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Sequential products in effect categories

A new categorical framework is provided for dealing with multiple arguments in a programming language with effects, for example in a language with imperative features. Like related frameworks (Monads,Arrows, Freyd categories), we distinguish two kinds of functions. In addition, we also distinguish two kinds of equations. Then, we are able to define a kind of product, that generalizes the usual categorical product. This yields a powerful tool for deriving many results about languages with effects.

, effect-free functions are called pure functions; however, the symbols C and V, that are used for the category of all functions and for the subcategory of pure functions, respectively, are reminiscent of Moggi's terminology.

.

In this paper, the framework of cartesian effect categories is introduced. We still distinguish two kinds of functions: pure functions among arbitrary functions, that form two categories V and C, with V a subcategory of C, and V cartesian. Let us say that the functions are decorated, either as pure or as arbitrary. The new feature that is introduced in this paper is that we also distinguish two kinds of equations: strong equations and semi-equations, respectively denoted ≡ and , so that equations also are decorated. Strong equations can be seen, essentially, as equalities between computations, while semi-equations are much weaker, and can be seen as a kind of approximation relation. Moreover, as suggested by the symbols ≡ and , the strong equations form an equivalence relation, while the semi-equations form a preorder relation. Then, we define the semi-product of two functions when at least one is pure, by a characteristic property that is a decorated version of the characteristic property of the usual product. Since all identities are values, we get the semi-product of any function with an identity, that is used for building sequential products of functions.

, and they provide a deduction system: it is possible to decorate many proofs on cartesian categories in order to get proofs on cartesian effect categories.

As for terminology, our graphs are directed multi-graphs, made of points (or vertices, or objects) and functions (or edges, arrows, morphisms). We use weak categories rather than categories, i.e., we use a congruence ≡ rather than the equality, however this "syntactic" choice is not fundamental here. As for notations, we often omit the subscripts in the diagrams and in the proofs.

Cartesian weak categories are reminded in section 2, then cartesian effect categories are defined in section 3; they are compared with Arrows in section 4, and examples are presented in section 5. In appendix A are given the proofs of some properties of cartesian weak categories, that are well-known, followed

Introduction

The aim of this paper is to provide a new categorical framework dealing with multiple arguments in a programming language with effects, for example in a language with imperative features. In our cartesian effect categories, as in other related frameworks (Monads, Arrows, Freyd categories), two kinds of functions are distinguished. The new feature here is that two kinds of equations are also distinguished. Then, we define a kind of product, that is mapped to the usual categorical product when the distinctions (between functions and between equations) are forgotten. In addition, we prove that cartesian effect categories determine Arrows.

A well-established framework for dealing with computational effects is the notion of strong monads, that is used in Haskell [START_REF] Moggi | Notions of computation and monads[END_REF][START_REF] Wadler | Monads for functional programming[END_REF]. Monads have been generalized on the categorical side to Freyd categories [START_REF] Power | Premonoidal categories and notions of computation[END_REF] and on the functional programming side to Arrows [START_REF] Hughes | Generalising monads to arrows[END_REF]. The claims that Arrows generalize Monads and that Arrows are Freyd categories are made precise in [START_REF] Heunen | Arrows, like monads, are monoids[END_REF]. In all these frameworks, effect-free functions are distinguished among all functions, by their decorated versions, that yield proofs of properties of cartesian effect categories.

Cartesian weak categories

Weak categories are reminded in this section, with their notion of product. Except for the minor fact that equality is weakened as a congruence, all this section is very well known. Some detailed proofs are given in appendix A, with their decorated versions.

Weak categories

A weak category is like a category, except that the equations (for unitarity and associativity) hold only "up to congruence". Definition 2.1. A weak category is a graph where:

• for each point X there is a loop id X : X → X called the identity of X,

• for each consecutive functions f : X → Y, g : Y → Z, there is a function g • f : X → Z called the composition of f and g,

• and there is a relation ≡ between parallel functions (each f 1 ≡ f 2 is called an equation), such that:

-≡ is a congruence, i.e., it is an equivalence relation and for each f : X → Y, g 1 , g 2 : Y → Z, h : Z → W, if g 1 ≡ g 2 then g 1 • f ≡ g 2 • f (substitution) and h • g 1 ≡ h • g 2 (replacement), -for each f : X → Y, the unitarity equations hold: f • id X ≡ f and id Y • f ≡ f , -and for each f : X → Y, g : Y → Z, h : Z → W, the associativity equation holds:

h • (g • f ) ≡ (h • g) • f .
So, a weak category is a special kind of a bicategory, and a category is a weak category where the congruence is the equality.

