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This paper examines the issue of bias that arises, in particular when applying a traditional continuous-time model identification technique to resonant systems. We propose a method to reduce the impact of this bias by pre-processing the data. This new method requires no knowledge of the noise colouring. An example is presented that shows the superior performance of the proposed method over that of a traditional method.

INTRODUCTION

Due to its simplicity and a reasonably fast rate of convergence, the least squares method of parameter estimation is widely adopted in system identification [START_REF] Hsia | System Identification -Least Squares Methods[END_REF][START_REF] Strejc | Least squares parameter estimation[END_REF][START_REF] Zhao | A new bias-compensating ls method for continuous system identification in the presence of coloured noise[END_REF]. However, it is well known [START_REF] Goodwin | Dynamic System Identification: Experiment Design and Data Analysis[END_REF][START_REF] Stoica | Bias correction in least-squares identification[END_REF] that the least squares parameter estimation method is generally biased and hence doesn't provide a consistent estimate of the parameters when the input and/or output signal is contaminated with noise.

A number of methods exist which compensate for the bias in the estimates [START_REF] Sagara | On-line modified least-squares parameter estimation of linear discrete dynamic systems[END_REF][START_REF] Stoica | Bias correction in least-squares identification[END_REF][START_REF] Sakrison | The use of stochastic approximation to solve the system identification problem[END_REF]. Early methods of bias compensation were primarily based on subtracting the bias from the least squares algorithm. [START_REF] Sakrison | The use of stochastic approximation to solve the system identification problem[END_REF] proposed a method based on stochastic approximation to correct a mean-square equation error criterion utilising knowledge of the input/output noise variances. A methodology similar to this was described in [START_REF] Furuta | On the identification of time-invariant discrete processes[END_REF] where the noise variances themselves were unknown but their ratio assumed known. In contrast to this a recursive scheme [START_REF] Sagara | On-line modified least-squares parameter estimation of linear discrete dynamic systems[END_REF] was developed such that when the output was corrupted by unknown additive noise a consistent estimator is obtained by recursively estimating the noise variance and utilising it in a recursive least squares algorithm. This scheme is commonly referred to as Compensated Least Squares. Asymptotic accuracy of this algorithm was comprehensively studied in [START_REF] Stoica | Bias correction in least-squares identification[END_REF].

A multi-step bias compensating least squares identification method for continuous time systems has also been developed [START_REF] Zhao | A new bias-compensating ls method for continuous system identification in the presence of coloured noise[END_REF]. In this method the plant model is augmented with a pre-filter, with distinct characteristic roots. Parameters are then estimated for the augmented system. A linear transformation is next performed to obtain the desired model parameters. Parameter estimation accuracy in this method depends significantly on a heuristic choice of the pre-filter. To avoid this somewhat arbitrary choice of pre-filter it was proposed [START_REF] Nguyen | A new bias-compensating least squares method for identification of stochastic linear systems in presence of coloured noise[END_REF] to utilise the filter provided by the classical generalised least squares method. Further to this it was established [START_REF] Stoica | Study of a bias-free least squares parameter estimator[END_REF] that these methods actually belong to a class of weighted instrumental variable estimators.

More recently an algorithm known as direct Bias-Eliminated Least-Squares (BELS) was proposed [START_REF] Zheng | On a least-squares-based algorithm for identification of stochastic linear systems[END_REF]. This method again is a multistep procedure which does not involve a pre-filtering step. Instead it estimates the cross covariance directly and uses this estimate to obtain an unbiased parameter estimate. Once again it has been shown that this algorithm is equivalent to a simple instrumental variables estimator with the instruments being delayed inputs [START_REF] Söderström | Comments on "on a least-squares-based algorithm for identification of stochastic linear systems[END_REF]. Further refinement of the BELS method, when applied specifically to ARMAX model structures, has been examined and the relationship with IV methods explored [START_REF] Zheng | A revisit to least-squares parameter estimation fo armax systems[END_REF].

