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On the solutions of a boundary value

problem arising in free convection with

prescribed heat flux

Mohamed AÏBOUDI and Bernard BRIGHI∗

Abstract

For given a ∈ R, c < 0, we are concerned with the solution fb of the differential
equation f ′′′ + ff ′′ + g(f ′) = 0, satisfying the initial conditions f(0) = a, f ′(0) = b,
f ′′(0) = c < 0, where g is some nonnegative subquadratic locally Lipschitz function.
It is proven that there exists b∗ > 0 such that fb exists on [0,+∞) and is such that
f ′

b(t) → 0 as t → +∞, if and only if b ≥ b∗. This allows to answer questions about
existence, uniqueness and boundedness of solutions to a boundary value problem
arising in fluid mechanics, and especially in boundary layer theory.

AMS 2000 Subject Classification: 34B15; 34C11; 76D10.

Key words and phrases: Boundary layer, similarity solution, third order nonlin-
ear differential equation, boundary value problem, fluid mechanics.

1 Introduction.

We consider the similarity third order differential equation

f ′′′ + ff ′′ + g(f ′) = 0 (1)

on [0, +∞), with the boundary conditions

f(0) = a, (2)

f ′′(0) = c < 0, (3)

f ′(+∞) := lim
t→+∞

f ′(t) = 0, (4)

where the function g : R → R is assumed to be locally Lipschitz.

∗ Corresponding author.
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This boundary value problem with g(x) = βx2 arises in fluid mechanics, when looking
for similarity solutions in free convection boundary-layer flows adjacent to permeable
surfaces in porous media. The initial condition (3) means that heat flux is prescribed on
the surface. In other situations, the surface temperature is prescribed, and in this case,
condition (3) has to be replaced by f ′(0) = b > 0. See for example [9] and [10] for details
on the derivation of these problems, in the context of the boundary layer theory.

For g(x) = βx2, mathematical analysis of the problem with prescribed surface tem-
perature is done in [2], [3], [8], [11], [12] and [14]. See also [7] and [4] for general function
g. With prescribed surface heat flux, see [5] and [15].

In this paper, we are interested in the boundary value problem (1)-(4), with 0 ≤
g(x) ≤ x2. The particular case where g(x) = βx2 with 0 < β < 1 corresponds to a
question, which was not solved in [5], and which has obtained an answer in [15]. The
method used by J.-C. Tsai and C.-A. Wang is based on the fact that g is homogeneous of
degree 2, and on the study of a plane vector field associated to the differential equation (1).
Here, we propose to revisit this question in a direct way, and, as far as possible, to prove
results with g such that 0 ≤ g(x) ≤ x2. We will see that, under this hypothesis, we are
able to get existence of solutions, but that we will need to assume that g(x) = βx2 with
0 < β < 1 to get more precise results (as uniqueness of the bounded solution). However,
we think that this latter assumption is not necessary. In fact, for the boundary value
problem involving (1) and the boundary conditions corresponding to prescribed surface
temperature, it is possible to prove that the bounded solution is unique, only by assuming
that 0 ≤ g(x) ≤ x2, see [4].

2 Preliminary remarks.

The method to solve the boundary value problem (1)-(4) is shooting. For that, let fb

denote the solution of the initial value problem :

(Pg;a,b,c)



















f ′′′ + ff ′′ + g(f ′) = 0,

f(0) = a,

f ′(0) = b,

f ′′(0) = c,

and let [0, Tb) be the right maximal interval of existence of fb. To obtain a solution of
the boundary value problem (1)-(4) amounts to find a value of b such that Tb = +∞ and
f ′

b(t) → 0 as t → +∞.
The following useful identities are obtained, by multiplying equation (1) by 1, fb and

t respectively, and integrating by parts. For all t ∈ [0, Tb), we have :

f ′′
b (t) − c + fb(t)f

′
b(t) − ab =

∫ t

0

(

f ′
b(s)

2 − g(f ′
b(s))

)

ds (5)

fb(t)f
′′
b (t) − ac − 1

2
f ′

b(t)
2 +

1

2
b2 + fb(t)

2f ′
b(t)− a2b =

∫ t

0

fb(s)
(

2f ′
b(s)

2 − g(f ′
b(s))

)

ds (6)
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and

tf ′′
b (t) − f ′

b(t) + b + tfb(t)f
′
b(t) −

1

2
fb(t)

2 +
1

2
a2 =

∫ t

0

s
(

f ′
b(s)

2 − g(f ′
b(s))

)

ds. (7)

We now give some lemmas, that we will use in the next sections.

