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On the Graf 's addition theorem for Hahn Exton q-Bessel function

In this paper we study the positivity of the generalized q-translation associated with the q-Bessel Hahn Exton function which is deduced by a new formulation of the Graf's addition formula related to this function.

Introduction and Preliminaries

It is well known that the generalized translation operator T associated with the Bessel function of the first kind is positive in the sense if f > 0, then T f > 0. This property is easily seen when we write T f as an integral representation with a kernel involving the area of some triangle ( [START_REF] Cholewinski | The Weierstrass Hankel convolution transform[END_REF], [START_REF] Watson | A treatise of the theory of Bessel functions[END_REF]) and has several applications in many mathematical fields such that hypergroup structure, heat equation.... In 2002, the appropriated q-generalized translation for the q-Bessel Hahn Exton function was founded [START_REF] Fitouhi | The qj α Bessel function[END_REF] and the problem of its positivity asked. In literature we meet many attempts to show this property in particular case, nerveless they are no definitive response at to day. In [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF] the authors prove that for the q-cosinus , the correspondent q-translation operator is positive if q ∈ [0, q 0 ] for some q 0 . In this work and owing a new formulation of the Graf's addition theorem [START_REF] Koelink | A q-Analogue of Graf's Addition Formula for the Hahn-Exton q-Bessel Function[END_REF] we give an affirmative answer about this theme by a technic involving some inclusion of sets. To make this work self containing, we begin by the following preliminaries. Throughout this paper we consider 0 < q < 1 and we adopt the standard conventional notations of [START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications 35[END_REF]. For complex a We put 1 (a; q) 0 = 1, (a; q) n = n-1 i=0

(1aq i ), n = 1...∞.

Jackson's q-integral (see [START_REF] Jackson | On a q-Definite Integrals[END_REF]) over the interval [0, ∞[ is defined by

∞ 0 f (x)d q x = (1 -q) ∞ n=-∞ q n f (q n ).
We denote by R + q = {q n , n ∈ Z}, and we consider L q,p,v the space of even functions f defined on R + q such that

f q,p,v = ∞ 0 |f (x)| p x 2v+1 d q x 1/p < ∞.
The q-Bessel function of third kind and of order v, called also Hahn-Exton function,is defined by the q-hypergeometric function (see [START_REF] Swarttouw | The Hahn-Exton q-Bessel functions[END_REF])

J v (x, q) = (q v+1 ; q) ∞ (q; q) ∞ x v 1 φ 1 (0, q v+1 , q, qx 2 ), ℜ(v) > -1,
and has a normalized form is given by

j v (x, q) = (q; q) ∞ (q v+1 ; q) ∞ x -v J v (x, q) = 1 φ 1 (0, q v+1 , q, qx 2 ) = ∞ n=0 (-1) n q n(n+1) 2 
(q; q) n (q v+1 ; q) n x 2n .

It's an entire analytic function in z.

In( [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF], [START_REF] Koornwinder | On q-Analogues of the Hankel and Fourier Transform[END_REF]) the q-Bessel Fourier transform F q,v and its properties were studied in great detail, it is defined as follow

F q,v f (x) = c q,v ∞ 0 f (t)j v (xt, q 2 )t 2v+1 d q t,
where

c q,v = 1 1 -q (q 2v+2 , q 2 ) ∞ (q 2 , q 2 ) ∞ .
There is many way to define the q-Bessel translation operator [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF], [START_REF] Fitouhi | The qj α Bessel function[END_REF]. One of them can be enounced for suitable function f as follows:

T v q,x f (y) = c q,v ∞ 0 F q,v (f )(t)j v (xt, q 2 )j v (yt, q 2 )t 2v+1 d q t, ∀x, y ∈ R + q , ∀f ∈ L q,1,v .
Now we say that T v q,x is positive if T v q,x f ≥ 0 for f ≥ 0. Let us putting the domain of positivity of T v q,x by

Q v = {q ∈]0, 1[, T v q,x is positive for all x ∈ R + q }.
Trough the result of [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF], Q v is not empty. So for q ∈ Q v the q-convolution product of the two functions f and g ∈ L q,1,v is defined by

f * q g(x) = c q,v ∞ 0 T v q,x f (y)g(y)y 2v+1 d q y.
To close this section we present the following results proved in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF] which will be used in the remainder.