It has been recently suggested that bias may be particulary bad when applied to resonant systems. From a practical point of view these particular systems are found in many applications. For example, many mechatronic systems exhibit resonant behaviour (see for example [START_REF] Akcay | Orthonormal basis functions for modelling continuous-time systems[END_REF], [START_REF] Moheimani | Experimental verification of the corrected transfer function of a piezoelevtric laminate beam[END_REF]). Control of such systems typically relies upon the availability of high precision models. Now, in principle, such models could be obtained from phenomenological considerations but usually this type of model is too complex to be accurately described using physical parameters. Hence, one needs to obtain reliable models using data collected from the system. Pre-filtering of data for use in parameter estimation is not a new concept as seen from the above discussion. It has also been used in the past to focus the parameter estimate over a desired bandwidth [START_REF] Ljung | System Identification: Theory for the User[END_REF]. This paper is aimed at reducing the bias associated with the estimation of continuous-time systems using least squares. In particular we develop this method for a specific set of systems, namely resonant systems. Bias is often analysed by looking at correlations between regressors and noise. However, a better idea may be to simply use the asymptotic expression for the least squares cost function. We explore this idea here. We further assume that a deterministic input is applied to the open loop system consisting of energy at specific frequencies only. In contrast to the previous mentioned methods we then develop a relatively simple method to reduce the bias based on pre-filtering which is based on knowledge of the input frequencies.

We use Monte Carlo simulations to highlight the effectiveness of the proposed filters on the least squares estimator and contrast the performance with a simple instrumental variables estimator.

The remainder of the paper is organised in the following way. In section 2 we outline a simple method of identifying the coefficients of differential equations using time domain data. Section 3 examines the potential source of bias in the estimate. In section 4 we show how the effect of bias can be reduced by appropriate pre-filtering. In section 5 we provide simulation results which show the effectiveness of the proposed filtering and demonstrate that the method presented here has performance comparable to a simple instrumental variables method. Finally in section 6 we draw conclusions.

IDENTIFICATION IN THE TIME DOMAIN

Consider a single-input single-output continuous-time linear time-invariant causal system whose input u(t) and output y(t) are related by a constant coefficient differential equation of order n,

y (n) (t) + a n-1 y (n-1) (t) + . . . + a 0 y (0) (t) = b m u (m) (t) + . . . + b 0 u (0) (t) (1) 
where x (i) (t) denotes the ith time-derivative of the continuous-time signal x(t).

Equation ( 1) can be written as

A(p)y(t) = B(p)u(t), (2) 
with

B(p) = b m p m + • • • + b 1 p + b 0 , A(p) = p n + a n-1 p n-1 + • • • + a 1 p + a 0 , n ≥ m,
where p is the differential operator, i.e. px(t) = dx(t) dt . The polynomials A(p) and B(p) are assumed to be relatively prime and the roots of the polynomial A(p) are assumed to have negative real parts, hence the system under study is asymptotically stable. It is also assumed that the continuous-time signals u(t) and y(t) are sampled at a regular time interval, T s . The sampled signals are denoted as {u(t k ); y(t k )}.

Furthermore the system is assumed to be subject to an arbitrary set of initial conditions

u 0 = u(0) u (1) (0) • • • u (m-1) (0) , y 0 = y(0) y (1) (0) • • • y (n-1) (0) .
The identification problem is to then estimate the coefficients of the differential equation model from N sampled measurements of the input and output,

Z N = {u(t k ); y(t k )} N k=1 .
The literature essentially describes two time-domain approaches to estimate a continuous-time model from discrete-time data. The first is to estimate from the sampled data, a discrete-time model and then convert it into a continuous-time model. The second consists of identifying directly a continuous-time model from the discrete-time data. In this paper we consider the second approach. We note that by taking this approach the differential equation model is not a linear combination of the sampled process input and output signals, i.e. it contains time-derivative terms which are not available as measurement data in most practical cases.

Various types of methods have been devised to deal with the need to reconstruct these time-derivatives. One early approach [START_REF] Young | In flight dynamic checkouta discussion[END_REF] is known as the state variable filter (SVF) method. Due to the simplicity of this method we utilise it here for the purpose of demonstrating the benefits of the proposed method of bias reduction.

The State Variable Filter Approach

Consider the Laplace transform of the differential equation as defined in (1),

A(s)Y (s) = B(s)U (s) + C(s), (3) 
with

C(s) = c n-1 s n-1 + • • • + c 1 s + c 0 (4)
where s represents the Laplace variable and Y (s) and U (s) are the Laplace transforms of y(t) and u(t) respectively. The coefficients c i depend on the unknown parameters a i and b i as well as the unknown initial conditions. Assume that a filter has a Laplace transform L(s) = 1/E(s) where all the zeros of E(s) lie in the left half plane. Applying this filter to both sides of (3) yields