Lemma 2.1 . — If Tb < +∞, then f ′′
b (t) and f ′

b(t) are unbounded as t → Tb.

Proof. — First, if Tb is finite, then |fb(t)| + |f ′
b(t)| + |f ′′

b (t)| is unbounded as t → Tb.
Then, necessarily |f ′′

b (t)| is unbounded as t → Tb, and using (5) we see that |f ′
b(t)| is also

unbounded as t → Tb.

Remark 2.2 . — In general, fb has no reason to be unbounded ; for example f :
t 7→

√
1 − t is the solution of (Pg;1,−1/2,−1/4), with g(x) = x2 (1 − 12x3), on the maximal

interval [0, 1) and f ′′(t) → −∞, f ′(t) → −∞ and f(t) → 0 as t → 1.

Lemma 2.3 . — If g(x) > 0 for x 6= 0 and if c < 0, then for any b ∈ R we have f ′′
b < 0

on [0, Tb), i.e. fb is concave.

Proof. — This follows from the relation
(

f ′′eF
)′

= −g(f ′)eF , where F is any primitive
function of f on [0, Tb).

Remark 2.4 . — It is possible to show, under the assumptions of the previous lemma,
that if Tb = +∞ then f ′

b > 0. Indeed, on the contrary, there would exists t0 > 0 such
that fb and f ′

b are negative on (t0, +∞) and therefore fb would be a negative concave
subsolution of the Blasius equation (i.e. satisfying f ′′′ + ff ′′ ≤ 0) on (t0, +∞), and using
similar arguments as the ones in the proofs of Proposition 2.1 and 2.2 of [1], we would
obtain a contradiction. See also [4].

Lemma 2.5 . — Let us assume that 0 < g(x) ≤ 2x2 for x 6= 0, a < 0 and c < 0. If

b > 0 is large enough, then there exists sb ∈ (0, Tb) such that fb(sb) = 0 and f ′
b(sb) > 3b

4
.

Proof. — Since f ′′
b (0) = c < 0, we deduce from Lemma 2.3 that f ′′

b < 0 on [0, Tb). Let
us assume that there exists t ∈ (0, Tb) such that fb(t) ≤ 0 and f ′

b(t) = 3b
4
. Then, using

(6), we have

−ac +
7b2

32
− a2b = −fb(t)f

′′
b (t) − fb(t)

2f ′
b(t) +

∫ t

0

fb(s)
(

2f ′
b(s)

2 − g(f ′
b(s))

)

ds ≤ 0

and then b is smaller than the positive root of the polynomial 7X2 − 32a2X − 32ac. This
completes the proof.
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3 The solutions of (Pg;a,b,c) when g is nonnegative and

subquadratic.

In this section, we will assume that c < 0 and that g : R → R is locally Lipschitz and
such that 0 < g(x) ≤ x2 for all x 6= 0. Let us notice that, by continuity, we have g(0) = 0.

By Lemma 2.3, the function fb is concave on [0, Tb), for all b ∈ R. We will distinguish
the following two types of behavior.

• Type (I) : f ′
b ≥ 0 on [0, Tb).

• Type (II) : there exists t0 ∈ [0, Tb) such that f ′
b < 0 on (t0, Tb).

We then define the sets

B1 = {b ∈ R ; fb is of type (I)} and B2 = {b ∈ R ; fb is of type (II)}.

Clearly, we have B1 ∩ B2 = ∅ and B1 ∪ B2 = R. Moreover, B1 is a closed set (and hence
B2 is an open set). In fact, if bn ∈ B1 is a sequence converging to some b∗ ∈ R, and
if t ∈ [0, Tb∗), then, from the lower semicontinuity of the mapping b 7→ Tb, there exists
n0 ∈ N such that for n ≥ n0 we have Tbn

> t. Now, the continuity of (b, t) 7→ f ′
b(t)

(defined for b ∈ R and t ∈ [0, Tb)), allows to write

fb∗(t) = lim
n→+∞

fbn
(t) ≥ 0,

and thus b∗ ∈ B1.
On the other hand, it is clear that (−∞, 0] ⊂ B2, or equivalently that B1 ⊂ (0, +∞).

A priori, nothing indicates that B1 6= ∅.

Remark 3.1 . — It follows from Remark 2.4, that, if b ∈ B2, then Tb < +∞.

The following result gives informations about fb for b ∈ B1.

