therefore Gy o, , is a line

foliation whose leaves are (1) dense if and only if ); is irrational or,
(2) periodic if and only if )\, is rational.

Proposition 4. In a small neighbourhood of each singular point
p; € Sing(Gxo), the real foliation Gy ¢ is analytically conjugated to the foli-
ation defined by the integral curves of the linear vector field,
A\;jxd/0x —y0 /0y — 20/0z.

Proof. In the coordinates z, = tz;, of CP(2), the foliation F) is
given by the integral curves of z1(Xez1 — (A2 + A3)t210/02%
+t(t — 1)0/0t). For t ~ 0, this vector field is analytically conjugated
to Y = 21(A\y2:0/0z + td/0t). This vector field is the pullback via

e~

II: CP(2) — CP(2) of the holomorphic vector field defined, in the
affine chart C? — CP(2), by Y := \2270/02z1 + (1 + X2)21220/0z5. Let
Re(Y) = A10/0x1 + B10/0x1 + A20/0x9 + B20/0ys, this real homo-
geneous vector field defines a real, codimension 2, singular foliation
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on RP(3). In the local coordinates x; = 1, this foliation is given by
the integral curves of

Re(Y)— ARr = Ao(y1 + 47)9/ 0y

(4) —29 + y1((1 — A2)y2 + Aoy122)0/ 0o

—y2 + y1 (A2 — 1)z + Aayay1)0/0ys.

The real foliation defined by Re(Y) — A; Ry is analytically conju-
gated to G, o in a neighbourhood of z; = y, = 0; in particular, in a
neighbourhood of the point p,, corresponding to the origin z, = y, =
y1 = 0. ]

From the preceding proposition we notice that, for each singular
point p;, for j = 1,2, 3, the existence of an invariant, 2-dimensional,
real manifold given in local coordinates by z = 0; and we denote it
V;. The restriction of G, to this invariant manifold is conjugated to
a radial foliation.

3. PROOF, MAIN RESULT.

First we prove that the generic leaf £ of 7 and the translation sur-
face, S(P), are biholomorphic. The invariant complex lines through
the origin in ¥, determine three points in the exceptional divisor

in CP(2). In local coordinates zo = tz, this points are given by
t =0,1,00. Let £ be the complement of the points in the exceptional
divisor, then E is homeomorphic to the sphere with three punctures.

Every generic leaf £ € F defines a covering space
(5) me:L— E.

The identification of two copies P x {x}, P x {*'} by the relation
(n,%) ~ (n,%'), if and only if n € OP defines a locally euclidean sur-
face X,. Observe that ¥, is homeomorphic to the sphere with three
punctures. As a consequence of the unfolding process, we have a
natural covering IIp : S(P) — X,. We prove that for every generic
leaf, £ € F), the coverings whose projections are 7| ; and IlIp, be-
long to the same conformal class. Let 2z = tz; be local coordinates for

CP(2). The SCHWARZ-CHRISTOFFEL transformation

6) - /O £a1(e — 1),
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defined on Im(t) > 0, admits an analytic continuation f : £ —
2. This map sends conformally each half-plane in the complement
of Im(t) = 0 onto the interior of each copy of P in X,. For ev-
ery x € X, the conformal map , f, defines a natural isomorphism
¢ m(E, f7H(*)) — m(Za, *%). Let h: m(Zy, %) — Isomy(R?) be
the holonomy homomorphism, defined by developing a loop using an-
alytic continuation. For every v € m;(X,, *) we define dh(y) € C* to
be the derivative of h(y). Let 7, 72, 73 be simple loops generating
71 (E, f~1(x)). We suppose that the action of ~; in the fiber 7! (%) is
given by the holonomy generator z ~ €?™% 2. The SCHWARZ reflec-
tion principle implies that d(h o ¢)(v;) = e*™* [dg:. The stabilizer
subgroups of the monodromy actions of both coverings are isomor-
phic; and the isomorphism is given by the restriction of ¢. This im-
plies that the map f lifts to a
biholomorphism f : £L — S(P).

We claim that f conjugates F, | . to a geodesic foliation on S(P).