A(s) E(s) Y (s) = B(s) E(s) U (s) + C(s) E(s) , (5) 
or

s n E(s) Y (s) + n-1 i=0 a i s i E(s) Y (s) = m i=0 b i s i E(s) U (s) + n-1 i=0 c i s i E(s) . ( 6 
)
The minimum-order SVF filter is typically chosen to have the following form

L(s) = 1 E(s) = p n s + p n n (7)
where p n is the breakpoint frequency. This latter quantity can be chosen in order to emphasize the frequency band of interest and it is advised, in general, to choose it slightly larger than the bandwidth of the system to be identified [START_REF] Young | In flight dynamic checkouta discussion[END_REF]. Let L k (s), for k = 0, 1, 2, . . . , n, be a set of filters defined as

L k (s) = s k E(s) = (p n ) n s k (s + p n ) n (8)
and l k (t) be their corresponding functions in the timedomain. By using the filters defined in (8), equation (6) can be rewritten as

L n (s) + a n-1 L n-1 (s) + . . . + a 0 L 0 (s) Y (s) = b m L m (s) + . . . + b 0 L 0 (s) U (s) + c n-1 L n-1 (s) + . . . + c 0 L 0 (s) . (9) 
In terms of time-domain signals, (9) can be written as

[L n y](t) + a n-1 [L n-1 y](t) + . . . + a 0 [L 0 y](t) = b m [L m u](t) + . . . + b 0 [L 0 u](t) +c n-1 l n-1 (t) + . . . + c 0 l 0 (t) (10) 
where

[L i y](t) = l i (t) * y(t) [L i u](t) = l i (t) * u(t)
and * denotes the convolution operator. The filter outputs [L i y] and [L i u] provide the time-derivatives of the inputs and outputs in the frequency band of interest. These may then be exploited for linear regression and other parameter estimation techniques.

At time-instant t = t k , equation ( 10) can be rewritten in standard linear regression form as

[L n y](t k ) = φ T (t k )θ (11) 
where

φ T (t k ) = -[L n-1 y](t k ) . . . -[L 0 y](t k ) [L m u](t k ) . . . [L 0 u](t k ) l n-1 (t k ) . . . l 0 (t k ) (12) θ = [a n-1 . . . a 0 b m . . . b 0 c n-1 . . . c 0 ] T . (13)
Now, from N samples of the input and output signals observed at discrete times t 1 , . . . , t N , the least-squares (LS)-based SVF estimates are given by

θN = N k=1 φ(t k )φ T (t k ) -1 N k=1 φ(t k ) [L n y](t k ).
It is also noted that the SVF technique can also be associated with a basic instrumental variable (IV) method when the output signal is contaminated with noise (Garnier et al., 2003b).

The SVF approach also makes it possible to estimate the initial condition terms c i along with the model parameters. However, treating them as an additional set of unknowns does add complexity to the parameter estimation. From (10), it can be seen that although the initial condition terms do not vanish, the impulse responses of the low-pass filters decay exponentially and hence become insignificant quite quickly. Thus, if the SVF-based algorithm is used with a large observation time T , the terms related to the initial conditions may be neglected after a time T 0 = k 0 T s . The parameter estimation algorithm is then applied over [T 0 , T ], where T 0 is chosen comparable to the settling time of the filter (7). The number of parameters to be estimated can, in this way, be reduced substantially which is advantageous with regard to computation effort and numerical properties.

Since only the sampled versions of the continuoustime signals are available, the output of the statevariable filters is computed from a discrete approximation. This problem is well known and should be treated in a proper manner since errors generated by the digital implementation can have a significant influence on the quality of the estimated model [START_REF] Chou | Continuous-time identification of SISO systems using Laguerre functions[END_REF]. Using a control canonical form, the state-space representations of the continuous-time SVF filter can be either integrated by the Runge-Kutta method or discretized by using an appropriate method provided the intersample nature of the continuous-time input signal is known.

BIAS IN THE LEAST SQUARES ESTIMATOR

Typically the issue of bias in the least squares estimator is examined through the correlations between the regressors and the noise. Here, however, we take a different tact and use the asymptotic expression for the least squares estimator to observe the impact of bias. To set up the appropriate formalism,, we assume the system is described by the model,

y(t) = G o (p)u(t) + H o (p)w(t) (14) 
where G o (p), H o (p) are linear transfer functions, w(t) white noise and u(t) some input.

