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For given a ∈ R, c < 0, we are concerned with the solution f b of the differential equation

where g is some nonnegative subquadratic locally Lipschitz function. It is proven that there exists b * > 0 such that f b exists on [0, +∞) and is such that

This allows to answer questions about existence, uniqueness and boundedness of solutions to a boundary value problem arising in fluid mechanics, and especially in boundary layer theory.

1 Introduction.

We consider the similarity third order differential equation

f ′′′ + f f ′′ + g(f ′ ) = 0 (1) 
on [0, +∞), with the boundary conditions

f (0) = a, (2) 
f ′′ (0) = c < 0, ( 3 
) f ′ (+∞) := lim t→+∞ f ′ (t) = 0, (4) 
where the function g : R → R is assumed to be locally Lipschitz.

2 Preliminary remarks.

The method to solve the boundary value problem (1)-( 4) is shooting. For that, let f b denote the solution of the initial value problem :

(P g;a,b,c )

         f ′′′ + f f ′′ + g(f ′ ) = 0, f (0) = a, f ′ (0) = b, f ′′ (0) = c,
and let [0, T b ) be the right maximal interval of existence of f b . To obtain a solution of the boundary value problem ( 1)-( 4) amounts to find a value of b such that T b = +∞ and f ′ b (t) → 0 as t → +∞.

The following useful identities are obtained, by multiplying equation ( 1) by 1, f b and t respectively, and integrating by parts. For all t ∈ [0, T b ), we have :

f ′′ b (t) -c + f b (t)f ′ b (t) -ab = t 0 f ′ b (s) 2 -g(f ′ b (s)) ds (5) 
f b (t)f ′′ b (t) -ac - 1 2 f ′ b (t) 2 + 1 2 b 2 + f b (t) 2 f ′ b (t) -a 2 b = t 0 f b (s) 2f ′ b (s) 2 -g(f ′ b (s)) ds (6)
and

tf ′′ b (t) -f ′ b (t) + b + tf b (t)f ′ b (t) - 1 2 f b (t) 2 + 1 2 a 2 = t 0 s f ′ b (s) 2 -g(f ′ b (s)) ds. (7) 
We now give some lemmas, that we will use in the next sections.

Lemma 2.1 . -If T b < +∞, then f ′′ b (t) and f ′ b (t) are unbounded as t → T b . Proof. -First, if T b is finite, then |f b (t)| + |f ′ b (t)| + |f ′′ b (t)| is unbounded as t → T b . Then, necessarily |f ′′ b (t)
| is unbounded as t → T b , and using [START_REF] Brighi | On similarity solutions for boundary layer flows with prescribed heat flux[END_REF] we see that

|f ′ b (t)| is also unbounded as t → T b . Remark 2.2 . -In general, f b has no reason to be unbounded ; for example f : t → √ 1 -t is the solution of (P g;1,-1/2,-1/4 ), with g(x) = x 2 (1 -12x 3 ), on the maximal interval [0, 1) and f ′′ (t) → -∞, f ′ (t) → -∞ and f (t) → 0 as t → 1. Lemma 2.3 . -If g(x) > 0 for x = 0 and if c < 0, then for any b ∈ R we have f ′′ b < 0 on [0, T b ), i.e. f b is concave. Proof. -This follows from the relation f ′′ e F ′ = -g(f ′ )e F , where F is any primitive function of f on [0, T b ). Remark 2.4 .
-It is possible to show, under the assumptions of the previous lemma, that if T b = +∞ then f ′ b > 0. Indeed, on the contrary, there would exists t 0 > 0 such that f b and f ′ b are negative on (t 0 , +∞) and therefore f b would be a negative concave subsolution of the Blasius equation (i.e. satisfying f ′′′ + f f ′′ ≤ 0) on (t 0 , +∞), and using similar arguments as the ones in the proofs of Proposition 2.1 and 2.2 of [START_REF] Belhachmi | On the concave solutions of the Blasius equation[END_REF], we would obtain a contradiction. See also [START_REF] Brighi | On the differential equation f ′′′ + f f ′′ + g(f ′ ) = 0 and the associated boundary value problems[END_REF].

