
HAL Id: hal-00161303
https://hal.science/hal-00161303

Submitted on 10 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential products in effect categories
Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Sequential products in effect cat-
egories. [Research Report] Université Grenoble Alpes (UGA). 2007. �hal-00161303�

https://hal.science/hal-00161303
https://hal.archives-ouvertes.fr

ha
l-

00
16

13
03

, v
er

si
on

 1
 -

 1
0

Ju
l 2

00
7

Sequential products in effect categories

Jean-Guillaume Dumas
LJK, University of Grenoble, France. Jean-Guillaume.Dumas@imag.fr

Dominique Duval
LJK, University of Grenoble, France. Dominique.Duval@imag.fr

Jean-Claude Reynaud
Malhiver, 38640 Claix, France. Jean-Claude.Reynaud@imag.fr

July 4., 2007

Abstract

A new categorical framework is provided for dealing with multiple argu-
ments in a programming language with effects, for example in a language
with imperative features. Like related frameworks (Monads,Arrows, Freyd
categories), we distinguish two kinds of functions. In addition, we also dis-
tinguish two kinds of equations. Then, we are able to define a kind of
product, that generalizes the usual categorical product. This yields a pow-
erful tool for deriving many results about languages with effects.

1 Introduction

The aim of this paper is to provide a new categorical framework dealing with
multiple arguments in a programming language with effects, for example in a
language with imperative features. In our cartesian effect categories, as in other
related frameworks (Monads, Arrows, Freyd categories), two kinds of functions
are distinguished. The new feature here is that two kinds of equations are also
distinguished. Then, we define a kind of product, that is mapped to the usual
categorical product when the distinctions (between functions and between
equations) are forgotten. In addition, we prove that cartesian effect categories
determine Arrows.

A well-established framework for dealing with computational effects is
the notion of strong monads, that is used in Haskell [8, 12]. Monads have
been generalized on the categorical side to Freyd categories [10] and on the
functional programming side to Arrows [7]. The claims that Arrows generalize
Monads and that Arrows are Freyd categories are made precise in [6]. In all
these frameworks, effect-free functions are distinguished among all functions,

1

generalizing the distinction of values among all computations in [8]. In this paper,
as in [1, 6], effect-free functions are called pure functions; however, the symbols
C and V, that are used for the category of all functions and for the subcategory
of pure functions, respectively, are reminiscent of Moggi’s terminology.

In all these frameworks, one major issue is about the order of evaluation of
the arguments of multivariate operations. When there is no effect, the order
does not matter, and the notion of product in a cartesian category provides a
relevant framework. So, the category V is cartesian, and products of pure funtions
are defined by the usual characteristic property of products. But, when effects
do occur, the order of evaluation of the arguments becomes fundamental, which
cannot be dealt with the categorical product. So, the category C is not cartesian,
and products of functions do not make sense, in general. However, some kind
of sequential product of computations should make sense, in order to evaluate the
arguments in a given order. This is usually defined, by composition, from some
kinds of products of a computation with an identity. This is performed by the
strength of the monad [8], by the symmetric premonoidal category of the Freyd
category [10], and by the first operator of Arrows [7].

In this paper, the framework of cartesian effect categories is introduced. We still
distinguish two kinds of functions: pure functions among arbitrary functions,
that form two categories V and C, with V a subcategory of C, and V cartesian.
Let us say that the functions are decorated, either as pure or as arbitrary. The new
feature that is introduced in this paper is that we also distinguish two kinds of
equations: strong equations and semi-equations, respectively denoted ≡ and .,
so that equations also are decorated. Strong equations can be seen, essentially, as
equalities between computations, while semi-equations are much weaker, and
can be seen as a kind of approximation relation. Moreover, as suggested by the
symbols ≡ and ., the strong equations form an equivalence relation, while the
semi-equations form a preorder relation. Then, we define the semi-product of
two functions when at least one is pure, by a characteristic property that is a
decorated version of the characteristic property of the usual product. Since all
identities are values, we get the semi-product of any function with an identity,
that is used for building sequential products of functions.

Cartesian effect categories give rise to Arrows, in the sense of [7], and they
provide a deduction system: it is possible to decorate many proofs on cartesian
categories in order to get proofs on cartesian effect categories.

As for terminology, our graphs are directed multi-graphs, made of points
(or vertices, or objects) and functions (or edges, arrows, morphisms). We use
weak categories rather than categories, i.e., we use a congruence ≡ rather than
the equality, however this “syntactic” choice is not fundamental here. As for
notations, we often omit the subscripts in the diagrams and in the proofs.

Cartesian weak categories are reminded in section 2, then cartesian effect
categories are defined in section 3; they are compared with Arrows in section 4,
and examples are presented in section 5. In appendix A are given the proofs
of some properties of cartesian weak categories, that are well-known, followed

2

by their decorated versions, that yield proofs of properties of cartesian effect
categories.

2 Cartesian weak categories

Weak categories are reminded in this section, with their notion of product.
Except for the minor fact that equality is weakened as a congruence, all this
section is very well known. Some detailed proofs are given in appendix A, with
their decorated versions.

2.1 Weak categories

A weak category is like a category, except that the equations (for unitarity and
associativity) hold only “up to congruence”.

Definition 2.1. A weak category is a graph where:

• for each point X there is a loop idX : X→ X called the identity of X,

• for each consecutive functions f : X → Y, g : Y → Z, there is a function
g ◦ f : X→ Z called the composition of f and g,

• and there is a relation ≡ between parallel functions (each f1 ≡ f2 is called
an equation), such that:

– ≡ is a congruence, i.e., it is an equivalence relation and for each
f : X → Y, g1, g2 : Y → Z, h : Z → W, if g1 ≡ g2 then g1 ◦ f ≡ g2 ◦ f
(substitution) and h ◦ g1 ≡ h ◦ g2 (replacement),

– for each f : X → Y, the unitarity equations hold: f ◦ idX ≡ f and
idY ◦ f ≡ f ,

– and for each f : X → Y, g : Y → Z, h : Z → W, the associativity
equation holds: h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f .

So, a weak category is a special kind of a bicategory, and a category is a weak
category where the congruence is the equality.

2.2 Products

In a weak category, a weak product, or simply a product, is defined as a product
“up to congruence”. We focus on nullary products (i.e., terminal points) and
binary products; it is well-know that products of any arity can be recovered
from those.

Definition 2.2. A (weak) terminal point is a point U (for “Unit”) such that for
every point X there is a function 〈 〉X : X→ U, unique up to congruence.

3

Definition 2.3. A binary cone is made of two functions with the same source

Y1
f1
←− X

f2
−→ Y2. A binary (weak) product is a binary cone Y1

q1
←− Y1 × Y2

q2
−→ Y2

such that for every binary cone with the same base Y1
f1
←− X

f2
−→ Y2 there is

a function 〈 f1, f2〉 : X → Y1 × Y2, called the pair of f1 and f2, unique up to
congruence, such that:

q1 ◦ 〈 f1, f2〉 ≡ f1 and q2 ◦ 〈 f1, f2〉 ≡ f2 .

As usual, all terminal points are isomorphic, and the fact of using U for
denoting a terminal point corresponds to the choice of one terminal point.
Similarly, all products on a given base are isomorphic (in a suitable sense), and
the notations correspond to the choice of one product for each base.

Definition 2.4. A cartesian weak category is a weak category with a chosen
terminal point and chosen binary products.

2.3 Products of functions

Definition 2.5. In a cartesian weak category, the (weak) binary product of two
functions f1 : X1 → Y1 and f2 : X2 → Y2 is the function:

f1 × f2 = 〈 f1 ◦ p1, f2 ◦ p2〉 : X1 × X2 → Y1 × Y2 .

So, the binary product of functions is characterized, up to congruence, by the
equations:

q1 ◦ (f1 × f2) ≡ f1 ◦ p1 and q2 ◦ (f1 × f2) ≡ f2 ◦ p2 .

The defining equations of a pair and a product can be illustrated as follows:

Y1

X

f1

66mmmmmmmmmmmmmmmm

f2
((QQQQQQQQQQQQQQQQ

〈 f1, f2〉 // Y1 × Y2

q1

OO

q2

��

≡

≡

Y2

X1

f1 // Y1

X1 × X2

p1

OO

p2

��

f1× f2 //

≡

≡

Y1 × Y2

q1

OO

q2

��
X2

f2 // Y2

So, the products are defined from the pairs (note that we use the same symbols
f1, f2 for the general case fi : Xi → Yi and for the special case fi : X → Yi).
The other way round, the pairs can be recovered from the products and the
diagonals, i.e., the pairs 〈id, id〉; indeed, it is easy to prove that for each cone

X1
f1
←− X

f2
−→ X2

〈 f1, f2〉 ≡ (f1 × f2) ◦ 〈idX, idX〉 .