Let X, and Re(X,) be the vector fields naturally defined on CP(2)
by X, and Re(X,). A straight computation shows that, in the lo-

cal coordinates z, = tz, the projection of )/(VM ¢ to E is given by the
branches of kt'=*2(t — 1)17%39/0t, where k € C* is a constant given
by the first integral F'(z1, 23), (2), and depending on the leaf £. From

(6), we conclude that, f, locally rectifies the real vector field Re(X)).
Using the monodromy action of the covering given in (5), one can

extend the rectification of Re(X,) by f to the hole leaf. This proves
our claim. o

In a slight abuse of notation, let pe’ £ be the image in CP(2) of the
homothetic transformation 7, | .. The projection of )f(vM peiv o 10 E'i8
given by the branches of pe'® kt'=*2(t — 1)1=%39/d¢t. Thus, if the lifting
f: L — S(P) conjugates F) o . to the geodesic foliation defined by
0, the lifting f : pe’ £ — S(P) conjugates F. 20| peio' ¢ tO the geodesic
foliation defined by 6 + ¢'. O

Remark. Let X be a strong resonant parameter. Let v € 71 (E, f~*(x))

define the involution z ~» —z in the holonomy of the foliation F), rel-
ative to the fibration II. For such loops, ¢(v) = 7' satisties dhy(0) =
—Idg2. Conversely, if 7/ € II;(X,, x) satisfies dhy’ = —Idg> then
¢~ 1(7/) is a loop, in m (E, f~'(x)), defining the involution z ~ —z
in the holonomy of the foliation ), relative to the fibration II. This
implies that, for strong resonant parameters , the generic leaf of the
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foliation G, is analytically conjugated to the half-translation surface
generated by the triangle P. We denote this surface by 5, 2(P). The
surface is the result of identifying any two points in S(F) which dif-
fer by a half-translation. Half-translations are isometries of the plane
given by z ~» —z + k, where k € C*. By definition, the translation
surface S(P) is a double cover of S /5(P).

4. APPLICATIONS

We recall some facts concerning the phase space of the billiard
game. The state of any point in the triangular billiard P is completely
determined by its position and the direction of its velocity. Therefore,
the phase space of this dynamical system is naturally identified with
P xR /27nZ, and this set will henceforth be endowed with the natural
product topology. We assume that the point in the interior of P x {0}
describes a trajectory parallel to the direction § € R/27Z until it
reaches the boundary at a point (¢, ). Recall that P is supposed to
have no vertices. The point ({, ) “jumps” to the point (£, '), where
¢ and ¢’ are related by the law “angle of reflection equal to the angle
of incidence”. In this way, the billiard trajectories define a “flow” in
the phase space usually called the billiard flow.

The linear parts of the three reflections of the plane in respect of the
lines containing the sides of the triangle P, generate a subgroup of
O(2) which we denote G. For every direction § we let G0 be the orbit
of § under the natural action of G over R/27Z. Clearly, for every 0
R/27Z the set g gy P x {8} is invariant under the billiard flow. The
identification of any two points (£, #) ~ (£, §’) in this invariant set for
which the directions 5 and (' are related by the reflection law defines
an invariant surface ¥,. The billiard flow defines a real non singu-
lar foliation By on this surface. This foliation is formed by all billiard
trajectories for which the velocity of the ball is, eventually, parallel to
the
direction 6.

Definition 2. Let 6, 6, and 05 be the directions of the sides of the triangle
P. We call every element in U?zl G0; a singular direction of the billiard
in P.

Let X be a topological space and int(X) its interior. For every
6 € R/2nZ, there exists a natural embedding int(3y) — S(P), con-
jugating B, to the geodesic foliation Dy. In particular, closed billiard
trajectories are sent into closed geodesics. For a non singular direc-
tion, this embedding extends to the whole surface >y and defines a
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conjugation between By and the geodesic foliation Dy, in the whole
surface S(P).

Lemma?2. Let M, := {e"GFA‘l(l)}geR/%z. Then the points in M, defining
a periodic orbit in F form a dense set if and only if the points in the phase
space P x R/2nZ defining a periodic trajectory of the billiard flow form a
dense set.

If periodic orbits of F, g, restricted to M;, are dense in M, then
periodic orbits of F, are dense in C?. This follows from the fact
that, for every generic leaf £ € F, and p € R”, the foliations F) | ~
and F) g| ,c are conjugated. We remark that IIgps) : M7 — RP(3) \
Sing(Gy) is a double covering. This implies that if periodic orbits of
Fo, restricted to M, are dense in M, then periodic orbits of G, , are
dense in RP(3), even if A is a strongly resonant. Then, from

Theorem 4. [1],[11] Let P be a right or rational triangle. Then periodic
orbits of the billiard flow in the phase space R /2nZ are dense.

we deduce, using lemma 2,

Corollary 3. Let P be a right or rational triangle. Then periodic orbits of
Gxo and Fy o are dense in RP(3) and C? respectively.