Proposition 3.2 . — If b ∈ B1, then Tb = +∞, f ′
b > 0, f ′

b(t) → 0 as t → +∞, and there

exists t0 ≥ 0 such that fb(t) > 0 for all t > t0. If, in addition, fb is bounded, then there

exists a positive constant Ab such that :

fb(t) = µb − Abe
−µbt(1+o(1)) (8)

f ′
b(t) ∼ µb(µb − fb(t)) and f ′′

b (t) ∼ −µbf
′
b(t) (9)

as t → +∞, where µb > 0 is the limit of fb(t) as t → +∞.

Proof. — Let b ∈ B1. Since f ′′
b < 0 on [0, Tb), then f ′

b(t) has a nonnegative limit ℓ as
t → Tb and thanks to Lemma 2.1, it follows that Tb = +∞. Now, we claim that ℓ = 01.

1 See Lemma 3 of [7] for a general proof of the fact that g(ℓ) = 0.
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In fact, if ℓ > 0, then we have f ′
b(t) ∼ ℓ and fb(t) ∼ ℓt as t → +∞. Using (5), since

g(l) > 0, we get

f ′′
b (t) − c − ab = −fb(t)f

′
b(t) +

∫ t

0

f ′
b(s)

2ds −
∫ t

0

g(f ′
b(s))ds

= −ℓ2t(1 + o(1)) + ℓ2t(1 + o(1)) − g(ℓ)t(1 + o(1))

= −g(ℓ)t + o(t)

which implies that f ′′
b (t) → −∞ as t → +∞. This is a contradiction with the fact that

f ′
b(t) has a finite limit as t → +∞. Therefore, ℓ = 0, and the positivity of f ′

b then follows
from the fact that f ′′

b < 0.
Now, if a ≥ 0 then fb is positive, and if a < 0 and fb(t) < 0 for all t ≥ 0 then we have

∀t ≥ 0, f ′′′
b = −fbf

′′
b − g(f ′

b) < 0

whence we deduce that f ′
b is concave. This contradicts the fact that f ′

b is positive and
tends to 0 at infinity. Therefore, there exists t0 ≥ 0 such that fb(t) > 0 for all t > t0.

Finally, if fb is bounded, then we can integrate (1) between t and +∞ ; this gives :

f ′′
b (t) + fb(t)f

′
b(t) =

∫ +∞

t

(

g(f ′
b(s)) − f ′

b(s)
2
)

ds

Together with the assumptions about g and the fact that f ′
b is positive and decreasing,

we get :

0 ≥ f ′′
b (t)

f ′
b(t)

+ fb(t) ≥ − 1

f ′
b(t)

∫ +∞

t

f ′
b(s)

2ds ≥ −
∫ +∞

t

f ′
b(s)ds = fb(t) − µb.

We immediatly deduce the second relation of (9) ; the first one follows from the L’Hôpital’s
rule, and (8) by an integration.

Proposition 3.3 . — Let δ ∈ (0, 1) and let us assume that 0 < g(x) ≤ (1 − δ)x2 for all

x 6= 0. There exists b0 > 0 such that [b0, +∞) ⊂ B1.

Proof. — As previously, let fb denote the solution of the initial value problem (Pg;a,b,c).
Taking into account Lemma 2.5 and Proposition 3.2, we deduce that, for b large enough,
there exists tb ∈ (0, Tb) such that f ′(tb) = b

2
and fb(tb) ≥ 0. Using (5) and (7), we can

write :

tbf
′′
b (tb) + tbfb(tb)f

′
b(tb) − (c + ab)tb =

∫ tb

0

tb
(

f ′
b(s)

2 − g(f ′
b(s))

)

ds,

tbf
′′
b (tb) +

b

2
+ tbfb(tb)f

′
b(tb) −

1

2
fb(tb)

2 +
1

2
a2 =

∫ tb

0

s
(

f ′
b(s)

2 − g(f ′
b(s))

)

ds.
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By substraction, we obtain

−(c + ab)tb −
b

2
+

1

2
fb(tb)

2 − 1

2
a2 =

∫ tb

0

(tb − s)
(

f ′
b(s)

2 − g(f ′
b(s))

)

ds ≥ 0.

Whence, together with the fact that 0 ≤ fb(tb) ≤ btb + a, we get

a2 + b + 2(c + ab)tb ≤ fb(tb)
2 ≤ (btb + a)2

and hence b2t2b − 2ctb − b ≥ 0. It follows that

tb ≥
c +

√
c2 + b3

b2
=

b√
c2 + b3 − c

.