In the following, we consider products X1
p1
←− X1 × X2

p2
−→ X2, Y1

q1
←−

Y1 × Y2
q2
−→ Y2 and Z1

r1
←− Z1 × Z2

r2
−→ Z2.

4

Proposition 2.6 (congruence). For each f1 ≡ f ′
1

: X1 → Y1 and f2 ≡ f ′2 : X2 → Y2

1. if X1 = X2

〈 f1, f2〉 ≡ 〈 f
′
1 , f ′2〉 ,

2. in all cases
f1 × f2 ≡ f ′1 × f ′2 .

Proposition 2.7 (composition). For each f1 : X1 → Y1, f2 : X2 → Y2, g1 : Y1 →

Z1, g2 : Y2 → Z2

1. if X1 = X2 and Y1 = Y2 and f1 = f2(= f)

〈g1, g2〉 ◦ f ≡ 〈g1 ◦ f , g2 ◦ f 〉 ,

2. if X1 = X2

(g1 × g2) ◦ 〈 f1, f2〉 ≡ 〈g1 ◦ f1, g2 ◦ f2〉 ,

3. in all cases
(g1 × g2) ◦ (f1 × f2) ≡ (g1 ◦ f1) × (g2 ◦ f2) .

Let us consider the products X1
p1
←− X1 ×X2

p2
−→ X2 and X2

p′
2
←− X2 ×X1

p′
1
−→

X1. The swap function is the isomorphism:

γ(X1 ,X2) = 〈p
′
1, p
′
2〉p1,p2

= 〈p′1, p
′
2〉 : X2 × X1 → X1 × X2 ,

characterized by:

p1 ◦ γ(X1 ,X2) ≡ p′1 and p2 ◦ γ(X1 ,X2) ≡ p′2 .

Proposition 2.8 (swap). For each f1 : X1 → Y1 and f2 : X2 → Y2, let γY = γ(Y1,Y2)

and γX = γ(X1,X2), then:

1. if X1 = X2

γY ◦ 〈 f2, f1〉 ≡ 〈 f1, f2〉 ,

2. in all cases
γY ◦ (f2 × f1) ◦ γ−1

X ≡ f1 × f2 .

Let us consider the products X1
p1
←− X1 ×X2

p2
−→ X2, X1 ×X2

p1,2
←− (X1 ×X2)×

X3
p3
−→ X3, X2

p′
2
←− X2 × X3

p′
3
−→ X3 and X1

p′
1
←− X1 × (X2 × X3)

p′
2,3
−→ X2 × X3. The

associativity function is the isomorphism:

α(X1 ,X2,X3) = 〈〈p
′
1, p
′
2 ◦ p′2,3〉p1,p2

, p′3 ◦ p′2,3〉p1,2,p3
: X1 × (X2 × X3)→ (X1 × X2) × X3 ,

characterized by:

p1◦p1,2◦α(X1 ,X2,X3) ≡ p′1 , p2◦p1,2◦α(X1 ,X2,X3) ≡ p′2◦p
′
2,3 and p3◦α(X1 ,X2,X3) ≡ p′3◦p

′
2,3 .

5

Proposition 2.9 (associativity). For each f1 : X1 → Y1, f2 : X2 → Y2 and f3 :
X3 → Y3, let αY = α(Y1,Y2,Y3) and αX = α(X1,X2,X3), then:

1. if X1 = X2 = X3

αY ◦ 〈 f1, 〈 f2, f3〉〉 ≡ 〈〈 f1, f2〉, f3〉 ,

2. in all cases
αY ◦ (f1 × (f2 × f3)) ≡ ((f1 × f2) × f3) ◦ αX .

In the definition of the binary product f1 × f2, both f1 and f2 play symmetric
rôles. This symmetry can be broken: “first f1 then f2” corresponds to (idY1

×

f2) ◦ (f1 × idX2
), using the intermediate product Y1 ×X2, while “first f2 then f1”

corresponds to (f1 × idY2
) ◦ (idX1

× f2), using the intermediate product X1 × Y2.
These are called the (left and right) sequential products of f1 and f2. The three
versions of the binary product of functions coincide, up to congruence; this is
a kind of parallelism property, meaning that both f1 and f2 can be computed
either simultaneously, or one after the other, in any order:

Proposition 2.10 (parallelism). For each f1 : X1 → Y1 and f2 : X2 → Y2

f1 × f2 ≡ (idY1
× f2) ◦ (f1 × idX2

) ≡ (f1 × idX2
) ◦ (idY1

× f2) .

3 Cartesian effect categories

Sections 3.1 to 3.3 form a decorated version of section 2. Roughly speaking, a
kind of structure is decorated when there is some classification of its ingredients.
Here, the classification involves two kinds of functions and two kinds of equa-
tions. Effect categories are defined in section 3.1 as decorated weak categories.
In section 3.2, semi-products are defined as decorated weak products, then
cartesian effect category as decorated cartesian weak categories. Decorated
propositions are stated here, and the corresponding decorated proofs are given
in appendix A. Then, in sections 3.4 and 3.5, the sequential product of functions
is defined by composing semi-products, and some of its properties are derived.

3.1 Effect categories

A (weak) subcategory V of a weak category C is a subcategory of C such that
each equation of V is an equation of C. It is a wide (weak) subcategory when V
and C have the same points, and each equation of C between functions in V is
an equation in V. Then only one symbol ≡ can be used, for both V and C.

Definition 3.1. Let V be a weak category. An effect category extending V is a weak
category C, such that V is a wide subcategory of C, together with a relation .
between parallel functions in C such that:

• the relation . is weaker than ≡ for f1, f2 in C, f1 ≡ f2 ⇒ f1 . f2;

• . is transitive;

6

• . and ≡ coincide on V for v1, v2 in V, v1 ≡ v2 ⇐⇒ v1 . v2;

• . satisfies the substitution property:
if f : X→ Y and g1 . g2 : Y→ Z then g1 ◦ f . g2 ◦ f : X→ Z;

• . satisfies the replacement property with respect to V:
if g1 . g2 : Y→ Z and v : Z→W in V then v ◦ g1 . v ◦ g2 : Y→W.

The first property implies that. is reflexive, and when≡ is the equality it means
precisely that . is reflexive. Since . is transitive and weaker than ≡, if either
f1 ≡ f2 . f3 or f1 . f2 ≡ f3, then f1 . f3; this is called the compatibility of .with
≡. An effect category is strict when ≡ is the equality. In this paper, there is no
major difference between effect categories and strict effect categories.

A pure function is a function in V. The symbol is used for pure functions,
and → for all functions. It follows from definition 3.1 that all the identities
of C are pure, the composition of pure functions is pure, and more precisely
a composition of functions is pure if and only if all the composing functions
are pure. It should be noted that there can be equations f ≡ v between a non-
pure function and a pure one; then the function f is proved effect-free, without
being pure. This “syntactic” choice could be argued; note that this situation
disappears when the congruence ≡ is the equality. The relation . is called the
semi-congruence of the effect category, and each f1 . f2 is called a semi-equation.
The semi-congruence generally is not a congruence, for two reasons: it may not
be symmetric, and it may not satisfy the replacement property for all functions.

Examples of strict effect categories are given in section 5. For dealing with
partiality in section 5.1, the semi-congruence . coincides with the usual or-
dering of partial functions, it is not symmetric but it satisfies the replacement
property for all partial functions. On the other hand, in section 5.2, the semi-
congruence . means that two functions in an imperative language have the
same result but may act differently on the state, it is an equivalence relation
that does not satisfy the replacement property for non-pure functions.

Clearly, if the decorations are forgotten, i.e., if both the distinction between
pure functions and arbitrary functions and the distinction between the congru-
ence and the semi-congruence are forgotten, then an effect category is just a
weak category.

A cartesian effect category, as defined below, is an effect category where V
is cartesian and where this cartesian structure on V has some kind of general-
ization to C, that does not, in general, turn C into a cartesian weak category.

3.2 Semi-products

Now, let us assume that C is an effect category extending V, and that V is
cartesian. We define nullary and binary semi-products in C, for building pairs
of functions when at least one of them is pure.

Definition 3.2. A semi-terminal point in C is a terminal point U in V such that
every function g : X→ U satisfies g . 〈 〉X.

7

Definition 3.3. A binary semi-product in C is a binary product Y1
q1
f Y1×Y2

q2
 Y2

in V such that:

• for every binary cone with the same base Y1
f1
←− X

v2
 Y2 and with v2

pure, there is a function 〈 f1, v2〉q1,q2
= 〈 f1, v2〉 : X→ Y1 × Y2, unique up to

≡, such that
q1 ◦ 〈 f1, v2〉 ≡ f1 and q2 ◦ 〈 f1, v2〉 . v2 ,

• and for every binary cone with the same base Y1
v1
f X

f2
−→ Y2 and with v1

pure, there is a function 〈v1, f2〉q1,q2
= 〈v1, f2〉 : X→ Y1 × Y2, unique up to

≡, such that
q1 ◦ 〈v1, f2〉 . v1 and q2 ◦ 〈v1, f2〉 ≡ f2 .