Proof lemma 2. Let M, := II7*(M,) be the image of M; in CP(2).
We define, in local coordinates z, = tz;, the set M;" := {(t, z,) € M, |
Im(t) > 0}. The “parametrization” {Im(t) > 0} x R/27Z > (t,6) ~»
(t,e?t=2(t — 1)=%) induces a differentiable structure of 3-real man-
ifold on M;. Analogously, Im(t) < 0 defines M, . The restriction

of the foliations F, and F; ) to M; define two real foliations that we
note 7 and F, .

Let f, denote the restriction of the SCHWARZ-CHRISTOFFEL trans-
formation, (6), to Im(t) > 0. Let £L € F. be a leaf and 7 the pro-

jection of CP(2) onto the exceptional divisor. Then, the restriction
of the composition f, o 7 conjugates F, o . to the foliation defined
by the billiard flow on P x {#} C P x R/2nZ, for some direction

6 € R/2nZ. In this way, we obtain a diffeomorphism f; : M;" —
int(P) x R/27Z. A point n € M, is contained in a periodic orbit of
Foif and only if f, () is contained in a trajectory of the billiard flow.
Reasoning in a similar way, we obtain that the density of points in
the phase space that define a periodic trajectory, implies the density
of points in M, that define a periodic orbit and vice versa. O
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For every generic leaf £ € F), periodic orbits in F) o ; are never
isolated. This is just a consequence of the commutativity, when con-
sidering the usual LIE bracket, of the real vector fields Re(X,) and
Im(X)). Such is also the case for billiard trajectories: a periodic tra-
jectory parallel to a direction § € R/27Z is always included into a
strip of periodic parallel trajectories [8]. The following example il-
lustrates the general case.

FAGNANO's triangle. In every acute triangle AABC, the triangle
whose vertices are the endpoints of the altitudes from the vertices A,
B and C, defines a closed billiard trajectory. This trajectory is usu-
ally called FAGNANO’s trajectory in honor to GIULIO C. FAGNANO
(1682-1766).

Corollary 4. (FAGNANO) Let P be an acute triangle, then F, o presents
at least one (non isolated) periodic orbit.

A simple drawing shows that the obstruction for enlarging the
strip containing FAGNANO's trajectory is composed by singular bil-
liard trajectories “joining” two vertices of the triangle. Such billiard
trajectories are usually called generalized diagonals. Later, we will
describe the role of these singular trajectories when considered as
leaves of G o.

A foliation on a manifold M is called minimal if every leaf is dense
in M. If, for a given direction § € R/27Z, the billiard on a rational
triangle P presents no generalized diagonal, then the foliation By, on
the invariant surface Yy, is minimal [8].

Corollary 5. If (A1, A2, \3) € Q, then the set of leaves L C C? in F, where
Fo| ¢ is not minimal has LEBESGUE measure zero.

For rational triangles, the LEBESGUE measure of the plane induces
a natural probability measure on the invariant surfaces ¥, of the bil-
liard flow. In [7], KERCKHOFF, MASUR and SMILLIE proof the follow-
ing milestone theorem.

Theorem 5. [7] (Triangular case) Let P be rational. Then for almost every
direction § € R /2nZ the restriction of the billiard flow to ¥y is uniquely
ergodic.

From a remark, made independently by A. KATOK and M. BOSHER-
NITZAN, one can deduce the following,

Corollary 6. [7] There is a dense G5 in the space of triangles consisting of
polygons for which the billiard flow is ergodic.



14 EVALDEZ
This corollary leads to

Theorem 6. There is a dense G5 in the space of triangles for which almost
every (LEBESGUE) leaf | € G,  is dense in RP(3).