Lemma 2.5 . -Let us assume that 0 < g(x) ≤ 2x 2 for x = 0, a < 0 and c < 0. If b > 0 is large enough, then there exists

s b ∈ (0, T b ) such that f b (s b ) = 0 and f ′ b (s b ) > 3b 4 . Proof. -Since f ′′ b (0) = c < 0, we deduce from Lemma 2.3 that f ′′ b < 0 on [0, T b ). Let us assume that there exists t ∈ (0, T b ) such that f b (t) ≤ 0 and f ′ b (t) = 3b 4 .
Then, using (6), we have

-ac + 7b 2 32 -a 2 b = -f b (t)f ′′ b (t) -f b (t) 2 f ′ b (t) + t 0 f b (s) 2f ′ b (s) 2 -g(f ′ b (s)) ds ≤ 0
and then b is smaller than the positive root of the polynomial 7X 2 -32a 2 X -32ac. This completes the proof.

3 The solutions of (P g;a,b,c ) when g is nonnegative and subquadratic.

In this section, we will assume that c < 0 and that g : R → R is locally Lipschitz and such that 0 < g(x) ≤ x 2 for all x = 0. Let us notice that, by continuity, we have g(0) = 0. By Lemma 2.3, the function f b is concave on [0, T b ), for all b ∈ R. We will distinguish the following two types of behavior.

• Type (I) : f ′ b ≥ 0 on [0, T b ).
• Type (II) : there exists

t 0 ∈ [0, T b ) such that f ′ b < 0 on (t 0 , T b ).
We then define the sets

B 1 = {b ∈ R ; f b is of type (I)} and B 2 = {b ∈ R ; f b is of type (II)}.
Clearly, we have

B 1 ∩ B 2 = ∅ and B 1 ∪ B 2 = R. Moreover, B 1 is a closed set (and hence B 2 is an open set). In fact, if b n ∈ B 1 is a sequence converging to some b * ∈ R, and if t ∈ [0, T b * )
, then, from the lower semicontinuity of the mapping b → T b , there exists n 0 ∈ N such that for n ≥ n 0 we have T bn > t. Now, the continuity of (b,

t) → f ′ b (t) (defined for b ∈ R and t ∈ [0, T b )), allows to write f b * (t) = lim n→+∞ f bn (t) ≥ 0, and thus b * ∈ B 1 .
On the other hand, it is clear that (-∞, 0] ⊂ B 2 , or equivalently that

B 1 ⊂ (0, +∞). A priori, nothing indicates that B 1 = ∅. Remark 3.1 . -It follows from Remark 2.4, that, if b ∈ B 2 , then T b < +∞.
The following result gives informations about

f b for b ∈ B 1 . Proposition 3.2 . -If b ∈ B 1 , then T b = +∞, f ′ b > 0, f ′ b (t) → 0 as t → +∞,
and there exists t 0 ≥ 0 such that f b (t) > 0 for all t > t 0 . If, in addition, f b is bounded, then there exists a positive constant A b such that :

f b (t) = µ b -A b e -µ b t(1+o(1)) (8) f ′ b (t) ∼ µ b (µ b -f b (t)) and f ′′ b (t) ∼ -µ b f ′ b (t) ( 9 
)
as t → +∞, where µ b > 0 is the limit of f b (t) as t → +∞. Proof. -Let b ∈ B 1 . Since f ′′ b < 0 on [0, T b ), then f ′ b ( 
t) has a nonnegative limit ℓ as t → T b and thanks to Lemma 2.1, it follows that T b = +∞. Now, we claim that ℓ = 01 .

In fact, if ℓ > 0, then we have f ′ b (t) ∼ ℓ and f b (t) ∼ ℓt as t → +∞. Using (5), since g(l) > 0, we get

f ′′ b (t) -c -ab = -f b (t)f ′ b (t) + t 0 f ′ b (s) 2 ds - t 0 g(f ′ b (s))ds = -ℓ 2 t(1 + o(1)) + ℓ 2 t(1 + o(1)) -g(ℓ)t(1 + o(1)) = -g(ℓ)t + o(t)
which implies that f ′′ b (t) → -∞ as t → +∞. This is a contradiction with the fact that f ′ b (t) has a finite limit as t → +∞. Therefore, ℓ = 0, and the positivity of f ′ b then follows from the fact that f ′′ b < 0. Now, if a ≥ 0 then f b is positive, and if a < 0 and f b (t) < 0 for all t ≥ 0 then we have

∀t ≥ 0, f ′′′ b = -f b f ′′ b -g(f ′ b ) < 0
whence we deduce that f ′ b is concave. This contradicts the fact that f ′ b is positive and tends to 0 at infinity. Therefore, there exists t 0 ≥ 0 such that f b (t) > 0 for all t > t 0 .