The defining (semi-)equations of a binary semi-product can be illustrated as
follows:

Y1

X

v1

666v6v6v6v6v6v6v6v6v6v

v2

(((h(h(h(h(h(h(h(h(h(h

〈v1,v2〉 ///o/o/o/o/o/o/o/o Y1 × Y2

q1

OO
O�
O�
O�

q2

�� �O
�O
�O≡

≡

Y2

Y1

X

f1

66mmmmmmmmmmmmmmmm

v2

(((h(h(h(h(h(h(h(h(h(h

〈 f1,v2〉 // Y1 × Y2

q1

OO
O�
O�
O�

q2

���O
�O
�O&

≡

Y2

Y1

X

v1

666v6v6v6v6v6v6v6v6v6v

f2
((QQQQQQQQQQQQQQQQ

〈v1, f2〉 // Y1 × Y2

q1

OO
O�
O�
O�

q2

���O
�O
�O≡

&

Y2

Clearly, if the decorations are forgotten, then semi-products are just products.

The notation is not ambiguous. Indeed, if Y1
v1
f X

v2
 Y2 is a binary cone in

V, then the three definitions of the pair 〈v1, v2〉 above coincide, up to congruence:
let t denote any one of the three pairs, then t is characterized, up to congruence,
by q1 ◦ t ≡ v1 and q2 ◦ t ≡ v2, because ≡ and . coincide on pure functions.

Definition 3.4. A cartesian effect category extending a cartesian weak category V
is an effect category extending V such that each terminal point of V is a semi-
terminal point of C and each binary product of V is a binary semi-product of
C.

3.3 Semi-products of functions

Definition 3.5. In a cartesian effect category, the binary semi-product f1 × v2 of a
function f1 : X1 → Y1 and a pure function v2 : X2 Y2 is the function:

f1 × v2 = 〈 f1 ◦ p1, v2 ◦ p2〉 : X1 × X2 → Y1 × Y2

It follows that f1 × v2 is characterized, up to ≡, by:

q1 ◦ (f1 × v2) ≡ f1 ◦ p1 and q2 ◦ (f1 × v2) . v2 ◦ p2

8

X1

f1 // Y1

X1 × X2

p1

OO
O�
O�
O�

p2

�� �O
�O
�O

f1×v2 //

&

≡

Y1 × Y2

q1

OO
O�
O�
O�

q2

�� �O
�O
�O

X2
v2 ///o/o/o/o/o/o/o/o/o/o/o Y2

The binary semi-product v1 × f2 : X1 × X2 → Y1 × Y2 of a pure function v1 :
X1 Y1 and a function f2 : X2 → Y2 is defined in the symmetric way, and it is
characterized, up to ≡, by the symmetric property.

The notation is not ambiguous, because so is the notation for pairs; if v1

and v2 are pure functions, then the three definitions of v1 × v2 coincide, up to
congruence.

Propositions about products in cartesian weak categories are called basic
propositions. It happens that each basic proposition in section 2 has a decorated
version, about semi-products of the form f1 × v2 in cartesian effect categories,
that is stated below. The symmetric decorated version also holds, for semi-
products of the form v1 × f2. Each function in the basic proposition is replaced
either by a function or by a pure function, and each equation is replaced either
by an equation (≡) or by a semi-equation (. or &).

In addition, in appendix A, the proofs of the decorated propositions are
decorated versions of the basic proofs. It happens that no semi-equation appears
in the decorated propositions below, but they are used in the proofs. Indeed,
a major ingredient in the basic proofs is that a function 〈 f1, f2〉 or f1 × f2 is
characterized, up to ≡, by its projections, both up to ≡. The decorated version
of this property is that a function 〈 f1, f2〉 or f1 × f2, where f1 or f2 is pure, is
characterized, up to ≡, by its projections, one up to ≡ and the other one up to .. It
should be noted that even when some decorated version of a basic proposition
is valid, usually not all the basic proofs can be decorated. In addition, when
equations are decorated as semi-equations, some care is required when the
symmetry and replacement properties are used.

Proposition 3.6 (congruence). For each congruent functions f1 ≡ f ′
1

: X→ Y1 and
pure functions v2 ≡ v′2 : X Y2

1. if X1 = X2

〈 f1, v2〉 ≡ 〈 f
′
1 , v
′
2〉 .

2. in all cases
f1 × v2 ≡ f ′1 × v′2 .

Proposition 3.7 (composition). For each functions f1 : X1 → Y1, g1 : Y1 → Z1

and pure functions v2 : X2 Y2, w2 : Y2 Z2

1. if X1 = X2 and Y1 = Y2 and f1 = v2(= v)

〈g1,w2〉 ◦ f ≡ 〈g1 ◦ v,w2 ◦ v〉 ,

9

2. if X1 = X2

(g1 × w2) ◦ 〈 f1, v2〉 ≡ 〈g1 ◦ f1,w2 ◦ v2〉 ,

3. in all cases
(g1 × w2) ◦ (f1 × v2) ≡ (g1 ◦ f1) × (w2 ◦ v2) .

The swap and associativity functions are defined in the same way as in
section 2; they are products of projections, so that they are pure functions. It
follows that the swap and associativity functions are characterized by the same
equations as in section 2, and that they are still isomorphisms.

Proposition 3.8 (swap). For each function f1 : X→ Y1 and pure function v2 : X
Y2, let γY = γ(Y1,Y2) and γX = γ(X1,X2), then:

1. if X1 = X2

γY ◦ 〈v2, f1〉 ≡ 〈 f1, v2〉 ,

2. in all cases
γY ◦ (v2 × f1) ◦ γ−1

X ≡ f1 × v2 .

Proposition 3.9 (associativity). For each function f1 : X1 → Y1 and pure functions
v2 : X2 Y2, v3 : X3 Y3, let αY = α(Y1,Y2,Y3) and αX = α(X1 ,X2,X3), then:

1. if X1 = X2 = X3

αY ◦ 〈 f1, 〈v2, v3〉〉 ≡ 〈〈 f1, v2〉, v3〉 ,

2. in all cases:
αY ◦ (f1 × (v2 × v3)) ≡ ((f1 × v2) × v3) ◦ αX .

The sequential product of a function f1 : X1 → Y1 and a pure function
v2 : X2 Y2 can be defined as in section 2, using the intermediate products

Y1
s1
f Y1 × X2

s2
 X2 and X1

t1
f X1 × Y2

t2
 Y2. It does coincide with the

semi-product of f1 and v2, up to congruence:

Proposition 3.10 (parallelism). For each function f1 : X1 → Y1 and pure function
v2 : X2 Y2

f1 × v2 ≡ (idY1
× v2) ◦ (f1 × idX2

) ≡ (f1 × idX2
) ◦ (idY1

× v2) .

3.4 Sequential products of functions

It has been stated in proposition 2.10 that, in a cartesian weak category, the
binary product of functions coincide with both sequential products, up to con-
gruence:

f1 × f2 ≡ (idY1
× f2) ◦ (f1 × idX2

) ≡ (f1 × idX2
) ◦ (idY1

× f2) .

In a cartesian effect category, when f1 and f2 are any functions, the product
f1 × f2 is not defined. But (idY1

× f2) ◦ (f1 × idX2
) and (f1 × idX2

) ◦ (idY1
× f2) make

sense, thanks to semi-products, because identities are pure. They are called the
sequential products of f1 and f2, and they do not coincide up to congruence, in
general: parallelism is not satisfied.

10

Definition 3.11. The left binary sequential product of two functions f1 : X1 → Y1

and f2 : X2 → Y2 is the function:

f1 ⋉ f2 = (idY1
× f2) ◦ (f1 × idX2

) : X1 × X2 → Y1 × Y2 .

So, the left binary sequential product is obtained from:

X1

f1 // Y1
id ///o/o/o/o/o/o/o/o/o/o/o Y1

X1 × X2

p1

OO
O�
O�
O�

p2

���O
�O
�O

f1×id //

&

≡

Y1 × X2

s1

OO
O�
O�
O�

s2

�� �O
�O
�O

id× f2 //

≡

&

Y1 × Y2

q1

OO
O�
O�
O�

q2

�� �O
�O
�O

X2
id ///o/o/o/o/o/o/o/o/o/o/o X2

f2 // Y2

The left sequential product extends the semi-product:

Proposition 3.12. For each function f1 and pure function v2, f1 ⋉ v2 ≡ f1 × v2.