Next, we parameterise G o (p) by the linear fractional model,

G o (p) = B(p)/E(p) A(p)/E(p) . ( 15 
)
The least squares cost function can then be written as

J(θ) = 1 N N k=1 Â(p) E(p) y(t k ) - B (p) E(p) u(t k ) 2 (16) 
where u(t k ) and y(t k ) are the sampled input and output signals respectively.

From Parseval's Theorem, the cost function in ( 16) converges asymptotically to

J(θ) = π -π Â(jω) E(jω) Y (ω) - B(jω) E(jω) U (ω) 2 dω .
(17) Substituting ( 14) into (17) we have,

J(θ) = π -π Â(jω) E(jω) [G o (jω)U (ω) + H o (jω)W (ω)] - B(jω) E(jω) U (ω) 2 dω . ( 18 
)
We assume the system operates in open loop. Hence U (ω) and W (ω) will be orthogonal. This allows us to rewrite (18) as

J(θ) = π -π Â(jω) E(jω) G o (jω) - B(jω) E(jω) 2 φ uu (ω)dω + d n π -π Â(jω) E(jω) H o (jω) 2 dω (19)
where φ uu (ω) is the input spectral density and d n is the driving white noise spectral density.

It can be clearly seen from ( 19) that the second term is a potential source of bias for the least squares estimator. To examine this further with the view of treating this problem we proceed as follows. Firstly, we expand the second term in (19) as,

Â(jω) E(jω) H o (jω) = 1 + Λ(jω) . (20) 
Equation ( 19) then becomes,

J(θ) = π -π Â(jω) E(jω) G o (jω) - B(jω) E(jω) 2 φ uu (ω)dω + 2πd n + d n π -π Λ(jω) 2 dω (21)
or more simply,

J(θ) = π -π Â(jω) E(jω) G o (jω) - B(jω) E(jω) 2 φ uu (ω)dω + 2πd n + d n π -π Â(jω) E(jω) H o (jω) -1 2 dω = π -π Â(jω) E(jω) 2 G o (jω) - B(jω) Â(jω) 2 φ uu (ω)dω + 2πd n + d n π -π Â(jω) E(jω) 2 H o (jω) - E(jω) Â(jω) 2 dω. ( 22 
)
It is then obvious that if we can choose

E(s) Â(s) = H o (s) , ( 23 
)
then irrespective of the presence of noise, the cost function will minimise a weighted error between G o and the parameter estimate B Â .

The presence of the  E 2 in this weighting is interesting.

Our principle concern here will be with resonant systems. Therefore the estimate B Â might take the form,

Ĝ(s) = n i=1 2ξ i ω i s s 2 + 2ξ i ω i s + ω 2 i . (24) 
A key point to note here is that if

 ≃ A o , then Â(s) = n i=1 s 2 + 2ξ i ω i s + ω 2 i . (25) 
Now obviously, this is very small at the resonant peaks. Therefore if undermodelling exists, the fit will be quite insensitive to the model at these resonant peaks.

PRE-PROCESSING TO MITIGATE BIAS ERRORS

The second term on the right hand side of ( 19) indicates that if we could make  E ≃ 0, then we would remove the noise term related to the colouring of the noise and hence eliminate bias. When identifying a system in practice, a common situation is that φ uu (ω) will be 'periodic' or composed of a multi-sine test signal. In this case, there is no penalty in eliminating the noise that is not "near" an input frequency. In particular, we propose to pre-filter y(t) and u(t) with bandpass filters having their centre frequencies at the input test signal frequencies.

Say that the input frequencies are f 1 , ...., f m (rad/sec). Then a suitable choice for the pre-filter would be,

F (s) = m i=1 2 ξi f i s s 2 + 2 ξi f i s + f 2 i . ( 26 
)
We next examine different aspects of the proposed pre-filter in a heuristic sense.

The transient time of the filterF (s) is of the order of 1/ ξ. Hence, (i) We want ξ 'large' to minimise the filter transient, but (ii) The noise that 'leaks' through the filter will be of the order of ξ × noise spectral density at f i . This suggests we should set ξ as small as possible. (iii) Obviously the data length sets a lower limit on ξ in view of point (i).

Application of the Pre-filter

We next examine the effect of pre-filtering the data with the proposed filters on the cost of the least squares estimator.

Filtering the input/output data with the pre-filter given in ( 26), allows us to approximate the cost function ( 22) as follows,

J ≃ m i=1 Âi E i 2 G oi - Bi Âi 2 P i + Âi E i 2 ξi 2 S i (27 
) where S i is the noise spectral density in the vicinity of f i and P i is the input energy at f i .