Proof. Consider a trajectory !’ of the billiard flow dense in the phase
space passing through a point (p,0) € P x R/27Z. Let fr M —
int(P)xR/2nZ be the diffeomorphism defined in the proof of lemma
2 and | € F, the leaf passing through the point }:—1(1)7 6). Suppose
that [ avoids an open set U in ]\Z, and that this set, without loss of
generality, is contained in either M;" or M; . Then, using either fr
or f_, we deduce that I’ must avoid an open set in the phase space.
This is a contradiction. O

Generalized diagonals in G o. In the following paragraphs, we describe
the set of leaves in G, o intersecting the local invariant manifolds V),
for j = 1,2,3,in terms of billiard trajectories in P.

Definition 3. Let [ be a non compact leaf of a foliation in a (real or complex)
manifold M. A point p € M is called an extremity of | if and only if there
exists a parametrization, ~ :|0, +o0o|— [, such that lim,_, 1, y(s) = p.
We say that p is an analytic extremity if and only if p is an analytic point
of the closure of I.

Let! € Gy \ Sing(G,) be a leaf having the singular point p; as an

extremity. Then, it intersects a local invariant manifold V;. Let I NV;
be the image of Ilgp (I NV;) in CP(2) via IT™". The projection of

e~

[ NV; to the exceptional divisor in CP(2) has an extremity ¢; in ¢ =
0,1, co. A direct calculation, in local coordinates, say 2, = tz;, shows
that the SCHWARZ-CHRISTOFFEL transformation defined by formula
(6) sends ¢; over the vertex in P. Thus, if | C £ € G, and Gy ¢
is analytically conjugated (or semiconjugated for a strong resonant
A) to the geodesic foliation Dy in the translation surface S(P), then
the geodesic determined by the leaf [ is sent into the polygon by
the projection S(P) — P over a singular billiard trajectory, that
is, a trajectory meeting a vertex. Conversely, every such singular
trajectory in the billiard lifts up to a geodesic in S(P), forming part
of a geodesic foliation Dy. If this foliation on the translation surface
is conjugated (or semiconjugated for a strong resonant \) to G, g| £,
for a certain £ € G, then theleaf ! € G, , determined by the singular
billiard trajectory, has an extremity in the singular locus of G o.
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Theorem 7. Every non compact leaf of Gy has either 0, 1 or 2 analytic
extremities in the singular locus. The set of leaves in Gy o having two ex-
tremities is countable and each singularity in G, is an analytic extremity
for a countable set of this kind of leaves.

From proposition 4, we deduce that extremities of leaves in G,
are analytic. The preceding paragraph implies that every leaf of
Gro \ Sing(G,) having two extremities corresponds to a generalized
diagonal of the billiard on the triangle P. The set of generalized di-
agonals having an extremity in a fixed vertex is countable [8]. As a
consequence, the reunion of all leaves in G, ¢ \ Sing(G,) intersecting
U3_,V; do not form a global invariant variety.

Remark. Let I € Gy, be a leaf visiting a neighbourhood U; \ T; of
the torus T}, but not having an extremity in II;' (p;). We recall that

@;]‘ r. is a line foliation. Then, the leaf / describes a finite number
J

of “turns” around the torus T, before leaving the neighbourhood
U,. As we have seen before, this number of turns is bounded by a
constant depending only on the “slope”, (1 — A;)/A;. In terms of bil-
liards, this phenomenon corresponds to the fact that every billiard
trajectory on P, visiting a neighbourhood of a vertex and not having
the vertex as an extremity, makes a finite number of reflections before
leaving the neighbourhood. This number of reflections is bounded
by [A;], where [.] notes the ceiling function. Therefore, one can think

of the line foliation Gy o, , s the foliation representing the billiard dy-
namics at a vertex of the triangle.

(if)

The line foliation é;,/o‘ T, (i) and the billiard dynamics near a vertex

(id).

5. GENERAL POLYGONS

The aim of this section is to set the basis for constructing a dictio-
nary between the billiard game in a “general polygon” and a special
class of holomorphic homogeneous foliations on C?.
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Polygons are plane figures whose boundaries are formed by a fi-
nite number of sequential line segments. We say that a polygon P is
simple if the only points belonging to two edges are the vertices of P.
Henceforth general polygon will mean bounded simple polygon.

Remark. Henceforward the general polygon P is supposed to have no
vertices.

As in the triangular case, the billiard dynamics in P is equivalent
to the geodesic flow on the unitary tangent bundle of a translation
surface S = S(P) “generated” by P through a standard unfolding
process [12]. We keep the notation Dy for the geodesic foliation de-
fined on S(P) by the choice of a direction § € R/27Z.