Finally, if f b is bounded, then we can integrate (1) between t and +∞ ; this gives :

f ′′ b (t) + f b (t)f ′ b (t) = +∞ t g(f ′ b (s)) -f ′ b (s) 2 ds
Together with the assumptions about g and the fact that f ′ b is positive and decreasing, we get :

0 ≥ f ′′ b (t) f ′ b (t) + f b (t) ≥ - 1 f ′ b (t) +∞ t f ′ b (s) 2 ds ≥ - +∞ t f ′ b (s)ds = f b (t) -µ b .
We immediatly deduce the second relation of ( 9) ; the first one follows from the L'Hôpital's rule, and ( 8) by an integration.

Proposition 3.3 . -Let δ ∈ (0, 1) and let us assume that 0 < g(x) ≤ (1δ)x 2 for all x = 0. There exists b 0 > 0 such that [b 0 , +∞) ⊂ B 1 .

Proof. -As previously, let f b denote the solution of the initial value problem (P g;a,b,c ). Taking into account Lemma 2.5 and Proposition 3.2, we deduce that, for b large enough, there exists 5) and ( 7), we can write :

t b ∈ (0, T b ) such that f ′ (t b ) = b 2 and f b (t b ) ≥ 0. Using (
t b f ′′ b (t b ) + t b f b (t b )f ′ b (t b ) -(c + ab)t b = t b 0 t b f ′ b (s) 2 -g(f ′ b (s)) ds, t b f ′′ b (t b ) + b 2 + t b f b (t b )f ′ b (t b ) - 1 2 f b (t b ) 2 + 1 2 a 2 = t b 0 s f ′ b (s) 2 -g(f ′ b (s)) ds.
By substraction, we obtain

-(c + ab)t b - b 2 + 1 2 f b (t b ) 2 - 1 2 a 2 = t b 0 (t b -s) f ′ b (s) 2 -g(f ′ b (s)) ds ≥ 0.
Whence, together with the fact that 0 ≤ f b (t b ) ≤ bt b + a, we get

a 2 + b + 2(c + ab)t b ≤ f b (t b ) 2 ≤ (bt b + a) 2 and hence b 2 t 2 b -2ct b -b ≥ 0. It follows that t b ≥ c + √ c 2 + b 3 b 2 = b √ c 2 + b 3 -c .
Then, if f ′ b (t) = 0, we have t > t b and, using [START_REF] Brighi | On similarity solutions for boundary layer flows with prescribed heat flux[END_REF] and the assumptions about g, we have

0 > f ′′ b (t) = c + ab + t 0 f ′ b (s) 2 -g(f ′ b (s)) ds ≥ c + ab + δ t 0 f ′ b (s) 2 ds ≥ c + ab + δ t b 0 f ′ b (s) 2 ds ≥ c + ab + δ 4 t b b 2 ≥ c + ab + δ 4 b 3 √ c 2 + b 3 -c .
It follows that, if b is large enough, then f ′ b does not vanish, and hence b ∈ B 1 .

Remark 3.4 . -If we only suppose that g(x) ≤ x 2 , then the previous result may not hold ; for example, if g(x) = x 2 and a ≤ 0, c < 0, then B 1 = ∅. Indeed, if there exists b ∈ B 1 , then b > 0, and identity (5) gives f ′′ b (t) + f b (t)f ′ b (t) = c + ab for all t ∈ R. Integrating, we obtain :

∀t ≥ 0, f ′ b (t) + 1 2 f b (t) 2 = b + 1 2 a 2 + (c + ab)t
and we see that the right hand side tends to -∞ as t → +∞, whereas the left one is positive. We have a contradiction. 