Proposition 1

|j v (q n , q 2 )| ≤ (-q 2 ; q 2 ) ∞ (-q 2v+2 ; q 2 ) ∞ (q 2v+2 ; q 2 ) ∞ 1 if n ≥ 0 q n 2 -(2v+1)n if n < 0 . Theorem 1 The operator F q,v satisfies 1. For all functions f ∈ L q,1,v , F 2 q,v f (x) = f (x), ∀x ∈ R + q . 2. If f ∈ L q,1,v and F q,v f ∈ L q,1,v then F q,v f q,v,2 = f q,v,2 .
2 The Graf's addition formula

The Graf's addition formula for Hahn-Exton q-Bessel function proved by H.T.Koelink and F. Swarttouw [START_REF] Koelink | A q-Analogue of Graf's Addition Formula for the Hahn-Exton q-Bessel Function[END_REF] plays a central role here . It can be stated as follows.

J v (Rq 1/2(y+z+v) , q)J x-v (q 1/2z , q) = k∈Z J k (Rq 1/2(x+y+k) , q)J v+k (Rq 1/2(y+k+v) , q)J x (q 1/2(z-k) , q); and it is valid when z ∈ Z and R, x, y, v ∈ C satisfying

|R| 2 q 1+ℜ(x)+ℜ(y) < 1, ℜ(x) > -1, R = 0.
This formula has originally been derived for v, x, y ∈ Z, R > 0 by the interpretation of the Hahn-Exton q-Bessel function as matrix elements of irreducible unitary representation of the quantum group of plane motions. If we replace q by q 2 and R by q r in the previous formula we get:

J v (q y+z+v+r , q 2 )J x-v (q z , q 2 ) = k∈Z J k (q x+y+k+r , q 2 )J v+k (q y+k+v+r , q 2 )J x (q z-k , q 2 ), and put m = y + z + v + r,

so x + y + k + r = m + k + x -z -v, y + k + v + r = m + k -z,
and we have

J v (q m , q 2 )J x-v (q z , q 2 ) = k∈Z J k (q m+k+x-z-v , q 2 )J v+k (q m+k-z , q 2 )J x (q z-k , q 2 ).
This last formula is valid for z ∈ Z and r, x, y, v ∈ C satisfying 1 + 2ℜ(r) + ℜ(x) + ℜ(y) = 1+ℜ(r)+ℜ(m)-ℜ(z)-ℜ(v) > 0, ℜ(x) > -1.

In the above sum we replace zk by k we get

J v (q m , q 2 )J x-v (q z , q 2 ) = k∈Z J z-k (q m+x-v-k , q 2 )J v+z-k (q m-k , q 2 )J x (q k , q 2 ),
The sum in the second member exists for

∀z ∈ Z, ∀m, v, x ∈ C, ℜ(x) > -1.
In fact there exist an infinity complex number r ∈ C for which

1 + ℜ(r) + ℜ(m) -ℜ(z) -ℜ(v) > 0.
Now using the definition of the normalized q-Bessel function J x (q k , q 2 ) = (q 2x+2 , q 2 ) ∞ (q 2 , q 2 ) ∞ q vk j x (q k , q 2 ) = (1q)c q,x q xk j x (q k , q 2 ), we obtain q mv+z(x-v) (1q) 2 c q,v c q,x-v j v (q m , q 2 )j x-v (q z , q 2 ) = (1q)c q,x k∈Z q xk J z-k (q x-v+m-k , q 2 )J v+z-k (q m-k , q 2 )j x (q k , q 2 ).