Products

In a weak category, a weak product, or simply a product, is defined as a product "up to congruence". We focus on nullary products (i.e., terminal points) and binary products; it is well-know that products of any arity can be recovered from those.

Definition 2.2. A (weak) terminal point is a point U (for "Unit") such that for every point X there is a function X : X → U, unique up to congruence.

Definition 2.3.

A binary cone is made of two functions with the same source

Y 1 f 1 ←-X f 2 -→ Y 2 .
A binary (weak) product is a binary cone Y 1

q 1 ←-Y 1 × Y 2 q 2 -→ Y 2
such that for every binary cone with the same base Y 1

f 1 ←-X f 2 -→ Y 2 there is a function f 1 , f 2 : X → Y 1 × Y 2 ,
called the pair of f 1 and f 2 , unique up to congruence, such that:

q 1 • f 1 , f 2 ≡ f 1 and q 2 • f 1 , f 2 ≡ f 2 .
As usual, all terminal points are isomorphic, and the fact of using U for denoting a terminal point corresponds to the choice of one terminal point. Similarly, all products on a given base are isomorphic (in a suitable sense), and the notations correspond to the choice of one product for each base. Definition 2.4. A cartesian weak category is a weak category with a chosen terminal point and chosen binary products.

Products of functions

Definition 2.5. In a cartesian weak category, the (weak) binary product of two functions f 1 : X 1 → Y 1 and f 2 : X 2 → Y 2 is the function:

f 1 × f 2 = f 1 • p 1 , f 2 • p 2 : X 1 × X 2 → Y 1 × Y 2 .
So, the binary product of functions is characterized, up to congruence, by the equations:

q 1 • ( f 1 × f 2 ) ≡ f 1 • p 1 and q 2 • ( f 1 × f 2 ) ≡ f 2 • p 2 .
The defining equations of a pair and a product can be illustrated as follows:

Y 1 X f 1 ( ( Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q f 1 , f 2 / / Y 1 × Y 2 q 1 O O q 2 ≡ ≡ Y 2 X 1 f 1 / / Y 1 X 1 × X 2 p 1 O O p 2 f 1 × f 2 / / ≡ ≡ Y 1 × Y 2 q 1 O O q 2 X 2 f 2 / / Y 2
So, the products are defined from the pairs (note that we use the same symbols f 1 , f 2 for the general case f i : X i → Y i and for the special case

f i : X → Y i ).
The other way round, the pairs can be recovered from the products and the diagonals, i.e., the pairs id, id ; indeed, it is easy to prove that for each cone

X 1 f 1 ←-X f 2 -→ X 2 f 1 , f 2 ≡ ( f 1 × f 2 ) • id X , id X .
In the following, we consider products X 1

p 1 ←-X 1 × X 2 p 2 -→ X 2 , Y 1 q 1 ←- Y 1 × Y 2 q 2 -→ Y 2 and Z 1 r 1 ←-Z 1 × Z 2 r 2 -→ Z 2 .

Proposition 2.6 (congruence). For each f

1 ≡ f ′ 1 : X 1 → Y 1 and f 2 ≡ f ′ 2 : X 2 → Y 2 1. if X 1 = X 2 f 1 , f 2 ≡ f ′ 1 , f ′ 2 , 2. in all cases f 1 × f 2 ≡ f ′ 1 × f ′ 2 .
Proposition 2.7 (composition). For each f 1 :