t n ∈ (0, T n ) such that f ′ n (t n ) = 0.
First, we remark that t n → +∞ as n → +∞. On the contrary, there would exist an increasing subsequence t n k converging to some t < +∞. Because of the lower semicontinuity of the mapping b → T b , for k large enough, we should have T n k > t and we could write 0 = lim

k→+∞ f ′ n k (t n k ) ≥ lim k→+∞ f ′ n k (t) = f ′ b (t)
and get a contradiction. Next, using [START_REF] Brighi | On a general similarity boundary layer equation[END_REF] for

t = t n yields b - 1 2 f n (t n ) 2 -a 2 = -t n f ′′ n (t) + tn 0 s f ′ n (s) 2 -g(f ′ n (s) ds ≥ 0 and hence f n (t n ) 2 ≤ 2b + a 2 . Since f ′ n is positive on [0, t n ), we obtain ∀s ∈ [0, t n ], f n (s) ≤ √ 2b + a 2 .
To conclude, we fix t ∈ [0, +∞). For n large enough, we have t n > t and

f b (t) = lim n→+∞ f n (t) ≤ √ 2b + a 2 .
This completes the proof.

4

The boundary value problem (1)-( 4) when g(x) = βx 2 with 0 < β < 1.

Here, we consider the case where g(x) = βx 2 with 0 < β < 1. Our main result is the following. Proof. -Taking into account Propositions 3.3 and 3.5, it is sufficient to prove that there is at most one b > 0 such that f b is bounded. First, let us assume that for some b > 0, the function f = f b is bounded. Let µ > 0 be the limit of f (t) as t → +∞. Since f is concave and increasing, then we can define a function

v : (0, 1] → R, such that ∀t ≥ 0, v 1 b 2 f ′ (t) 2 = 1 √ b f (t). By setting y = 1 b 2 f ′ (t) 2 , we get f (t) = √ b v(y), f ′ (t) = b √ y, f ′′ (t) = b 3/2 2v ′ (y) and f ′′′ (t) = - b 2 v ′′ (y) √ y 2v ′ (y) 3 . (10)
Then, using (1) we obtain

∀y ∈ (0, 1], v ′′ (y) = v(y)v ′ (y) 2 √ y + 2β √ y v ′ (y) 3 . ( 11 
)
Moreover v is decreasing on (0, 1], and we have

v(1) = a √ b , v ′ (1) = b 3/2 2c and lim y→0 v(y) = µ √ b . (12) 
In addition, using [START_REF] Chaudhary | Similarity solutions in free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media: I prescribed surface temperature[END_REF], it holds

v ′ (y) ∼ - √ b 2µ √ y as y → 0. (13) 
Now, let us assume that there are b 1 > b 2 such that the functions f 1 = f b 1 and f 2 = f b 2 are bounded. For i = 1, 2, let µ i be the limit of f i (t) as t → +∞. Let v i : (0, 1] → R be the corresponding solutions of [START_REF] Guedda | Similarity solutions of differential equations for boundary layer approximations in porous media[END_REF].

If w = v 1v 2 , then w is defined on (0, 1] and we have

w(1) = a √ b 1 - a √ b 2 , w ′ (1) = 1 2c b 3/2 1 -b 3/2 2 < 0 and lim y→0 w(y) = µ 1 √ b 1 - µ 2 √ b 2 . (14) 
Moreover, w cannot have neither positive maximum, or negative minimum in (0, 1). Indeed, if x ∈ (0, 1) is such that w(x) > 0, w ′ (x) = 0, then using [START_REF] Guedda | Similarity solutions of differential equations for boundary layer approximations in porous media[END_REF] we have

w ′′ (x) = v ′ 1 (x) 2 √ x w(x) > 0.
The same arguments show that w has no negative minimum in (0, 1). We now distinguish between the cases a ≤ 0 and a > 0.

• If a ≤ 0, then w(1) ≥ 0. Since w cannot have a positive maximum in (0, 1) and w ′ (1) < 0, it follows that w(0) > 0. Thus,

µ 1 √ b 1 > µ 2 √ b 2
and hence, using (13), we get

w ′ (y) ∼ - 1 2 √ y √ b 1 µ 1 - √ b 2 µ 2 as y → 0.
Therefore, w ′ (y) → +∞ as y → 0 and this gives a contradiction since, on the contrary, w should have a positive maximum in (0, 1).