Let λ = q n , n ∈ Z,

and replace k → k + n, m → m + n, z → z + n.
This implies

q mv+z(x-v) (1 -q) 2 c q,v c q,x-v j v (q m λ, q 2 )j x-v (q z λ, q 2 ) = (1 -q)c q,x k∈Z q xk J z-k (q x-v+m-k , q 2 )J v+z-k (q m-k , q 2 )j x (q k λ, q 2 ) = (1 -q)c q,x k∈Z q 2k(x+1) q -k(x+2) J z-k (q x-v+m-k , q 2 )J v+z-k (q m-k , q 2 )j x (q k λ, q 2 ).
We put

E v,x (q m , q z , q k ) = 1 (1 -q) 2 c q,v c q,x-v q -k(x+2)-mv-z(x-v) J z-k (q x-v+m-k , q 2 )J v+z-k (q m-k , q 2 ).
The Proposition 1 shows that the function:

λ → j v (q m λ, q 2 )j x-v (q z λ, q 2 ), ∀m, z ∈ Z,
belongs to the space L q,1,v . Theorem 1, part 1 leads to the following statement:

Proposition 2 For z, m ∈ Z and x, v ∈ C satisfying ℜ(x -v) > -1, ℜ(v) > -1
we have

j v (q m λ, q 2 )j x-v (q z λ, q 2 ) = c q,x ∞ 0 E v,x (q m , q z , t)j x (λt, q 2 )t 2x+1 d q t, and 
E v,x (q m , q z , q k ) = c q,x ∞ 0 j v (q m λ, q 2 )j x-v (q z λ, q 2 )j x (q k λ, q 2 )λ 2x+1 d q λ.
3 Positivity of the q-translation operator

This section is a direct application of the previous one but before any things we recall that the q-translation operator possess the q-integral representation (see [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF])

Proposition 3 Let f ∈ L q,1,v then T v q,x f (y) = ∞ 0 f (z)D v (x, y, z)z 2v+1 d q z,
where

D v (x, y, z) = c 2 q,v ∞ 0 j v (xt, q 2 )j v (yt, q 2 )j v (zt, q 2 )t 2v+1 d q t.
When q tends to 1 -we obtain at least formally the classical one and the q-kernel D v (x, y, z) tends to the classical one ([1], [START_REF] Watson | A treatise of the theory of Bessel functions[END_REF]) which involves the area of some triangle. Hence the positivity of T v q,x is subject of those of D v (x, y, z). A direct consequence of the above result is the fact that if the operator T v q,x is positive and

f ∈ L q,1,v then T v q,x f ∈ L q,1,v ( in general it is not true without this hypothesis). Indeed ∞ 0 |T v q,x f (y)|y 2v+1 d q t ≤ ∞ 0 T v q,x |f |(y)y 2v+1 d q t = ∞ 0 |f (z)| ∞ 0 D v (x, y, z)y 2v+1 d q y z 2v+1 d q z.
Putting φ : t → j v (xt, q 2 )j v (zt, q 2 ), then we can write

D v (x, y, z) = c q,v F q,v φ(y).
This gives by the of the inversion formula in Theorem 1 the important result as the classical; one

∞ 0 D v (x, y, z)y 2v+1 d q y = F 2 q,v φ(0) = φ(0) = 1.
Then we have

∞ 0 |T v q,x f (y)|y 2v+1 d q t ≤ f q,v,1 ,
and we obtain

f ∈ L q,1,v ⇒ T v q,x f ∈ L q,1,v .
In [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF] and as a first preamble of this theme the authors proved that

D -1 2 (q m , q r , q k ) = q 2(r-m)(k-m)-m
(1q)(q; q) I (q 2(r-m)+1 ; q) ∞1 φ 1 (0, q 2(r-m)+1 , q; q 2(k-m)+1 ) = 1 1q q -m J 2(r-m) (q k-m , q), which implies that the correspondent domain of T

-1 2
q,x is given by

Q -1 2 =]0, q 0 ],
where q 0 is the first zero of the q-hypergeometric function:

q → 1 φ 1 (0, q, q, q); a second statement is easily given by the Proposition 2 with x = v = 0 which gives E 0,0 (q m , q z , q k ) = c q,0 ∞ 0 j 0 (q m λ, q 2 )j 0 (q z λ, q 2 )j 0 (q k λ, q 2 )λd q λ = 1 c q,0 D 0 (q m , q z , q k ), and then D 0 (q m , q z , q k ) = c q,0 E 0,0 (q m , q z , q

k ) = 1 (1 -q) q -2k J z-k (q m-k , q 2 ) 2 ,
Hence we have

Q 0 =]0, 1[.
Now we explicit the kernel in the production formula in terms of D v .