Proof. ¿From proposition 3.7, f1 ⋉ v2 = (id× v2) ◦ (f1 × id) ≡ (id ◦ f1)× (v2 ◦ id) ≡
f1 × v2. �

Note that the diagonal 〈idX, idX〉 is a pair of pure functions. So, by analogy
with the property 〈 f1, f2〉 ≡ (f1 × f2) ◦ 〈idX, idX〉 in weak categories:

Definition 3.13. The left sequential pair of two functions f1 : X → Y1 and
f2 : X→ Y2 is:

〈 f1, f2〉l = (f1 ⋉ f2) ◦ 〈idX, idX〉 .

The left sequential pairs do not satisfy the usual equations for pairs, as in
definition 2.3. However, they satisfy some weaker properties, as stated in
corollary 3.22.

The right binary sequential product of f1 and f2 is defined in the symmetric
way; it is the function:

f1 ⋊ f2 = (f1 × idY2
) ◦ (idX1

× f2) : X1 × X2 → Y1 × Y2 .

It does also extend the product of a pure function and a function: for each
pure function v1, v1 ⋊ f2 ≡ v1 × f2. The right sequential pair of f1 : X → Y1 and
f2 : X→ Y2 is:

〈 f1, f2〉r = (f1 ⋊ f2) ◦ 〈idX, idX〉 .

Here are some properties of the sequential products that are easily deduced
from the properties of semi-products in 3.2. The symmetric properties also
hold.

Proposition 3.14 (congruence). For each congruent functions f1 ≡ f ′
1

: X1 → Y1

and f2 ≡ f ′
2

: X2 → Y2

f1 ⋉ f2 ≡ f ′1 ⋉ f ′2 .

11

Proof. Clear, from 3.6. �

Proposition 3.15 (composition). For each functions f1 : X1 → Y1, g1 : Y1 → Z1,
g2 : Y2 → Z2 and pure function v2 : X2 Y2

(g1 ⋉ g2) ◦ (f1 × v2) ≡ (g1 ◦ f1) ⋉ (g2 ◦ v2) .

X1

f1 // Y1

g1 // Z1
id ///o/o/o/o/o/o/o/o/o/o/o Z1

X1 × X2

OO
O�
O�
O�

��
�O
�O
�O

f1×v2 //

≡

≡

Y1 × Y2

OO
O�
O�
O�

���O
�O
�O

g1×id //

&

≡

Z1 × Y2

OO
O�
O�
O�

�� �O
�O
�O

id×g2 //

≡

&

Z1 × Z2

OO
O�
O�
O�

��
�O
�O
�O

X2
v2 ///o/o/o/o/o/o/o/o/o/o/o Y2

id ///o/o/o/o/o/o/o/o/o/o/o Y2

g2 // Z2

Proof. ¿From several applications of proposition 3.7 and its symmetric version:
(id × g2) ◦ (g1 × id) ◦ (f1 × v2) ≡ (id × g2) ◦ ((g1 ◦ f1) × v2) ≡ (id × g2) ◦ (id × v2) ◦
((g1 ◦ f1) × id) ≡ (id × (g2 ◦ v2)) ◦ ((g1 ◦ f1) × id). �

Proposition 3.16 (swap). For each functions f1 : X1 → Y1 and f2 : X2 → Y2, the
left and right sequential products are related by swaps:

γY ◦ (f2 ⋊ f1) ◦ γ−1
X ≡ f1 ⋉ f2 .

Proof. ¿From proposition 3.8 and its symmetric version:
γ ◦ (id × f2) ◦ (f1 × id) ≡ (f2 × id) ◦ γ ◦ (f1 × id) ≡ (f2 × id) ◦ (id × f1) ◦ γ. �

Proposition 3.17 (associativity). For each functions f1 : X1 → Y1, f2 : X2 → Y2

and f3 : X3 → Y3, let αY = α(Y1 ,Y2,Y3) and αX = α(X1,X2,X3), then: :

αY ◦ (f1 ⋉ (f2 ⋉ f3)) ≡ ((f1 ⋉ f2) ⋉ f3) ◦ αX .

Proof. ¿From proposition 3.9. �

3.5 Projections of sequential products

Let us come back to a weak category, as in section 2. The binary product of
functions is characterized, up to congruence, by the equations:

q1 ◦ (f1 × f2) ≡ f1 ◦ p1 and q2 ◦ (f1 × f2) ≡ f2 ◦ p2 ,

so that for all constant functions x1 : U→ X1 and x2 : U→ X2

q1 ◦ (f1 × f2) ◦ 〈x1, x2〉 ≡ f1 ◦ x1 and q2 ◦ (f1 × f2) ◦ 〈x1, x2〉 ≡ f2 ◦ x2 .

In a cartesian effect category, it is proved in theorem 3.21 that f1 ⋉ f2, when
applied to a pair of constant pure functions 〈x1, x2〉, returns on the Y1 side a

12

function that is semi-congruent to f1(x1), and on the Y2 side a function that is
congruent to f2 ◦x2 ◦〈 〉◦ f1 ◦x1, which means “first f1(x1), then forget the result,
then f2(x2)”. More precise statements are given in propositions 3.18 and 3.20.
Proofs are presented in the same formalized way as in appendix A.

As above, we consider the semi-terminal point U and semi-products

X1
p1
f X1 × X2

p2
 X2, Y1

q1
f Y1 × Y2

q2
 Y2 and Y1

s1
f Y1 × X2

s2
 X2.

Proposition 3.18. For each functions f1 : X1 → Y1 and f2 : X2 → Y2

q1 ◦ (f1 ⋉ f2) . f1 ◦ p1 : X1 × X2 → Y1 .

X1

f1 // Y1
id ///o/o/o/o/o/o/o/o/o/o/o Y1

X1 × X2

p1

OO
O�
O�
O�

f1×id //

≡

f1⋉ f2

=

44Y1 × X2

s1

OO
O�
O�
O�

id× f2 //

&

Y1 × Y2

q1

OO
O�
O�
O�

Proof.
(a) q1 ◦ (id × f2) . s1

(b) q1 ◦ (f1 ⋉ f2) . s1 ◦ (f1 × id) (a), subst.
(c) s1 ◦ (f1 × id) ≡ f1 ◦ p1

(d) q1 ◦ (f1 ⋉ f2) . f1 ◦ p1 (b), (c), comp
�

Lemma 3.19. For each function f1 : X1 → Y1 and pure function x2 : U X2

〈idY1
, x2 ◦ 〈 〉Y1

〉 ◦ f1 ≡ 〈 f1, x2 ◦ 〈 〉X1
〉 : X1 → Y1 × X2 .

Both handsides can be illustrated as follows:

Y1
id ///o/o/o/o/o/o/o/o/o Y1

X1

f1 // Y1

〈 〉

��
�O
�O
�O

〈id,x2◦〈 〉〉 ///o/o/o/o/o/o/o/o

≡

≡

Y1 × X2

s1

OO
O�
O�
O�

s2

���O
�O
�O

U
x2 ///o/o/o/o/o/o/o/o/o X2

X1

f1 // Y1

X1

〈 〉

��
�O
�O
�O

〈 f1,x2◦〈 〉〉 //

&

≡

Y1 × X2

s1

OO
O�
O�
O�

s2

�� �O
�O
�O

U
x2 ///o/o/o/o/o/o/o/o/o X2

Proof.
(a1) s1 ◦ 〈id, x2 ◦ 〈 〉〉 ≡ id
(b1) s1 ◦ 〈id, x2 ◦ 〈 〉〉 ◦ f1 ≡ f1 (a1), subst≡
(a2) s2 ◦ 〈id, x2 ◦ 〈 〉〉 ≡ x2 ◦ 〈 〉

(b2) s2 ◦ 〈id, x2 ◦ 〈 〉〉 ◦ f1 ≡ x2 ◦ 〈 〉 ◦ f1 (a2), subst≡
(c2) 〈 〉 ◦ f1 . 〈 〉 semi-terminality of U
(d2) x2 ◦ 〈 〉 ◦ f1 . x2 ◦ 〈 〉 (c2), repl

.
(x2 is pure)

(e2) s2 ◦ 〈id, x2 ◦ 〈 〉〉 ◦ f1 . x2 ◦ 〈 〉 (b2), (d2), trans.
(f) 〈id, x2 ◦ 〈 〉〉 ◦ f1 ≡ 〈 f1, x2 ◦ 〈 〉〉 (b1), (e2)

13

�

Proposition 3.20. For each functions f1 : X1 → Y1, f2 : X2 → Y2 and pure function
x2 : U X2

q2 ◦ (f1 ⋉ f2) ◦ 〈idX1
, x2 ◦ 〈 〉X1

〉 ≡ f2 ◦ x2 ◦ 〈 〉Y1
◦ f1 : X1 → Y2 .