X 1 → Y 1 , f 2 : X 2 → Y 2 , g 1 : Y 1 → Z 1 , g 2 : Y 2 → Z 2 1. if X 1 = X 2 and Y 1 = Y 2 and f 1 = f 2 (= f ) g 1 , g 2 • f ≡ g 1 • f, g 2 • f , 2. if X 1 = X 2 (g 1 × g 2 ) • f 1 , f 2 ≡ g 1 • f 1 , g 2 • f 2 ,

in all cases

(g 1 × g 2 ) • ( f 1 × f 2 ) ≡ (g 1 • f 1 ) × (g 2 • f 2 ) .
Let us consider the products X 1

p 1 ←-X 1 × X 2 p 2 -→ X 2 and X 2 p ′ 2 ←-X 2 × X 1 p ′ 1 -→ X 1 . The swap function is the isomorphism: γ (X 1 ,X 2 ) = p ′ 1 , p ′ 2 p 1 ,p 2 = p ′ 1 , p ′ 2 : X 2 × X 1 → X 1 × X 2 ,
characterized by:

p 1 • γ (X 1 ,X 2 ) ≡ p ′ 1 and p 2 • γ (X 1 ,X 2 ) ≡ p ′ 2 .
Proposition 2.8 (swap). For each f 1 :

X 1 → Y 1 and f 2 : X 2 → Y 2 , let γ Y = γ (Y 1 ,Y 2 )
and γ X = γ (X 1 ,X 2 ) , then:

1. if X 1 = X 2 γ Y • f 2 , f 1 ≡ f 1 , f 2 ,

in all cases

γ Y • ( f 2 × f 1 ) • γ -1 X ≡ f 1 × f 2 .
Let us consider the products X 1

p 1 ←-X 1 × X 2 p 2 -→ X 2 , X 1 × X 2 p 1,2 ←-(X 1 × X 2 ) × X 3 p 3 -→ X 3 , X 2 p ′ 2 ←-X 2 × X 3 p ′ 3 -→ X 3 and X 1 p ′ 1 ←-X 1 × (X 2 × X 3 ) p ′ 2,3 -→ X 2 × X 3 .
The associativity function is the isomorphism:

α (X 1 ,X 2 ,X 3 ) = p ′ 1 , p ′ 2 • p ′ 2,3 p 1 ,p 2 , p ′ 3 • p ′ 2,3 p 1,2 ,p 3 : X 1 × (X 2 × X 3 ) → (X 1 × X 2 ) × X 3 ,
characterized by:

p 1 •p 1,2 •α (X 1 ,X 2 ,X 3 ) ≡ p ′ 1 , p 2 •p 1,2 •α (X 1 ,X 2 ,X 3 ) ≡ p ′ 2 •p ′ 2,3 and p 3 •α (X 1 ,X 2 ,X 3 ) ≡ p ′ 3 •p ′ 2,3 .
Proposition 2.9 (associativity). For each f 1 :

X 1 → Y 1 , f 2 : X 2 → Y 2 and f 3 : X 3 → Y 3 , let α Y = α (Y 1 ,Y 2 ,Y 3 ) and α X = α (X 1 ,X 2 ,X 3 ) , then: 1. if X 1 = X 2 = X 3 α Y • f 1 , f 2 , f 3 ≡ f 1 , f 2 , f 3 , 2. in all cases α Y • ( f 1 × ( f 2 × f 3 )) ≡ (( f 1 × f 2 ) × f 3 ) • α X .
In the definition of the binary product f 1 × f 2 , both f 1 and f 2 play symmetric r ôles. This symmetry can be broken: "first f 1 then f 2 " corresponds to (id

Y 1 × f 2 ) • ( f 1 × id X 2 ), using the intermediate product Y 1 × X 2 , while "first f 2 then f 1 " corresponds to ( f 1 × id Y 2 ) • (id X 1 × f 2 ), using the intermediate product X 1 × Y 2 .
These are called the (left and right) sequential products of f 1 and f 2 . The three versions of the binary product of functions coincide, up to congruence; this is a kind of parallelism property, meaning that both f 1 and f 2 can be computed either simultaneously, or one after the other, in any order: Proposition 2.10 (parallelism). For each f 1 :

X 1 → Y 1 and f 2 : X 2 → Y 2 f 1 × f 2 ≡ (id Y 1 × f 2 ) • ( f 1 × id X 2 ) ≡ ( f 1 × id X 2 ) • (id Y 1 × f 2 ) .