Proposition 4 For n, m, k ∈ Z and -1 < v we have

E v,v (q m , q n , q k ) = (1 -q) ∞ i=0 (q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2v) D v (q m , q i+n , q k ).
Proof. From the following formula (see [START_REF] Koelink | A q-Analogue of Graf's Addition Formula for the Hahn-Exton q-Bessel Function[END_REF], §5) "which can be proved in a straightforward way by substitution of the defining series for the q-Bessel functions on both sides, by interchanging summations, and by evaluating the q-binomial series which occurs"

J x-v (λ, q 2 ) = λ -v ∞ i=0
(q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+x) J x (λq i , q 2 ),

where ℜ(xv) > -1 and ℜ(x) > -1 we obtain

(1 -q)c q,x-v j x-v (λ, q 2 ) = (1 -q)c q,x ∞ i=0
(q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2x) j x (λq i , q 2 ).

Put x = v and change λ by q n λ we obtain

j 0 (q n λ, q 2 ) = (1 -q)c q,v ∞ i=0 (q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2v) j v (λq i+n , q 2 ),
which gives from Proposition 2

E v,v (q m , q n , q k ) = c q,v ∞ 0 j v (q m λ, q 2 )j 0 (q n λ, q 2 )j v (q k λ, q 2 )λ 2v+1 d q λ = (1 -q) ∞ i=0 (q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2v) × c 2 q,v ∞ 0 j v (q m λ, q 2 )j v (q i+n λ, q 2 )j v (q k λ, q 2 )λ 2v+1 d q λ = (1 -q) ∞ i=0
(q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2v) D v (q m , q i+n , q k ).

We justify the exchange of the signs sum and integral by

∞ i=0 |(q -2v , q 2 ) i | (q 2 , q 2 ) i q i(2+2v) ∞ 0 j v (q m λ, q 2 )j v (q i+n λ, q 2 )j v (q k λ, q 2 )λ 2v+1 d q λ ≤ j v (., q 2 ) 2 q,∞ j v (., q 2 ) q,1,v q -2(v+1)m ∞ i=0 |(q -2v , q 2 ) i | (q 2 , q 2 ) i q i(2+2v) < ∞.
So we obtain the result.

Proposition 5 Let -1 < v < 0 then Q v ]0, 1[. Proof. For m, n, k ∈ Z and -1 < v < 0 we have E v,v (q m , q n , q k ) = 1 (1 -q)c q,v q -k(v+2)-mv J n-k (q m-k , q 2 )J v+n-k (q m-k , q 2 ) = (1 -q) ∞ i=0
(q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2v) D v (q m , q i+n , q k ).

In particular for m = n = k = 0

E v,v (1, 1, 1) = 1 (1 -q)c q,v J 0 (1, q 2 )J v (1, q 2 ).
We introduce the following function

φ v : q → (q 2 , q 2 ) 2 ∞ J v (1, q 2
). Let q 1 ≃ 0.658 the first zero of φ 0 and consider the graph of the function We conclude that for -1 < v < 0 we have φ v (q 1 ) < 0. Then there exist a very small ε > 0 such that φ v (q 1ε) < 0 and φ 0 (q 1ε) > 0. Hence, this function q → J 0 (1, q 2 )J v (1, q 2 ) < 0, takes some negative values in the interval ]0, 1[, then for some entire i ∈ N (q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2v) D v (1, q i , 1) < 0.

v → φ v (q 1 ), v ∈ [0, 1].
As (q -2v , q 2 ) i (q 2 , q 2 ) i q i(2+2v) > 0, then D v (1, q i , 1) < 0 for some entire i ∈ N. Which prove that

Q v ]0, 1[.
This finish the proof.

Lemma 1 For x ∈ R + q and ℜ(v + t) > -1 we have

(1q)c q,v n∈Z q (1+v+t)n j v (q n x, q 2 ) = (q 1+v-t ; q 2 ) ∞ (q 1+v+t ; q 2 ) ∞ x -(1+v+t) .