Then, if f ′
b(t) = 0, we have t > tb and, using (5) and the assumptions about g, we have

0 > f ′′
b (t) = c + ab +

∫ t

0

(

f ′
b(s)

2 − g(f ′
b(s))

)

ds

≥ c + ab + δ

∫ t

0

f ′
b(s)

2ds ≥ c + ab + δ

∫ tb

0

f ′
b(s)

2ds

≥ c + ab +
δ

4
tbb

2 ≥ c + ab +
δ

4

b3

√
c2 + b3 − c

.

It follows that, if b is large enough, then f ′
b does not vanish, and hence b ∈ B1.

Remark 3.4 . — If we only suppose that g(x) ≤ x2, then the previous result may
not hold ; for example, if g(x) = x2 and a ≤ 0, c < 0, then B1 = ∅. Indeed, if there
exists b ∈ B1, then b > 0, and identity (5) gives f ′′

b (t) + fb(t)f
′
b(t) = c + ab for all t ∈ R.

Integrating, we obtain :

∀t ≥ 0, f ′
b(t) +

1

2
fb(t)

2 = b +
1

2
a2 + (c + ab)t

and we see that the right hand side tends to −∞ as t → +∞, whereas the left one is
positive. We have a contradiction.

Proposition 3.5 . — If b is a point of the boundary of B1, then fb is bounded.

Proof. — Since b is on the boundary of B1 = R \B2, there exists a sequence of positive
real numbers bn ∈ B2 converging to b. Let us set fn = fbn

and Tn = Tbn
. Since bn ∈ B2,

there exists tn ∈ (0, Tn) such that f ′
n(tn) = 0.
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First, we remark that tn → +∞ as n → +∞. On the contrary, there would exist an
increasing subsequence tnk

converging to some t < +∞. Because of the lower semiconti-
nuity of the mapping b 7→ Tb, for k large enough, we should have Tnk

> t and we could
write

0 = lim
k→+∞

f ′
nk

(tnk
) ≥ lim

k→+∞
f ′

nk
(t) = f ′

b(t)

and get a contradiction.
Next, using (7) for t = tn yields

b − 1

2

(

fn(tn)2 − a2
)

= −tnf ′′
n(t) +

∫ tn

0

s
(

f ′
n(s)2 − g(f ′

n(s)
)

ds ≥ 0

and hence fn(tn)2 ≤ 2b + a2. Since f ′
n is positive on [0, tn), we obtain

∀s ∈ [0, tn], fn(s) ≤
√

2b + a2.

To conclude, we fix t ∈ [0, +∞). For n large enough, we have tn > t and

fb(t) = lim
n→+∞

fn(t) ≤
√

2b + a2.

This completes the proof.

4 The boundary value problem (1)-(4) when g(x) = βx2

with 0 < β < 1.

Here, we consider the case where g(x) = βx2 with 0 < β < 1. Our main result is the
following.

Theorem 4.1 . — Let a ∈ R and c < 0. If g(x) = βx2 with 0 < β < 1, then there exists

b∗ > 0 such that B1 = [b∗, +∞). Moreover, if b > b∗, then fb is unbounded.

Proof. — Taking into account Propositions 3.3 and 3.5, it is sufficient to prove that
there is at most one b > 0 such that fb is bounded.

First, let us assume that for some b > 0, the function f = fb is bounded. Let µ > 0
be the limit of f(t) as t → +∞. Since f is concave and increasing, then we can define a
function v : (0, 1] → R, such that

∀t ≥ 0, v

(

1

b2
f ′(t)2

)

=
1√
b
f(t).

By setting y =
1

b2
f ′(t)2, we get

f(t) =
√

b v(y), f ′(t) = b
√

y, f ′′(t) =
b3/2

2v′(y)
and f ′′′(t) = −b2v′′(y)

√
y

2v′(y)3
. (10)
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Then, using (1) we obtain

∀y ∈ (0, 1], v′′(y) =
v(y)v′(y)2

√
y

+ 2β
√

y v′(y)3. (11)

Moreover v is decreasing on (0, 1], and we have

v(1) =
a√
b
, v′(1) =

b3/2

2c
and lim

y→0
v(y) =

µ√
b
. (12)

In addition, using (9), it holds

v′(y) ∼ −
√

b

2µ
√

y
as y → 0. (13)

Now, let us assume that there are b1 > b2 such that the functions f1 = fb1
and f2 = fb2

are bounded. For i = 1, 2, let µi be the limit of fi(t) as t → +∞. Let vi : (0, 1] → R be
the corresponding solutions of (11).