As expected, we see that the bias is only a function of the 'system, model and noise' at the test signal frequencies. Indeed, we see that all we need do is to ensure that P i >> ξi 2 S i to reduce bias due to noise.

Rapprochement with Frequency Domain

Of course, the above idea finds a direct link to the frequency domain. Indeed, Fourier Analysis simply correlates {y k } and {u k } with cos f i t and sin f i t. This is basically what is achieved by the filter (26). Hence, this work simply implies we can capture one of the advantages of the frequency domain when working in the time domain.

SIMULATION EXAMPLES

In this section we verify the results from section 4.1. Specifically we show that the proposed method, although simple, works well to reduce the effect of bias on the estimate obtained using a least squares estimator. In particular we use the standard least squares state variable filter (lssvf) method found in the The CONtinuous-Time System IDentification (CONTSID) toolbox (Garnier et al., 2003a). We also show that the results obtained are, at least, as good as those obtained using an instrumental variables estimator.

We consider the true plant to be

G o = 0.4s s 2 + 0.4s + 4 , (28) 
and excite the system using a multisine signal with each frequency component having the the same amplitude. The chosen frequencies for the simulation are ω = [0.5, 1, 2, 3] rad/sec. The sampling period was 0.005 seconds. Monte Carlo studies were conducted where each simulation was repeated 2000 times. The results were averaged and plotted. The signal to noise ratio (SNR) for the simulations was -20dB/decade. The effect of varying the damping (the quality factor) of the bandpass filters on the estimate was also examined.

We perform several sets of simulations. Firstly, we estimate the parameters using the lssvf method when no noise is present. We then carry out a Monte Carlo study using the lssvf method but in the presence of the noise as specified above. Finally, for different values of damping (ξ ∈ [0.001, 0.01, 0.1, 1]) in the bandpass pre-filters (given by equation ( 26) ) we observe the effect on the bias. Note that as we have 4 test frequencies we also have 4 bandpass filters. Figure 1 shows the bode plot for the case where the damping, ξ = 0.001.

We first observe from Table 1 that when noise is absent (lssvf (no noise)) then the parameter estimates are an accurate representation of the actual system parameters. With output noise present it is seen from Table 1 and the bode plots in Figures 2 5 that the lssvf method performs poorly. By pre-filtering the data it is observed that the estimates are significantly improved.

In particular with the small value of damping (ξ = 0.001) the estimates are as good as those obtained when no noise is present. This is shown in the both the results in Table 1 and Figures 2 5. For completeness the standard deviation for the parameter estimates are given in Table 2. 

CONCLUSION

Using the asymptotic expressions for the least squares cost function we can see that the source of the bias in a least squares estimator is due to the colouring of the noise. In this paper we have shown that, when the input consists of multisines, it is possible to significantly reduce the bias by simply pre-filtering the data. Simulations studies have shown the method to work well and produce results that are comparable to those obtained using instrumental variables.
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 1 Fig. 1. Bode Plot of Filter F(s), with ξ = 0.001, centred around the test frequencies.
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 2 Fig. 2. Bode Plot of systems for N=2000, ξ = 0.001.
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 345 Fig. 3. Bode Plot of systems for N=2000, ξ = 0.01.

Table 1 .

 1 Mean value of 2000 estimates

	Method		ξ	b 1	bo	a 1	ao
	True			0.4	0	0.4	4
	lssvf (no noise)			0.400	0	0.4	4
	lssvf			0.246 -0.002 0.007 3.923
	lssvf (pre-filtered)	0.001 0.398 -0.001 0.393 3.983
	lssvf (pre-filtered)	0.01	0.375 -0.013 0.339 3.853
	lssvf (pre-filtered)	0.1	0.299 -0.051 0.155 3.603
	lssvf (pre-filtered)	1	0.254 -0.107 0.076 3.314
	Table 2. Standard Deviation of 2000 esti-
				mates		
	Method	ξ		b 1	bo	a 1	ao
	lssvf	0.001	0.044	0.079 0.009 0.121
	lssvf filtered	0.001	0.052	0.075 0.054 0.086
	lssvf filtered	0.01	0.058	0.083 0.055 0.097
	lssvf filtered	0.1	0.0486 0.074 0.026 0.099
	lssvf filtered	1		0.038	0.064 0.013 0.082