Proof. In [START_REF] Koornwinder | On q-Analogues of the Hankel and Fourier Transform[END_REF] the following result was proved n∈Z q (1+t)n J v (q n , q 2 ) = (q 1+v-t ; q 2 ) ∞ (q 1+v+t ; q 2 ) ∞ , ℜ(v + t) > -1.

Then we get

(1q)c q,v n∈Z q (1+v+t)n j v (q n , q 2 ) = (q 1+v-t ; q 2 ) ∞ (q 1+v+t ; q 2 ) ∞ .

Hence for x = q k ∈ R + q we have (1q)c q,v n∈Z q (1+v+t)(n+k) j v (q n+k , q 2 ) = (q 1+v-t ; q 2 ) ∞ (q 1+v+t ; q 2 ) ∞ .

This finish the proof.

Theorem 2 Let v ≥ x > -1 then Q x ⊂ Q v .
As consequence

• If 0 ≤ v then Q v =]0, 1[. • If -1 2 ≤ v < 0 then ]0, q 0 ] ⊂ Q v ]0, 1[. • If -1 < v ≤ -1 2 then Q v ⊂]0, q 0 ].
Proof. Let v > -1 and 0 < µ < 1. We will prove that

Q v ⊂ Q v+µ , which suffices to show that Q x ⊂ Q v if x ≤ v.
In the following we tack q ∈ Q v . We have c q,v+µ j v+µ (t, q 2 ) = c q,v ∞ i=0 (q 2µ , q 2 ) i (q 2 , q 2 ) i q 2(v+1)i j v (tq i , q 2 ), and then c q,v c 2 q,v+µ j v (tx, q 2 )j v+µ (ty, q 2 )j v (tz,

q 2 ) = c 3 q,v ∞ i,j,s=0
(q 2µ , q 2 ) i (q 2 , q 2 ) i (q 2µ , q 2 ) j (q 2 , q 2 ) j q 2(1+v)(i+j)

× j v (tx, q 2 )j v (tq i y, q 2 )j v (tq j z, q 2 ), which implies

c q,v T v,v+µ,v (x, y, z) = c q,v ∞ i,j=0
(q 2µ , q 2 ) i (q 2 , q 2 ) i (q 2µ , q 2 ) j (q 2 , q 2 ) j q 2(1+v)(i+j) D v (x, q i y, q j z) ≥ 0, where

T v,w,α (x, y, z) = c 2 q,w ∞ 0 j v (tx, q 2 )j w (ty, q 2 )j w (tz, q 2 )t 2α+1 d q t. Note that T v,v,v (x, y, z) = D v (x, y, z).
The exchange of the signs sum and integral is valid since:

∞ i,j=0
q 2(1+v)(i+j) ∞ 0 j v (q m t, q 2 ) j v (q n+i t, q 2 ) j v (q k+j t, q 2 ) t 2v+1 d q t = ∞ i,j=0

q 2(1+v)(i+j) 1 0 j v (q m t, q 2 ) j v (q n+i t, q 2 ) j v (q k+j t, q 2 ) t 2v+1 d q t

+ ∞ i,j=0 q 2(1+v)(i+j) ∞ 1 j v (q m t, q 2 ) j v (q n+i t, q 2 ) j v (q k+j t, q 2 ) t 2v+1 d q t. Note that ∞ i,j=0 q 2(1+v)(i+j) 1 0 j v (q m t, q 2 ) j v (q n+i t, q 2 ) j v (q k+j t, q 2 ) t 2v+1 d q t ≤ j v (., q 2 ) 3 q,∞   ∞ i,j=0 q 2(1+v)(i+j)   1 0 t 2v+1 d q t < ∞,
and

∞ i,j=0 q 2(1+v)(i+j) ∞ 1 j v (q m t, q 2 ) j v (q n+i t, q 2 ) j v (q k+j t, q 2 ) t 2v+1 d q t = (1 -q) ∞ i,j,r ′ =0 q 2(1+v)(i+j-r) j v (q m-r , q 2 ) j v (q n+i-r , q 2 ) j v (q k+j-r , q 2 ) = ∞ j,r ′ =0 q 2(1+v)j j v (q m-r , q 2 ) j v (q k+j-r , q 2 ) × (1 -q) ∞ i=0 q 2(1+v)(i-r) j v (q n+i-r , q 2 ) ,
where r ′ = r -1. We write