• If a > 0, then w(1) < 0. Using the fact that w cannot have neither positive maximum, or negative minimum in (0, 1) and the same arguments as previously, we obtain that necessarily we have w ′ ≤ 0 and w(1) < w(0) ≤ 0. Now, for i = 1, 2, let us set

V i = 1 v ′ i and W = V 1 -V 2 .
First, thanks to (13), we have W (y) → 0 as y → 0. Next, using [START_REF] Guedda | Similarity solutions of differential equations for boundary layer approximations in porous media[END_REF], we obtain

∀y ∈ (0, 1], W ′ (y) = - v ′′ 1 (y) v ′ 1 (y) 2 + v ′′ 2 (y) v ′ 2 (y) 2 = - w(y) √ y -2β √ y w ′ (y) ≤ - w(y) √ y -2w ′ (y) √ y = -2 √ yw(y) ′ .
Integrating between 0 and 1, we get W (1) ≤ -2w(1). Thus,

2c 1 b 3/2 1 - 1 b 3/2 2 ≤ -2a 1 √ b 1 - 1 √ b 2 . Hence c 1 b 1 + 1 √ b 1 b 2 + 1 b 2 ≥ -a and c b 1 + a ≥ -c 1 √ b 1 b 2 + 1 b 2 > 0.
This is contradiction, since thanks to (5) written for f 1 and t → +∞ we must have c + ab 1 < 0.

The proof is complete. as t → +∞.

See [START_REF] Brighi | Asymptotic behavior of the unbounded solutions of some boundary layer equation[END_REF] and [START_REF] Guedda | Similarity solutions of differential equations for boundary layer approximations in porous media[END_REF]. 

f (0) = a, f ′′ (0) = -1, f ′ (t) → 0 as t → +∞, (15) 
has exactly one bounded solution, and infinitely many unbounded solutions.

Proof.

-By setting

1 √ m + 2 f (t) = f t √ m + 2
we see that f is a solution of the boundary value problem [START_REF] Tsai | A note on similarity solutions for boundary layer flows with prescribed heat flux, to appear in[END_REF] if and only if f is a solution of the boundary value problem (1)-(4) with g(x) = βx 2 and β = -2m+1 m+2 . The proof then follows from Corollary 4.3.

Conclusion.

The result of Theorem 4.1 is obtained by using strongly the fact that g is homogeneous of degree 2, contrary to the results of sections 2 and 3, where only the subquadratic nature of g is used. Nevertheless, we conjecture that the uniqueness of the bounded solution should hold under the hypothesis 0 ≤ g(x) ≤ x 2 . In fact, the boundary value problem f ′′′ + f f ′′ + g(f ′ ) = 0 on [0, +∞) f (0) = a, f ′ (0) = b > 0, f ′ (t) → 0 as t → +∞, has at most one bounded concave solution, if 0 ≤ g(x) ≤ x 2 , see [START_REF] Brighi | On the differential equation f ′′′ + f f ′′ + g(f ′ ) = 0 and the associated boundary value problems[END_REF], and this result is one of the reasons for which we hope that this conjecture holds.

On the other hand, let us notice that we recover the results of J.-C. Tsai and C.-A. Wang [START_REF] Tsai | A note on similarity solutions for boundary layer flows with prescribed heat flux, to appear in[END_REF], in a totally different way, and perhaps more directly.

Proposition 3 . 5 .

 35 -If b is a point of the boundary of B 1 , then f b is bounded. Proof. -Since b is on the boundary of B 1 = R \ B 2 , there exists a sequence of positive real numbers b n ∈ B 2 converging to b. Let us set f n = f bn and T n = T bn . Since b n ∈ B 2 , there exists

Theorem 4 . 1 .

 41 -Let a ∈ R and c < 0. If g(x) = βx 2 with 0 < β < 1, then there exists b * > 0 such that B 1 = [b * , +∞). Moreover, if b > b * , then f b is unbounded.

Remark 4 . 2 .

 42 -If b > b * , then there exists a positive constant A b such that f b (t) ∼ A b t 1 1+β

Corollary 4 . 3 .

 43 -Let a ∈ R and c < 0. If g(x) = βx 2 with 0 < β < 1, then the boundary value problem (1)-(4) has exactly one bounded solution, and infinitely many unbounded solutions.Proof. -This follows immediatly from the previous theorem.

Corollary 4 . 4 .

 44 -Let a ∈ R and m ∈ -1, -1 2 . The boundary value problemf ′′′ + (m + 2)f f ′′ -(2m + 1)f ′2 = 0 on [0, +∞)

See Lemma 3 of[START_REF] Brighi | On a general similarity boundary layer equation[END_REF] for a general proof of the fact that g(ℓ) = 0.