Cartesian effect categories

Sections 3.1 to 3.3 form a decorated version of section 2. Roughly speaking, a kind of structure is decorated when there is some classification of its ingredients. Here, the classification involves two kinds of functions and two kinds of equations. Effect categories are defined in section 3.1 as decorated weak categories. In section 3.2, semi-products are defined as decorated weak products, then cartesian effect category as decorated cartesian weak categories. Decorated propositions are stated here, and the corresponding decorated proofs are given in appendix A. Then, in sections 3.4 and 3.5, the sequential product of functions is defined by composing semi-products, and some of its properties are derived.

Effect categories

A (weak) subcategory V of a weak category C is a subcategory of C such that each equation of V is an equation of C. It is a wide (weak) subcategory when V and C have the same points, and each equation of C between functions in V is an equation in V. Then only one symbol ≡ can be used, for both V and C. Definition 3.1. Let V be a weak category. An effect category extending V is a weak category C, such that V is a wide subcategory of C, together with a relation between parallel functions in C such that:

• the relation is weaker than ≡ for f 1 , f 2 in C, f 1 ≡ f 2 ⇒ f 1 f 2 ;
• is transitive;

• and ≡ coincide on V for v 1 , v 2 in V, v 1 ≡ v 2 ⇐⇒ v 1 v 2 ;
• satisfies the substitution property:

if f : X → Y and g 1 g 2 : Y → Z then g 1 • f g 2 • f : X → Z;
• satisfies the replacement property with respect to V:

if g 1 g 2 : Y → Z and v : Z → W in V then v • g 1 v • g 2 : Y → W.
The first property implies that is reflexive, and when ≡ is the equality it means precisely that is reflexive. Since is transitive and weaker than ≡, if either

f 1 ≡ f 2 f 3 or f 1 f 2 ≡ f 3 , then f 1 f 3 ;
this is called the compatibility of with ≡. An effect category is strict when ≡ is the equality. In this paper, there is no major difference between effect categories and strict effect categories.

A pure function is a function in V. The symbol is used for pure functions, and → for all functions. It follows from definition 3.1 that all the identities of C are pure, the composition of pure functions is pure, and more precisely a composition of functions is pure if and only if all the composing functions are pure. It should be noted that there can be equations f ≡ v between a nonpure function and a pure one; then the function f is proved effect-free, without being pure. This "syntactic" choice could be argued; note that this situation disappears when the congruence ≡ is the equality. The relation is called the semi-congruence of the effect category, and each f 1 f 2 is called a semi-equation. The semi-congruence generally is not a congruence, for two reasons: it may not be symmetric, and it may not satisfy the replacement property for all functions.

Examples of strict effect categories are given in section 5. For dealing with partiality in section 5.1, the semi-congruence coincides with the usual ordering of partial functions, it is not symmetric but it satisfies the replacement property for all partial functions. On the other hand, in section 5.2, the semicongruence means that two functions in an imperative language have the same result but may act differently on the state, it is an equivalence relation that does not satisfy the replacement property for non-pure functions.

Clearly, if the decorations are forgotten, i.e., if both the distinction between pure functions and arbitrary functions and the distinction between the congruence and the semi-congruence are forgotten, then an effect category is just a weak category.

A cartesian effect category, as defined below, is an effect category where V is cartesian and where this cartesian structure on V has some kind of generalization to C, that does not, in general, turn C into a cartesian weak category.

Semi-products

Now, let us assume that C is an effect category extending V, and that V is cartesian. We define nullary and binary semi-products in C, for building pairs of functions when at least one of them is pure.