∞ i=0 q 2(1+v)(i-r) j v (q n+i-r , q 2 ) = q -2(1+v)n (1 -q) ∞ i=0 q 2(n+i-r) j v (q n+i-r , q 2 ) = q -2(1+v)n (1 -q) ∞ i=m-r q 2(1+v)i j v (q i , q 2 ) < q -2(1+v)n j v (., q 2 ) q,1,v . Then ∞ j,r ′ =0 q 2(1+v)j j v (q m-r , q 2 ) j v (q k+j-r , q 2 ) = ∞ s,r ′ =0 j v (q m-r , q 2 )   ∞ j=0 q 2(1+v)j j v (q k+j-r , q 2 )   = ∞ r ′ =0 j v (q m-r , q 2 )   q 2(1+v)(r-k) ∞ j=0 q 2(k+j-r) j 0 (q k+j-r , q 2 )   = ∞ s,r ′ =0 q 2s j v (q m-r , q 2 )   q 2(v+1)(r-k) ∞ j=k-r q 2(1+v)j j 0 (q j , q 2 )   ≤ q -2(v+1)k 1 -q j v (., q 2 ) q,1,v j v (., q 2 ) q,∞ ∞ r ′ =0 q 2(v+1)r < ∞.
Let 0 < α < µ. We introduce the function A α,µ,v (x) as follows:

A α,µ,v (x) = c q,v ∞ 0 t 2α j v+µ (t, q 2 )j v (xt, q 2 )t 2v+1 d q t.
From the inversion formula in Theorem 1 (t → t 2α j v+µ (t, q 2 ) ∈ L q,1,v ) we get

c q,v ∞ 0 A α,µ,v (x)j v (xt, q 2 )x 2v+1 d q x = t 2α j v+µ (t, q 2 ). Let x ≤ 1.
From Lemma 1 we obtain

A α,µ,v (x) = c q,v (1 -q) n∈Z q 2(α+v+1)n j v (xq n , q 2 )j v+µ (q n , q 2 ) = c q,v (1 -q) n∈Z ∞ i=0 (-1) i q i(i+1) (q 2+2v , q 2 ) i (q 2 , q 2 ) i q 2(α+v+1+i)n j v+µ (q n , q 2 ) = c q,v (1 -q) ∞ i=0 (-1) i q i(i+1) (q 2+2v , q 2 ) i (q 2 , q 2 ) i x 2i n∈Z q 2(α+v+1+i)n j v+µ (q n , q 2 ) = c q,v c q,v+µ ∞ i=0 (-1) i q i(i+1) (q 2+2w , q 2 ) i (q 2 , q 2 ) i x 2i (q 2(1+v+µ)-2(α+v+1+i) , q 2 ) ∞ (q 2(α+v+1+i) , q 2 ) ∞ = c q,v c q,v+µ ∞ i=0 (-1) i q i(i+1) (q 2+2v , q 2 ) i (q 2 , q 2 ) i x 2i (q 2(µ-α) q -2i , q 2 ) ∞ (q 2(α+v+1+i) , q 2 ) ∞ ≥ 0. Note that 0 < µ -α < 1.
The exchange of the signs sum is valid since. Indeed, let q k = x then we have

∞ i=0 q i(i+1) q 2ik n∈Z q 2(α+v+1+i)n j v+µ (q n , q 2 ) = ∞ i=0 q i(i+1) q 2ik ∞ n=0 q 2(α+v+1+i)n j v+µ (q n , q 2 ) + ∞ i=0 q i(i+1) q 2ik ∞ n=1 q -2(α+v+1+i)n j v+µ (q -n , q 2 ) ≤ ∞ i=0 q i(i+1) q 2ik ∞ n=0 q 2(α+v+1)n + ∞ i=0 q i(i+1) q 2ik ∞ n=1 q -2(α+v+1+i)n+n 2 +(2v+2µ+1)n .
One has to observe that the first sum exist. The second sum also:

∞ i=0 q i(i+1) q 2ik ∞ n=1 q -2(α+v+1+i)n+n 2 +(2v+2µ+1)n = ∞ n=1 q -2(α+v+1+i)n+n 2 +(2v+2µ+1)n ∞ i=0 q i(i+1) q 2ik = ∞ n=1 q -2(α+v+1)n+(2v+2µ+1)n+(2k+1)n ∞ i=0 q (i-n) 2 q (2k+1)(i-n) = ∞ n=1 q 2(µ-α)n+(2k+1)n ∞ i=-n q i 2 q (2k+1)i ≤ ∞ n=1 q 2(µ-α)n+(2k+1)n ∞ i=-∞ q i 2 q (2k+1)i < ∞.
If x > 1 then we obtain

A α,µ,v (x) = c q,v (1 -q) n∈Z q 2(α+v+1)n j v (xq n , q 2 )j v+µ (q n , q 2 ) = c q,v (1 -q) n∈Z ∞ i=0 (-1) i q i(i+1) (q 2+2v , q 2 ) i (q 2 , q 2 ) i q 2(α+v+1+i)n j v (q n x, q 2 ) = c q,v (1 -q) ∞ i=0
(-1) i q i(i+1) (q 2+2v+2µ , q 2 ) i (q 2 , q 2 ) i n∈Z q 2(α+v+1+i)n j v (q n x, q 2 ) = x -2(α+v+1) ∞ i=0 (-1) i q i(i+1) (q 2+2v+2µ , q 2 ) i (q 2 , q 2 ) i

x -2i (q 2(1+v)-2(α+v+1+i) , q 2 ) ∞ (q 2(α+v+1+i) , q 2 ) ∞ = x -2(α+v+1) ∞ i=0 (-1) i q i(i+1) (q 2+2v+2µ , q 2 ) i (q 2 , q 2 ) i

x -2i (q -2α q -2i , q 2 ) ∞ (q 2(α+v+1+i) , q 2 ) ∞ < 0. Now, we write

c q,v ∞ 0 A α,µ,v (x)T v,v+µ,v (x, y, z)x 2v+1 d q x = c q,v ∞ 0 A α,µ,v (x) c 2 q,v ∞ 0 j w (xt, q 2 )j v (yt, q 2 )j v (zt, q 2 )t 2v+1 d q t x 2v+1 d q x = c 2 q,v+µ ∞ 0 c q,v ∞ 0 A α,µ,v (x)j v (xt, q 2 )x 2v+1 d q x j v+µ (yt, q 2 )j v+µ (zt, q 2 )t 2v+1 d q t = c 2
q,v+µ ∞ 0 j v+µ (t, q 2 )j v+µ (yt, q 2 )j v+µ (zt, q 2 )t 2(v+α)+1 d q t = T v+µ,v+µ,v+α (1, y, z).

To justify the exchange of the signs integrals we write

∞ 0 ∞ 0 |A α,µ,v (x)||j v (xt, q 2 )|x 2v+1 d q x |j v (yt, q 2 )||j v (zt, q 2 )|td q t ≤ j v (., q 2 ) 2 q,∞ j v (., q 2 ) q,1,v A α,µ,v q,1,v 1 z . 
Not that x → A α,µ,v (x) is continued at 0 and |A α,µ,v (x)| ≤ j v+µ (., q 2 ) q,∞ j v (., q 2 ) q,1,α+v x -2(α+v+1) , as x → ∞.

On the other hand

∞ 0 A α,µ,v (x)x 2v+1 d q x = 0,
then we obtain for all δ > 0

T v+µ,v+µ,v+α (1, y, z) = ∞ 0 A α,µ,v (x) T v,v+µ,v (x, y, z) -δ x 2v+1 d q x.
In the following we assume that 0 < y, z ≤ 1. Let

δ 0 = inf 0≤y,z≤1 T v,v+µ,v (1, y, z) 
Not that δ 0 exist and strictly positive, indeed the following function

(y, z) → T v,v+µ,v (1, y, z) is continuous on the compact [0, 1] × [0, 1]. Hence, there exist (y 0 , z 0 ) ∈ [0, 1] × [0, 1] such that δ 0 = T v,v+µ,v (1, y 0 , z 0 ) = inf 0≤y,z≤1 T v,v+µ,v (1, y, z) ≥ 0. If we assume that T v,v+µ,v (1, y 0 , z 0 ) = 0 then ∞ i,j=0
(q 2µ , q 2 ) i (q 2 , q 2 ) i (q 2µ , q 2 ) j (q 2 , q 2 ) j q 2(1+v)(i+j) D v (1, q i y 0 , q j z 0 ) = 0, which implies that c q,v F q,v t → j v (t, q 2 )j v (z 0 t, q 2 ) (q i y 0 ) = D v (1, q i y 0 , z 0 ) = 0, ∀i ∈ N.