Both handsides can be illustrated as follows:

X1
id ///o/o/o/o/o/o X1

X1

〈 〉

��
�O
�O
�O

〈id,x2◦〈 〉〉///o/o/o/o X1 ×X2

f1⋉ f2

=
))

p1

OO
O�
O�
O�

p2

��
�O
�O
�O

f1×id //

≡

≡

&

Y1 × X2

s2

�� �O
�O
�O

id× f2 //

≡

Y1 × Y2

q2

���O
�O
�O

U
x2 ///o/o/o/o/o/o X2

id ///o/o/o/o/o/o/o X2

f2 // Y2

X1

f1 // Y1

〈 〉

��
�O
�O
�O

U
x2 ///o/o/o X2

f2 // Y2

Proof.
(a) q2 ◦ (id × f2) ≡ f2 ◦ s2

(b) q2 ◦ (f1 ⋉ f2) ◦ 〈id, x2 ◦ 〈 〉〉 ≡ f2 ◦ s2 ◦ (f1 × id) ◦ 〈id, x2 ◦ 〈 〉〉 (a), subst≡
(c) (f1 × id) ◦ 〈id, x2 ◦ 〈 〉〉 ≡ 〈 f1, x2 ◦ 〈 〉〉 prop. 3.7
(d) 〈 f1, x2 ◦ 〈 〉〉 ≡ 〈id, x2 ◦ 〈 〉〉 ◦ f1 lemma 3.19
(e) (f1 × id) ◦ 〈id, x2 ◦ 〈 〉〉 ≡ 〈id, x2 ◦ 〈 〉〉 ◦ f1 (c), (d), trans≡
(f) f2 ◦ s2 ◦ (f1 × id) ◦ 〈id, x2 ◦ 〈 〉〉 ≡ f2 ◦ s2 ◦ 〈id, x2 ◦ 〈 〉〉 ◦ f1 (e), repl≡
(g) q2 ◦ (f1 ⋉ f2) ◦ 〈id, x2 ◦ 〈 〉〉 ≡ f2 ◦ s2 ◦ 〈id, x2 ◦ 〈 〉〉 ◦ f1 (b), (f), trans≡
(h) p2 ◦ 〈id, x2 ◦ 〈 〉〉 ≡ x2 ◦ 〈 〉

(i) f2 ◦ s2 ◦ 〈id, x2 ◦ 〈 〉〉 ◦ f1 ≡ f2 ◦ x2 ◦ 〈 〉 ◦ f1 (h), subst≡, repl≡
(j) q2 ◦ (f1 ⋉ f2) ◦ 〈id, x2 ◦ 〈 〉〉 ≡ f2 ◦ x2 ◦ 〈 〉 ◦ f1 (g), (i), trans≡

�

Theorem 3.21. For each functions f1 : X1 → Y1, f2 : X2 → Y2 and pure functions
x1 : U X1 and x2 : U X2, the function (f1 ⋉ f2) ◦ 〈x1, x2〉 satisfies:

q1 ◦ (f1 ⋉ f2) ◦ 〈x1, x2〉 . f1 ◦ x1 and q2 ◦ (f1 ⋉ f2) ◦ 〈x1, x2〉 ≡ f2 ◦ x2 ◦ 〈 〉Y1
◦ f1 ◦ x1 .

U
x1 ///o/o/o/o/o/o/o/o/o/o/o/o/o X1

f1 // Y1

U
〈x1,x2〉 ///o/o/o/o/o/o/o/o/o/o/o/o X1 × X2

f1⋉ f2 //

&

≡

Y1 × Y2

q1

OO
O�
O�
O�

q2

�� �O
�O
�O

U
x1 ///o/o/o/o X1

f1 // Y1
〈 〉 ///o/o/o/o/o/o U

x2 ///o/o/o/o X2

f2 // Y2

14

Proof.
(a1) q1 ◦ (f1 ⋉ f2) . f1 ◦ p1 prop. 3.18
(b1) q1 ◦ (f1 ⋉ f2) ◦ 〈x1, x2〉 . f1 ◦ p1 ◦ 〈x1, x2〉 (a1), subst.
(c1) p1 ◦ 〈x1, x2〉 ≡ x1 (on values)
(d1) f1 ◦ p1 ◦ 〈x1, x2〉 ≡ f1 ◦ x1 (c1), repl≡
(e1) q1 ◦ (f1 ⋉ f2) ◦ 〈x1, x2〉 . f1 ◦ x1 (b1), (d1), comp
(a2) 〈x1, x2〉 ≡ 〈idX1

, x2 ◦ 〈 〉X1
〉 ◦ x1 (on values)

(b2) q2 ◦ (f1 ⋉ f2) ◦ 〈x1, x2〉 ≡ q2 ◦ (f1 ⋉ f2) ◦ 〈idX1
, x2 ◦ 〈 〉X1

〉 ◦ x1 (a2), repl≡
(c2) q2 ◦ (f1 ⋉ f2) ◦ 〈idX1

, x2 ◦ 〈 〉X1
〉 ≡ f2 ◦ x2 ◦ 〈 〉Y1

◦ f1 prop. 3.20
(d2) q2 ◦ (f1 ⋉ f2) ◦ 〈idX1

, x2 ◦ 〈 〉X1
〉 ◦ x1 ≡ f2 ◦ x2 ◦ 〈 〉Y1

◦ f1 ◦ x1 (c2), subst≡
(e2) q2 ◦ (f1 ⋉ f2) ◦ 〈x1, x2〉 ≡ f2 ◦ x2 ◦ 〈 〉Y1

◦ f1 ◦ x1 (b2), (d2), trans≡
�

The corresponding properties of left sequential pairs easily follow.

Corollary 3.22. For each functions f1 : X → Y1, f2 : X → Y2 and pure function
x : U X

q1◦〈 f1, f2〉l . f1 , hence q1◦〈 f1, f2〉l◦x . f1◦x , and q2◦〈 f1, f2〉l◦x ≡ f2◦x◦〈 〉Y1
◦ f1◦x .

4 Effect categories and Arrows

Starting from [8, 12], monads are used in Haskell for dealing with computational
effects. A Monad type in Haskell is a unary type constructor that corresponds
to a strong monad, in the categorical sense. Monads have been generalized on
the categorical side to Freyd categories [10] and on the functional programming
side to Arrows [7]. A precise statement of the facts that Arrows generalize
Monads and that Arrows are Freyd categories can be found in [6], where each
of the three notions is seen as a monoid in a relevant category. Now we prove
that cartesian effect categories determine Arrows. In section 5 our approach is
compared with the Monads approach, for two fundamental examples. In this
section, all effect categories are strict: the congruence ≡ is the equality.

4.1 Arrows

According to [9], Arrows in Haskell are defined as follows.

Definition 4.1. An Arrow is a binary type constructor class A of the form:

class Arrow A where

arr :: (X→ Y)→ A X Y
(>>>) :: A X Y→ A Y Z→ A X Z
first :: A X Y→ A (X,Z) (Y,Z)

satisfying the following equations:

15

(1) arr id >>> f = f
(2) f >>> arr id = f
(3) (f >>> g) >>> h = f >>> (g >>> h)
(4) arr (w.v) = arr v >>> arr w
(5) first (arr v) = arr (v × id)
(6) first (f >>> g) = first f >>> first g
(7) first f >>> arr (id × v) = arr (id × v) >>> first f
(8) first f >>> arr fst = arr fst >>> f
(9) first (first f) >>> arr assoc = arr assoc >>> first f

where the functions (×), fst and assoc are defined as:

(×) :: (X→ X′)→ (Y→ Y′)→ (X,Y)→ (X′,Y′) (f × g)(x, y) = (f x, g y)
fst :: (X,Y)→ X fst(x, y) = x
(assoc) :: ((X,Y),Z)→ (X, (Y,Z)) assoc((x, y), z) = (x, (y, z))

4.2 Cartesian effect categories determine Arrows

Let VH denote the category of Haskell types and ordinary functions, so that
the Haskell notation (X→ Y) represents VH(X,Y), made of the Haskell ordinary
functions from X to Y. An arrow A contructs a type A X Y for all types X and Y.
We slightly modify the definition of Arrows by allowing (X→ Y) to represent
V(X,Y) for any cartesian category V and by requiring that A X Y is a set rather
than a type. In addition, we use categorical notations instead of Haskell syntax.