General Polygons and SCHWARZ-CHRISTOFFEL transformations. Sup-
pose that the general polygon P C C has v + 1 sides and interior
angle \;m ata vertex wj, j = 1,...,v + 1. Then, there are constants c,

C € C and real numbers {a; J"ill, with a; < a; 1, such that
t v+1
% f6)=c+ ¢ [ [Tt~ aphag
j=1

is a conformal representation of /m(t) > 0 into the interior of P [4].
This kind of conformal representations are usually called SCHWARZ-
CHRISTOFFEL transformations. The points a; are called the prever-
tices of the map (7). Their determination is known as the SCHWARZ-
CHRISTOFFEL parameter problem.

Homogeneous foliations. Consider a homogeneous holomorphic folia-
tion on C? with an isolated singularity and leaving v + 1, v > 2, dif-
terent complex lines invariant through the singularity. We suppose
that this set of invariant lines is given by the zeros of the polynomial
Pye1 =I5 (22 — bjz1), bj € C*,and set b = (by,. .., b,41). From [3],
this foliation is given by the holomorphic 1-form:

v+1
wgw d(ZQ — bi21>
8 —= = —",
®) o gu p——
where ¢ = (u1,...,141) is a point of the affine hyperplane

{(1,- - pwr) € C" | Y05y = K, pj # 0Vj}and K € C*is
an arbitrary normalization constant whose choice does not affect the
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foliation defined by (8). We remark that

v+1
(9) FbJ\(Zl, ZQ) = H(Zg — bizl))‘f

j=1
is a first integral for the foliation defined by w;,. We denote this
foliation 73, ,. Let X\ be the holomorphic vector field given by
ix, ,dz1 Ndzy = wy . The integral curves of X,  are the leaves of F;, 5.
Let F; 1 o be the real foliation on C? defined by the integral curves of
the vector field Re(X} ).

Dictionary, general version. Let P be a polygon having v + 1 sides
and interior angle A\;7 at a vertex w;, j = 1,...,v + 1. Suppose that
(7) is a conformal representation of /m(¢) > 0 into the interior of P.
We associate the holomorphic foliation on C? defined by the holo-
morphic 1-form w;, whose parameters are ;1; = A\; and b; = a; for
j=1,...,v+1(8), to the billiard game on P. We call F, ) the polyg-
onal foliation associated to the billiard game on the polygon P.

Remarks. The SCHWARZ-CHRISTOFFEL parameter problem has three
degrees of freedom. Henceforward we decide that a; = oo, as = 0
and a3 = 1in (7). In the triangular case, this choice leads to the ex-
pression in (1).

If the polygon P has v + 1 sides, then the parameter X of the fo-
liation F, ) satisfies 2]”:11 Aj = v — 1. In the coordinates z, = tz,
the fibers of (9) are given by 2/ ™' = kt=2(t — 1)~ Hj"ii (t —a;)™,
k € C*. Because of this, each fiber of the first integral (9) has at most
v — 1 connected components. The subgroup of the homothecy group

of C?,

(10) H, = {T(21,22) = (21, 20) | "' =1},

acts transitively on the set of connected components of each fiber
Fa_Al(k), k € C*. We observe that H,_; is the group of homothecies
preserving X, ,, that is, satisfying X, (7},(21, 22)) = DT, Xq (21, 22).
We will call H,,_, the group of automorphisms of the vector field X, ».

5.1. Proof, main result (revisited). . The notation and language in
the following paragraphs emulate those of §3.

Let £ be the complement in the exceptional divisor of CP(2) of
{0,0,1,a4,...,a,41}. Every generic leaf, £ € }/":L/A defines a cover-
ing space 7 » : L — E, whose monodromy is given by the holo-
nomy of j—"; relative to the fibration defined by 7. This holonomy is



18 EVALDEZ

27r1)\
generated by the maps z ~» e 71 z, for j = 1,...,v + 1. Let &, de-
note the v + 1-punctured sphere obtained by 1dentifying two copies
of the polygon P in their common sides. We note f : E — 3, ) the
analytic continuation of the SCHWARZ-CHRISTOFFEL transformation

v+1

a1t / el — 1 [ (€ —a)hlde,  Im(t) >0

j=4
to the exceptional (punctured) divisor E. Let £ € f; be a generic

leaf of the foliation on CP(2) induced by F, ). A straightforward
calculation shows that, in the local coordinates 2, = tz;, the pro-

jection of the vector field m to E is given by the branches of
k=22 (t — 1)1 H”+1( a;)'=%0/0t, where k € C* is a constant
dependmg on the leaf L. Therefore (11) locally rectifies the real foli-

ation, fa A0, induced in CP( ) by F. 0. The biholomorphism f lifts

to a biholomorphism f: L — S(P) if the coverings m o : L — E
and IIp : S(P) — X, are in the same analytic class. Such is not
always the case.