From Proposition 1 and the fact that there exist σ 0 > 0 such that j v (z, q 2 ) ≤ σ 0 e |z| , ∀z ∈ C we see that this function

z → F q,v t → j v (t, q 2 )j v (z 0 t, q 2 ) (z) is analytic. Then for all x ∈ R q F q,v t → j v (t, q 2 )j v (z 0 t, q 2 ) (x) = 0 ⇒ j v (t, q 2 )j v (z 0 t, q 2 ) = 0, ∀t ∈ R q ,
but this is absurd. Then δ 0 > 0. Now we have

δ 0 ≤ T v,v+µ,v (x, y, z), ∀0 < x ≤ 1. If δ 0 > T v,v+µ,v (x, y, z), ∀x > 1. 
then T v+µ,v+µ,v+α (1, y, z) = A α,µ,v (x) T v,v+µ,v (x, y, z)δ 0 x 2v+1 d q x ≥ 0.

Otherwise, there exist s > 0 such that δ 0 > T v,v+µ,v (x, y, z), ∀x > s.

because |T v,v+µ,v (x, y, z)| < c 2 q,v+µ j v+µ (.q 2 ) 2 q,∞ × j v (.q 2 ) q,v,1 x -2(v+1) → 0, as x → ∞.

For δ ≥ δ 0 we obtain T v+µ,v+µ,v+α (1, y, z) = q,v+µ ∞ 0 j v+µ (t, q 2 )j v+µ (yt, q 2 )j v+µ (zt, q 2 )t 2(v+α)+1 d q t = c 2 q,v+µ ∞ 0 j v+µ (t, q 2 )j v+µ (yt, q 2 )j v+µ (zt, q 2 ) lim α→µ t 2(v+α)+1 d q t = T v+µ,v+µ,v+α (1, y, z) = D v+µ (1, y, z) ≥ 0.

It is not hard to justify the exchange of the signs integral and limit, in fact j v+µ (t, q 2 )j v+µ (yt, q 2 )j v+µ (zt, q 2 )t 2(v+α)+1

≤ t → j v+µ (yt, q 2 )j v+µ (zt, q 2 )t 2(v+α)+1 q,∞ × j v+µ (t, q 2 ) .

From the following identity D v+µ (x, y, z) = x -2(v+µ+1) D v+µ 1, y x , z x , we deduce that D v+µ (x, y, z) ≥ 0, ∀x, y, z ∈ R + q .

The fact that Q -1 2 =]0, q 0 ] and Q 0 =]0, 1[ leads to the result.

1 0A

 1 α,µ,v (x) T v,v+µ,v (x, y, z)δ 0 x 2v+1 d q x + ∞ 1

1 0A 1 A

 11 α,µ,v (x) T v,v+µ,v (x, y, z)δ x 2v+1 d q x + s α,µ,v (x) T v,v+µ,v (x, y, z)δ x 2v+1 d q x + ∞ s A α,µ,v (x) T v,v+µ,v (x, y, z)δ x 2v+1 d q x = I 1 (δ) + I 2 (δ) + I 3 (δ). Note that    δ → I 1 (δ)is a decreesing function tends towards -∞ and I 1 (δ 0 ) > 0 δ → I 2 (δ) is an increasing function tends towards +∞ and I 2 (δ 0 ) < 0 δ → I 3 (δ) is an increasing function tends towards +∞ and I 3 (δ 0 ) > 0 then there exist δ > δ 0 such that I 1 (δ) + I 2 (δ) = 0 which implies T v+µ,v+µ,v+α (1, y, z) = I 3 (δ) > 0. In the end lim α→µ [T v+µ,v+µ,v+α (1, y, z)] = lim α→µ c 2