So, from now on, for any cartesian category V, an Arrow A on V associates
to each points X, Y of V a set A(X,Y), together with three operations:

arr : V(X,Y)→ A(X,Y)
>>>: A(X,Y)→ A(Y,Z)→ A(X,Z)
first : A(X,Y)→ A(X × Z,Y × Z)

that satisfy the equations (1)-(9).
Basically, the correspondence between a cartesian effect category C extend-

ing V and an Arrow A on V identifies C(X,Y) with A(X,Y) for all types X and
Y. More precisely:

Theorem 4.2. Every cartesian effect category C extending V gives rise to an Arrow
A on V, according to the following table:

Cartesian effect categories Arrows
C(X,Y) A(X,Y)

V(X,Y) ⊆ C(X,Y) arr : V(X,Y)→ A(X,Y)
f 7→ (g 7→ g ◦ f) >>>: A(X,Y)→ A(Y,Z)→ A(X,Z)

f 7→ f × id first : A(X,Y)→ A(X × Z,Y × Z)

16

Proof. The first and second line in the table say that A(X,Y) is made of the
functions from X to Y in C and that arr is the convertion from pure functions
to arbitrary functions. The third and fourth lines say that >>> is the (reverse)
composition of functions and that first is the semi-product with the identity.
Let us check that A is an Arrow; the following table translates each property
(1)-(9) in terms of cartesian effect categories (where ρX : X × U → X is the
projection), and gives the argument for its proof.

(1) f ◦ id = f unitarity in C
(2) id ◦ f = f unitarity in C
(3) h ◦ (g ◦ f) = (h ◦ g) ◦ f associativity in C
(4) w ◦ v in V = w ◦ v in C V ⊆ C is a functor
(5) v × id in V = v × id in C non-ambiguity of “×”
(6) (g ◦ f) × id = (g × id) ◦ (f × id) proposition 3.7
(7) (id × v) ◦ (f × id) = (f × id) ◦ (id × v) proposition 3.7
(8) ρ ◦ (f × idU) = f ◦ ρ definition 3.5
(9) α−1 ◦ ((f × id) × id) = (f × id) ◦ α−1 proposition 3.9

�

The translation of the Arrow combinators follows easily, using 〈 f , g〉l = (f ⋉ g)◦
〈id, id〉 as in section 3.4:

Cartesian effect categories Arrows
(id × f) = γ ◦ (f × id) ◦ γ second f = arr swap >>> first f >>> arr swap
f ⋉ g = (id × g) ◦ (f × id) f ∗∗∗ g = first f >>> second g
〈 f , g〉l = (f ⋉ g) ◦ 〈id, id〉 f &&&g = arr(λb→ (b, b)) >>> (f ∗∗∗ g)

For instance, in [7], the author states that &&& is not a categorical product since
in general (f &&&g) >>> arr fst is different from f . We can state this more
precisely in the effect category, where (f &&&g) >>> arr fst corresponds to
q1 ◦ 〈 f , g〉l. Indeed, according to corollary 3.22:

q1 ◦ 〈 f , g〉l . f .

5 Examples

Here are presented some examples of strict cartesian effect categories. Several
versions are given, some of them rely on monads.

5.1 Partiality

Let V = Set be the category of sets and maps, and C = Part the category of sets
and partial maps, so that V is a wide subcategory of C. Let . denote the usual
ordering on partial maps: f . g if and only if D(f) ⊆ D(g) (where D denotes
the domain of definition) and f (x) = g(x) for all x ∈ D(f). The restriction of . to

17

V is the equality of total maps. Clearly . is not symmetric, but it satisfies all the
other properties of a congruence, in particular the replacement property with
respect to all maps. So, . is a semi-congruence (which satisfies replacement),
that makes C a strict effect category extending V. Warning: usually the notations
are v : X→ Y for a total map and f : X⇀ Y for a partial map, but here we use
respectively v : X Y (total) and f : X→ Y (partial).

Let us define the pair 〈 f , v〉 of a partial map f : X → Y1 and a total map
v : X Y2 as the partial map 〈 f , v〉 : X → Y1 × Y2 with the same domain of
definition as f and such that 〈 f , v〉(x) = 〈 f (x), v(x)〉 for all x ∈ D(f). It is easy to
check that we get a cartesian effect category. For illustrating the semi-product
f × v, there are two cases: either f (x1) is defined, or not, in which case we note

f (x1) = ⊥. We use the traditional notation x � f // y when y = f (x) and its

analog x � v ///o/o y when y = v(x) and v is pure.

x1
� f // y1

〈x1, x2〉
_

OO
O�
O�
O�

_

��
�O
�O
�O

� f×v //

=

=

〈y1, y2〉
_

OO
O�
O�
O�

_

���O
�O
�O

x2
� v ///o/o/o/o/o/o/o/o/o/o/o y2

or x1
� f // ⊥

〈x1, x2〉
_

OO
O�
O�
O�

_

��
�O
�O
�O

� f×v //

&

=

⊥
_

OO
O�
O�
O�

_

��
�O
�O
�O

x2
� v ///o/o/o/o/o/o/o/o/o y2 , ⊥

It can be noted that, in the previous example, C is a 2-category, with a 2-cell
from f to g if and only if f . g. More generally, let C be a 2-category and V
a sub-2-category where the unique 2-cells are the identities. Then by defining
f . g whenever there is a 2-cell from f to g, we get a strict effect category.
In such effect categories, the replacement property holds with respect to all
functions in C, but the semi-congruence is usually not symmetric.

Let us come back to the partiality example, from the slightly different point
of view of the Maybe monad. First, let us present this point of view in a naive
way, without monads. Let U = {⊥} be a singleton, let “+” denote the disjoint
union of sets, and for each set X let GX = X + U and let ηX : X → GX be the
inclusion. Each partial map f from X to Y can be extended as a total map G f
from X to GY, such that G f (x) = f (x) for x ∈ D(f) and G f (x) = ⊥ otherwise.
This defines a bijection between the partial maps from X to Y and the total
maps from X to GY. Let C be the category such that its points are the sets, and
a function X → Y in C is a function X → GY in Set; we say that X → Y in C
stands for X → GY in Set. Let J : Set→ C be the functor that is the identity on
points and associates to each map v0 : X → Y the map ηY ◦ v0. Let V = J(Set).
Then V is a wide subcategory of C. For all f , g : X → Y in C, that stand for
f , g : X→ GY in Set, let:

f . g ⇐⇒ ∀x ∈ X (f (x) , ⊥ ⇒ (g(x) , ⊥ ∧ g(x) = f (x)) .

This yields a strict effect category C extending V, with the semi-congruence .,
and as above the replacement property holds with respect to all functions in C

18

but . is not symmetric. Let f : X → Y1 in C and v : X → Y2 in V, they stand
respectively for f : X → GY1 and v = ηY2

◦ v0 with v0 : X → Y2. Then, in Set,
the pair 〈 f , v0〉 : X→ GY1 × Y2 can be composed with:

t : GY1 × Y2 = (Y1 +U) × Y2 → (Y1 × Y2) +U = G(Y1 × Y2) ,

that maps 〈y1, y2〉 to itself and 〈⊥, y2〉 to ⊥. Now, let 〈 f , v〉 : X → Y1 × Y2 in
C stand for 〈 f , v〉 = t ◦ 〈 f , v0〉 : X → G(Y1 × Y2) in Set. Then 〈 f , v〉 is a semi-
product, so that C is a cartesian effect category. The diagrams for illustrating
the semi-product f × v are the same as above.

This point of view can also be presented using the the Maybe monad for
managing failures, as follows. We have defined a functor G : Part → Set, that
is a right adjoint to the inclusion functor I : Set ⊆ Part. The corresponding
monad has endofunctor M = GI on Set, the category C is the Kleisli category
of M, and J : Set → C is the canonical functor associated to the monad. In
addition, this monad M is strong, and t is the (Y1,Y2) component of the strength
of M. But the definition of the semi-congruence ., as above, is not part of the
usual framework of monads.

5.2 State

Let V0 be a cartesian category, with a distinguished point S for “the type of
states”; for all X, let πX : S × X → X denotes the projection. Let C be the
category with the same points as V0 and with a function f : X → Y for each
function f : S × X → S × Y in V0; we say that f : X → Y in C stands for
f : S×X→ S×Y in V0. Let J : V0 → C be the identity-on-points functor which
maps each v0 : X → Y in V0 to the function J(v0) : X → Y in C that stands for
idS × v0 : S ×X→ S ×Y in V0. Let V = J(V0), it is a wide subcategory of C. For
all f , g : X→ Y in C, let:

f . g ⇐⇒ πY ◦ g = πY ◦ f .