If w = v1 − v2, then w is defined on (0, 1] and we have

w(1) =
a√
b1

− a√
b2

, w′(1) =
1

2c

(

b
3/2
1 − b

3/2
2

)

< 0 and lim
y→0

w(y) =
µ1√
b1

− µ2√
b2

. (14)

Moreover, w cannot have neither positive maximum, or negative minimum in (0, 1). In-
deed, if x ∈ (0, 1) is such that w(x) > 0, w′(x) = 0, then using (11) we have

w′′(x) =
v′
1(x)2

√
x

w(x) > 0.

The same arguments show that w has no negative minimum in (0, 1).
We now distinguish between the cases a ≤ 0 and a > 0.

• If a ≤ 0, then w(1) ≥ 0. Since w cannot have a positive maximum in (0, 1) and
w′(1) < 0, it follows that w(0) > 0. Thus, µ1√

b1
> µ2√

b2
and hence, using (13), we get

w′(y) ∼ − 1

2
√

y

(√
b1

µ1
−

√
b2

µ2

)

as y → 0.

Therefore, w′(y) → +∞ as y → 0 and this gives a contradiction since, on the
contrary, w should have a positive maximum in (0, 1).

• If a > 0, then w(1) < 0. Using the fact that w cannot have neither positive
maximum, or negative minimum in (0, 1) and the same arguments as previously, we
obtain that necessarily we have w′ ≤ 0 and w(1) < w(0) ≤ 0.
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Now, for i = 1, 2, let us set Vi = 1
v′i

and W = V1 −V2. First, thanks to (13), we have

W (y) → 0 as y → 0. Next, using (11), we obtain

∀y ∈ (0, 1], W ′(y) = − v′′
1(y)

v′
1(y)2

+
v′′
2(y)

v′
2(y)2

= −w(y)√
y

− 2β
√

y w′(y)

≤ −w(y)√
y

− 2w′(y)
√

y = −2
(√

yw(y)
)′

.

Integrating between 0 and 1, we get W (1) ≤ −2w(1). Thus,

2c

(

1

b
3/2
1

− 1

b
3/2
2

)

≤ −2a

(

1√
b1

− 1√
b2

)

.

Hence

c

(

1

b1

+
1√
b1b2

+
1

b2

)

≥ −a

and
c

b1

+ a ≥ −c

(

1√
b1b2

+
1

b2

)

> 0.

This is contradiction, since thanks to (5) written for f1 and t → +∞ we must have
c + ab1 < 0.

The proof is complete.

Remark 4.2 . — If b > b∗, then there exists a positive constant Ab such that

fb(t) ∼ Abt
1

1+β as t → +∞.

See [6] and [11].

Corollary 4.3 . — Let a ∈ R and c < 0. If g(x) = βx2 with 0 < β < 1, then the

boundary value problem (1)-(4) has exactly one bounded solution, and infinitely many

unbounded solutions.

Proof. — This follows immediatly from the previous theorem.

Corollary 4.4 . — Let a ∈ R and m ∈
(

−1,−1
2

)

. The boundary value problem

{

f ′′′ + (m + 2)ff ′′ − (2m + 1)f ′2 = 0 on [0, +∞)

f(0) = a, f ′′(0) = −1, f ′(t) → 0 as t → +∞,
(15)

has exactly one bounded solution, and infinitely many unbounded solutions.
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Proof. — By setting
1√

m + 2
f̃(t) = f

(

t√
m + 2

)

we see that f is a solution of the boundary value problem (15) if and only if f̃ is a solution
of the boundary value problem (1)-(4) with g(x) = βx2 and β = −2m+1

m+2
. The proof then

follows from Corollary 4.3.

5 Conclusion.

The result of Theorem 4.1 is obtained by using strongly the fact that g is homogeneous of
degree 2, contrary to the results of sections 2 and 3, where only the subquadratic nature
of g is used. Nevertheless, we conjecture that the uniqueness of the bounded solution
should hold under the hypothesis 0 ≤ g(x) ≤ x2. In fact, the boundary value problem

{

f ′′′ + ff ′′ + g(f ′) = 0 on [0, +∞)

f(0) = a, f ′(0) = b > 0, f ′(t) → 0 as t → +∞,

has at most one bounded concave solution, if 0 ≤ g(x) ≤ x2, see [4], and this result is one
of the reasons for which we hope that this conjecture holds.

On the other hand, let us notice that we recover the results of J.-C. Tsai and C.-A.
Wang [15], in a totally different way, and perhaps more directly.
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