Indeed, let 71, ..., 7,41 be simple loops generating m (E, f~*(x)).
We suppose that the action of the loop v; in the fiber IT"!(x) is given

27rLA
by the holonomy generator z ~» ¢ »1 z. On the other hand, up to a

permutation of indexes, d(h o ¢)(v;) = €*™% [dg:. Therefore, if v > 2,
the image of the stabilizer of the monodromy actionof 7 > : £ — E,
under the isomorphism ¢, can be a proper subgroup of the stabilizer
of the monodromy action of IIp : S(P) — X, . This implies that,
in some “non typical” cases, the generic leaf of the foliation 7, , and
the translation surface S(P) are not even homeomorphic.

Example. The translation surface generated by any rectangular fig-
ure has genus one, whereas the closure in CP(2) of the generic leave
of the holomorphic homogeneous foliation F, ), having as first inte-

gral F, (21, 29) = zl/ 1/2 (22 — 21)Y?(22 + 21)Y/2, has genus three.

Definition 4. A polygon having angles {>\ T
and only if every integer of the form Z i ny)\J, n; € Z,Vj, is congruent
to v — 1 modulo Z.

is called reasonable if

Clearly, every triangle is reasonable, whereas rectangles are not.
For reasonable polygons the stabilizers of the monodromies of the
coverings having projections | ¢ and IIp are isomorphic via ¢. Hence,
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reasonable polygons form the natural context in which theorem 2 re-
mains valid.

Theorem 8. Let P be a reasonable polygon. Then for every generic leaf L &
Fa,x there exists a direction 0 € R/2nZ such that the foliation F, x| r is
holomorphically conjugated to the geodesic foliation defined by the direction
6 on the translation surface S(P). Furthermore, for every ' € R/2nZ and
p € R*, F, o peier c 1 holomorphically conjugated to the geodesic foliation
defined by the direction 6 + (v — 1)0" on S(P).

Remarks.

i: The factor (v — 1)6’ appears because the projection of the vec-
tor field )/(;‘ peier oo (L) = F - 1 (k), to the exceptional divisor
E is given by the branches of
(pe ) ht! e (t = 1) [T (= ay)' =00t

ii: Let P be a polygon and F,  the corresponding polygonal
foliation. Let H(F, ») be the homothecy subgroup formed by
those 7}, such that z ~» kz is an element of the holonomy of
the foliation ‘/7-":;, relative to the fibration defined by 7. Then,
the polygon P is reasonable if and only if the intersection of H(F,, )
with H,_,, the group of automorphisms of the vector field X, , is
trivial.

Non reasonable case. Let H) be the intersection of the homothecy sub-
groups H,_; and H(F, ). Consider the action

(12) C? x Hy 3 (21, 22), T)) ~ Ti(21, 22)

and let C3 be the quotient of C? by this action. This quotient is a
(complex) ruled surface with an isolated singularity. We denote the
natural projeciton as IT, : C* — C3. The foliation F,  defines
a foliation on C?, which we denote }/"CL\A Due to the fact that H,
contains only automorphisms of the holomorphic vector field X, »,
the foliation F, ) o defines a real foliation on C3, which we denote

—_—

fa,)\,O-

Corollary 7. Let P be a non reasonable polygon. Then for every generic leaf
L € F, \ there exists a direction 0 € R/2nZ such that the foliation F, x| ¢
is holomorphically conjugated to the geodesic foliation defined by the direc-
tion 0 on the translation surface S(P). Furthermore, for every ¢ € R/2n’Z
and
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p € R, amw . s holomorphically conjugated to the geodesic folia-
tion defined by the direction 0 + (v — 1)6’ on S(P).

I want to thank D. CERVEAU and N. GARCIA COLIN for their
generous support.
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