We get a strict effect category, where the semi-congruence . is symmetric, but
does not satisfy the replacement property with respect to all functions in C.
The semi-product of f : X → Y1 and v : X Y2 is defined as follows. Since
f : S × X → S × Y1 in V0 and v = idS × v0 for some v0 : X → Y in V0, the
pair 〈 f , v0 ◦ πX〉 : S × X → (S × Y1) × Y2 exists in V0. By composing it with the
isomorphism (S× Y1) ×Y2 → S × (Y1 ×Y2) we get 〈 f , v〉 : S ×X→ S × (Y1 × Y2)
in V0, i.e., 〈 f , v〉 : X → Y1 × Y2 in C. It is easy to check that this defines a
semi-product, so that C is a cartesian effect category, where the characteristic

19

property of the semi-product f × v can be illustrated as follows:

(s, x1)
� f // (s′, y1)

(s, x1, x2)
_

OO
O�
O�
O�

_

��
�O
�O
�O

� f×v //

&

=

(s′, y1, y2)
_

OO
O�
O�
O�

_

���O
�O
�O

(s, x2)
� v ///o/o/o/o/o/o/o/o/o (s, y2) , (s′, y2) � πY ///o/o/o/o/o/o/o/o y2

The example above can be curried, thus recovering the State monad. A
motivation for the introduction of Freyd categories in [10] is the possibility
of dealing with state in a linear way, as above, rather than in the exponential
way provided by the State monad. Now V0 is still a cartesian category with a
distinguished point S, the “type of states”, and in addition V0 has exponentials
(S × X)S for each X. Then the endofunctor M(X) = (S × X)S defines the State
monad on V0, with composition defined as usual. It is well-known that M is a
strong monad, with strength tY1,Y2

= (S × Y1)S × Y2 → (S × Y1 × Y2)S obtained
from appS×Y1

× idY2
: S× (S×Y1)S ×Y2 → S×Y1 ×Y2, where “app” denotes the

application function. Hence, from f : X→M(Y1) and v0 : X→ Y2 in V0, we can
build 〈 f , v〉 = tY1,Y2

◦ 〈 f , v0〉 : X → M(Y1 × Y2). Let C be the Kleisli category of
the monad M, let J : V0 → C be the canonical functor associated to the monad,
and let V = J(V0), then V is a wide subcategory of C. A function f : X → Y in
C stands for a function f : X → (S × Y)S in V0. Now, in addition to the usual
framework of monads, for all f , g : X → Y in C, i.e., f , g : X → (S × Y)S in V0,
let:

f . g ⇐⇒ πY
S ◦ g = πY

S ◦ f ,

where πY
S : (S × Y)S → YS associates to each map m : S → S × Y the map

πY × m : S → Y. The relation . defines a semi-conguence on C, and 〈 f , v〉
is a semi-product, so that C is a cartesian effect category. The characteristic
property of the semi-product f × v can be illustrated as follows:

x1
� f // (s 7→ (s′, y1))

(x1, x2)
_

OO
O�
O�
O�

_

��
�O
�O
�O

� f×v //

&

=

(s 7→ (s′, y1, y2))
_

OO
O�
O�
O�

_

�� �O
�O
�O

x2
� v ///o/o/o/o/o/o/o/o/o (s 7→ (s, y2)) , (s 7→ (s′, y2)) �

πS
Y ///o/o/o/o/o/o/o/o (s 7→ y2)

6 Conclusion

We have presented a new categorical framework, called a cartesian effect category,
for dealing with the issue of multiple arguments in programming languages

20

with computational effects. The major new feature in cartesian effect categories
is the introduction of a semi-congruence, which allows to define semi-products
and to prove their properties by decorating the usual definitions, properties
and proofs about products in a category. Forthcoming work should study the
nesting of several effects.

In order to deal with other issues related to effects, we believe that the idea
of decorations in logic can be more widely used. This is the case for dealing with
exceptions [5] (note that a previous attempt to define decorated products can
be found in [4]). The framework of decorations might be used for generalizing
this work in the direction of closed Freyd categories [11]. or traced premonoidal
categories [1]. Moreover, with one additional level of abstraction, decorations
can be obtained from morphisms between logics, in the context of diagrammatic
logics [3, 2].

References

[1] N. Benton and M. Hyland. Traced premonoidal categories. Theoretical
Informatics and Applications, 37:273–299, 2003.

[2] Dominique Duval. Diagrammatic specifications. Mathematical Structures
in Computer Science, 13(6):857–890, 2003.

[3] Dominique Duval and Christian Lair. Diagrammatic specifications. Rap-
port de Recherche 1043 -M-, LMC, 2002.

[4] Dominique Duval and Jean-Claude Reynaud. Diagrammatic logic and
effects: the example of exceptions. Technical Report ccsd-00004129, De-
cember 2004.

[5] Dominique Duval and Jean-Claude Reynaud. Dynamic logic and excep-
tions: an introduction. In Proc. MAP05, Mathematics, Algorithms, Proofs,
2005.

[6] Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids. Elec-
tronic Notes in Theoretical Computer Science, pages 219–236, 2006.

[7] John Hughes. Generalising monads to arrows. Science of Computer Pro-
gramming, 37(1–3):67–111, 2000.

[8] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[9] Ross Paterson. A new notation for arrows. In International Conference on
Functional Programming, pages 229–240. ACM, 2001.

[10] John Power and Edmund Robinson. Premonoidal categories and notions
of computation. Mathematical Structures in Computer Science, 7(5):453–468,
1997.

21

[11] John Power and Hayo Thielecke. Closed Freyd- and κ-categories. In
J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, Proceedings
26th Int. Coll. on Automata, Languages and Programming, ICALP’99, Prague,
Czech Rep., 11–15 July 1999, volume 1644, pages 625–634. Springer-Verlag,
Berlin, 1999.

[12] Philip Wadler. Monads for functional programming. In M. Broy, editor,
Program Design Calculi: Proceedings of the 1992 Marktoberdorf International
Summer School. Springer-Verlag, 1993.

A Proofs in cartesian effect categories

Here are proofs for some results in section 2.2, called basic proofs, followed
by their decorated versions for the corresponding results in section 3.2. All
basic proofs are straightforward. All proofs are presented in a formalized
way: each property is preceded by its label and followed by its proof. For
the basic proofs, the properties of the congruence are denoted trans, sym, subst,
repl, for respectively transitivity, symmetry, substitution, replacement. For the
decorated proofs, the properties of the congruence and the semi-congruence
are still denoted trans, sym, subst, repl, with subscript either ≡ or .. It should be
reminded that sym

.
does not hold, and that repl

.
is allowed only with respect to

a pure function: if g1 . g2 : Y→ Z and v : Z W then v ◦ g1 . v ◦ g2 : Y→W.
In addition, comp means compatibiblity of .with ≡, which means that if either
f1 ≡ f2 . f3 or f1 . f2 ≡ f3 then f1 . f3. In decorated proofs, “like basic”
means that this part of the proof is exactly the same as in the basic proof. Proofs
of propositions 2.9, 3.9(associativity) and 2.10, 3.10 (parallelism) are left to the
reader.

Proof of proposition 2.6 (congruence).
1. When X1 = X2

(a1) q1 ◦ 〈 f1, f2〉 ≡ f1
(b1) f1 ≡ f ′

1
(c1) q1 ◦ 〈 f1, f2〉 ≡ f ′

1
(a1), (b1), trans

(c2) q2 ◦ 〈 f1, f2〉 ≡ f ′
2

like (c1)
(d) 〈 f1, f2〉 ≡ 〈 f

′
1
, f ′2〉 (c1), (c2)

2. In all cases
(e1) f1 ≡ f ′

1
(f1) f1 ◦ p1 ≡ f ′

1
◦ p1 (e1), subst

(f2) f2 ◦ p2 ≡ f ′2 ◦ p2 like (f1)
(g) 〈 f1 ◦ p1, f2 ◦ p2〉 ≡ 〈 f

′
1
◦ p1, f ′

2
◦ p2〉 (f1), (f2), (1)

�

Proof of proposition 3.6 (congruence).

22

1. When X1 = X2

(c1) q1 ◦ 〈 f1, f2〉 ≡ f ′
1

like basic
(a2) q2 ◦ 〈 f1, f2〉 . f2
(b2) f2 ≡ f ′

2
(c2) q2 ◦ 〈 f1, f2〉 . f ′2 (a2), (b2), comp
(d) 〈 f1, f2〉 ≡ 〈 f

′
1
, f ′2〉 (c1), (c2)

2. In all cases
(g) 〈 f1 ◦ p1, f2 ◦ p2〉 ≡ 〈 f

′
1
◦ p1, f ′2 ◦ p2〉 like basic

�

Proof of proposition 2.7 (composition).
The three left handsides can be illustrated as follows:

Z1

X
f // Y

g1

99sssssssss

g2 %%KKKKKKKKK
// •

OO

��

≡

≡

Z2

Y1

g1 // Z1

X

f1
99sssssssss

f2 %%KKKKKKKKK
// •

OO

��

//
≡

≡

•

OO

��
≡

≡

Y2 g2

// Z2

X1

f1 // Y1

g1 // Z1

•

OO

��

// •

OO

��

//

≡

≡

•

OO

��
≡

≡

X2
f2

// Y2 g2

// Z2

1. When f1 = f2(= f)
(a1) r1 ◦ 〈g1, g2〉 ≡ g1

(b1) r1 ◦ 〈g1, g2〉 ◦ f ≡ g1 ◦ f (a1), subst
(b2) r2 ◦ 〈g1, g2〉 ◦ f ≡ g2 ◦ f like (b1)
(c) 〈g1, g2〉 ◦ f ≡ 〈g1 ◦ f , g2 ◦ f 〉 (b1), (b2)

2. When X1 = X2

(d) (g1 × g2) ◦ 〈 f1, f2〉 ≡ 〈g1 ◦ q1 ◦ 〈 f1, f2〉, g2 ◦ q2 ◦ 〈 f1, f2〉〉 (1)
(e1) q1 ◦ 〈 f1, f2〉 ≡ f1
(f1) g1 ◦ q1 ◦ 〈 f1, f2〉 ≡ g1 ◦ f1 repl
(f2) g2 ◦ q2 ◦ 〈 f1, f2〉 ≡ g2 ◦ f2 like (f1)
(g) 〈g1 ◦ q1 ◦ 〈 f1, f2〉, g2 ◦ q2 ◦ 〈 f1, f2〉〉 ≡ 〈g1 ◦ f1, g2 ◦ f2〉 (f1), (f2), prop. 2.6
(h) (g1 × g2) ◦ 〈 f1, f2〉 ≡ 〈g1 ◦ f1, g2 ◦ f2〉 (d), (g), trans

3. In all cases
(k) (g1 × g2) ◦ 〈 f1 ◦ p1, f2 ◦ p2〉 ≡ 〈g1 ◦ f1 ◦ p1, g2 ◦ f2 ◦ p2〉 (2)

�

Proof of proposition 3.7 (composition).
The three left handsides can be illustrated as follows:

Z1

X
v ///o/o/o/o Y

g1

99sssssssss

w2 %%%e%e%e%e%e
// •

OO
O�
O�

��
�O
�O&

≡

Z2

Y1

g1 // Z1

X

f1
99sssssssss

v2 %%%e%e%e%e%e
// •

OO
O�
O�

��
�O
�O

//
&

≡

•

OO
O�
O�

��
�O
�O

&

≡

Y2 w2

///o/o/o/o Z2

X1

f1 // Y1

g1 // Z1

•

OO
O�
O�

��
�O
�O

// •

OO
O�
O�

��
�O
�O

//

&

≡

•

OO
O�
O�

��
�O
�O

&

≡

X2 v2

///o/o/o/o Y2 w2

///o/o/o/o Z2

23

1. When f1 = v2(= v)
(b1) r1 ◦ 〈g1,w2〉 ◦ v ≡ g1 ◦ v like basic
(a2) r2 ◦ 〈g1,w2〉 . w2

(b2) r2 ◦ 〈g1,w2〉 ◦ v . w2 ◦ v (a1), subst.
(c) 〈g1,w2〉 ◦ v ≡ 〈g1 ◦ v,w2 ◦ v〉 (b1), (b2)

2. When X1 = X2

(d) (g1 × w2) ◦ 〈 f1, v2〉 ≡ 〈g1 ◦ q1 ◦ 〈 f1, v2〉,w2 ◦ q2 ◦ 〈 f1, v2〉〉 (1)
(f1) g1 ◦ q1 ◦ 〈 f1, v2〉 ≡ g1 ◦ f1 like basic
(e2) q2 ◦ 〈 f1, v2〉 . v2

(f2) w2 ◦ q2 ◦ 〈 f1, v2〉 . w2 ◦ v2 repl
.

(w2 is pure)
(g) 〈g1 ◦ q1 ◦ 〈 f1, v2〉,w2 ◦ q2 ◦ 〈 f1, v2〉〉 ≡ 〈g1 ◦ f1,w2 ◦ v2〉 (f1), (f2), prop. 2.6
(h) (g1 × w2) ◦ 〈 f1, v2〉 ≡ 〈g1 ◦ f1,w2 ◦ v2〉 (d), (g), trans≡

3. In all cases
(k) (g1 × w2) ◦ 〈 f1 ◦ p1, v2 ◦ p2〉 ≡ 〈g1 ◦ f1 ◦ p1,w2 ◦ v2 ◦ p2〉 (2)

�

Proof of proposition 2.8 (swap).
The two left handsides can be illustrated as follows:

Y1
id // Y1

X

f1
99ttttttttt

f2 %%JJJJJJJJJ
// Y2 × Y1

OO

��

//
≡

≡

Y1 × Y2

OO

��
≡

≡

Y2
id

// Y2

X1
id // X1

f1 // Y1
id // Y1

X1 × X2

OO

��

// X2 × X1

OO

��

//

≡

≡

Y2 × Y1

OO

��

//

≡

≡

Y1 × Y2

OO

��
≡

≡

X2
id

// X2
f2

// Y2
id

// Y2

1. When X1 = X2

(a1) q1 ◦ γY ≡ q′
1

(b1) q1 ◦ γY ◦ 〈 f2, f1〉 ≡ q′
1
◦ 〈 f2, f1〉 (a1), subst

(c1) q′
1
◦ 〈 f2, f1〉 ≡ f1

(d1) q1 ◦ γY ◦ 〈 f2, f1〉 ≡ f1 (b1), (c1), trans
(d2) q2 ◦ γY ◦ 〈 f2, f1〉 ≡ f2 like (d1)

(e) γY ◦ 〈 f2, f1〉 ≡ 〈 f1, f2〉 (d1), (d2)
2. In all cases

(f) 〈 f2 ◦ p′2, f1 ◦ p′
1
〉 ◦ γ−1

X ≡ 〈 f2 ◦ p′2 ◦ γ
−1
X , f1 ◦ p′

1
◦ γ−1

X 〉 prop. 2.7, sym
(g) γY ◦ 〈 f2 ◦ p′

2
, f1 ◦ p′

1
〉 ◦ γ−1

X
≡ γY ◦ 〈 f2 ◦ p′

2
◦ γ−1

X
, f1 ◦ p′

1
◦ γ−1

X
〉 repl

(h) γY ◦ 〈 f2 ◦ p′2 ◦ γ
−1
X
, f1 ◦ p′

1
◦ γ−1

X
〉 ≡ 〈 f1 ◦ p′

1
◦ γ−1

X
, f2 ◦ p′2 ◦ γ

−1
X
〉 (1)

(i1) p′
1
◦ γ−1

X ≡ p1

(j1) f1 ◦ p′
1
◦ γ−1

X
≡ f1 ◦ p1 (i1), repl

(j2) f2 ◦ p′2 ◦ γ
−1
X ≡ f2 ◦ p2 like (j1)

(k) 〈 f1 ◦ p′
1
◦ γ−1

X , f2 ◦ p′2 ◦ γ
−1
X 〉 ≡ 〈 f1 ◦ p1, f2 ◦ p2〉 (j1), (j2), prop. 2.6

(l) γY ◦ 〈 f2 ◦ p′
2
, f1 ◦ p′

1
〉 ◦ γ−1

X
≡ 〈 f1 ◦ p1, f2 ◦ p2〉 (g), (h), (k), trans

�

Proof of proposition 3.8 (swap).

24

The two left handsides can be illustrated as follows:

Y1
id ///o/o/o/o/o/o Y1

X

f1
99ttttttttt

v2 %%%e%e%e
%e%e

// Y2 × Y1

OO
O�
O�

��
�O
�O

///o/o/o

&

≡

Y1 × Y2

OO
O�
O�

��
�O
�O

≡

≡

Y2
id

///o/o/o/o/o/o Y2

X1
id ///o/o/o/o/o/o X1

f1 // Y1
id ///o/o/o/o/o/o Y1

X1 × X2

OO
O�
O�

��
�O
�O

///o/o/o X2 × X1

OO
O�
O�

��
�O
�O

//

≡

≡

Y2 × Y1

OO
O�
O�

��
�O
�O

///o/o/o

&

≡

Y1 × Y2

OO
O�
O�

��
�O
�O

≡

≡

X2
id

///o/o/o/o/o/o X2 v2

///o/o/o/o/o/o Y2
id

///o/o/o/o/o/o Y2

1. When X1 = X2

(d1) q1 ◦ γY ◦ 〈v2, f1〉 ≡ f1 like basic
(a2) q2 ◦ γY ≡ q′2
(b2) q2 ◦ γY ◦ 〈v2, f1〉 ≡ q′

2
◦ 〈v2, f1〉 (a2), subst≡

(c2) q′2 ◦ 〈v2, f1〉 . v2

(d2) q2 ◦ γY ◦ 〈v2, f1〉 . v2 (b2), (c2), comp
(e) γY ◦ 〈v2, f1〉 ≡ 〈 f1, v2〉 (d1), (d2)

2. In all cases
(l) γY ◦ 〈 f2 ◦ p′2, f1 ◦ p′

1
〉 ◦ γ−1

X ≡ 〈 f1 ◦ p1, f2 ◦ p2〉 like basic
�

25