Definition 3.2. A semi-terminal point in C is a terminal point U in V such that every function g : X → U satisfies g X . Definition 3.3. A binary semi-product in C is a binary product Y 1 q 1 Y 1 ×Y 2 q 2 Y 2
in V such that:

• for every binary cone with the same base Y 1

f 1 ←-X v 2 Y 2 and with v 2 pure, there is a function f 1 , v 2 q 1 ,q 2 = f 1 , v 2 : X → Y 1 × Y 2 , unique up to ≡, such that q 1 • f 1 , v 2 ≡ f 1 and q 2 • f 1 , v 2 v 2 ,
• and for every binary cone with the same base

Y 1 v 1 X f 2 -→ Y 2 and with v 1 pure, there is a function v 1 , f 2 q 1 ,q 2 = v 1 , f 2 : X → Y 1 × Y 2 , unique up to ≡, such that q 1 • v 1 , f 2 v 1 and q 2 • v 1 , f 2 ≡ f 2 .
The defining (semi-)equations of a binary semi-product can be illustrated as follows:

Y 1 X v 1 6 6 6 v 6 v 6 v 6 v 6 v 6 v 6 v 6 v 6 v 6 v v 2 ( ( ( h ( h ( h ( h ( h ( h ( h ( h ( h 
( h v 1 ,v 2 / / / o / o / o / o / o / o / o / o Y 1 × Y 2 q 1 O O O O O q 2 O O O ≡ ≡ Y 2 Y 1 X f 1 O O O O O q 2 O O O ≡ Y 2 Y 1 X v 1 6 6 6 v 6 v 6 v 6 v 6 v 6 v 6 v 6 v 6 v 6 v f 2 ( ( Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q v 1 , f 2 / / Y 1 × Y 2 q 1 O O O O O q 2 O O O ≡ Y 2
Clearly, if the decorations are forgotten, then semi-products are just products.

The notation is not ambiguous. Indeed, if

Y 1 v 1 X v 2 Y 2 is a binary cone in
V, then the three definitions of the pair v 1 , v 2 above coincide, up to congruence: let t denote any one of the three pairs, then t is characterized, up to congruence, by q 1 • t ≡ v 1 and q 2 • t ≡ v 2 , because ≡ and coincide on pure functions.

Definition 3.4.

A cartesian effect category extending a cartesian weak category V is an effect category extending V such that each terminal point of V is a semiterminal point of C and each binary product of V is a binary semi-product of C.

Semi-products of functions

Definition 3.5. In a cartesian effect category, the binary semi-product

f 1 × v 2 of a function f 1 : X 1 → Y 1 and a pure function v 2 : X 2 Y 2 is the function: f 1 × v 2 = f 1 • p 1 , v 2 • p 2 : X 1 × X 2 → Y 1 × Y 2
It follows that f 1 × v 2 is characterized, up to ≡, by:

q 1 • ( f 1 × v 2 ) ≡ f 1 • p 1 and q 2 • ( f 1 × v 2 ) v 2 • p 2 X 1 f 1 / / Y 1 X 1 × X 2 p 1 O O O O O p 2 O O O f 1 ×v 2 / / ≡ Y 1 × Y 2 q 1 O O O O O q 2 O O O X 2 v 2 / / / o / o / o / o / o / o / o / o / o / o / o Y 2
The binary semi-product

v 1 × f 2 : X 1 × X 2 → Y 1 × Y 2 of a pure function v 1 : X 1 Y 1 and a function f 2 : X 2 → Y 2 is
defined in the symmetric way, and it is characterized, up to ≡, by the symmetric property.

The notation is not ambiguous, because so is the notation for pairs; if v 1 and v 2 are pure functions, then the three definitions of v 1 × v 2 coincide, up to congruence.

Propositions about products in cartesian weak categories are called basic propositions. It happens that each basic proposition in section 2 has a decorated version, about semi-products of the form f 1 × v 2 in cartesian effect categories, that is stated below. The symmetric decorated version also holds, for semiproducts of the form v 1 × f 2 . Each function in the basic proposition is replaced either by a function or by a pure function, and each equation is replaced either by an equation (≡) or by a semi-equation ( or ).

In addition, in appendix A, the proofs of the decorated propositions are decorated versions of the basic proofs. It happens that no semi-equation appears in the decorated propositions below, but they are used in the proofs. Indeed, a major ingredient in the basic proofs is that a function f 1 , f 2 or f 1 × f 2 is characterized, up to ≡, by its projections, both up to ≡. The decorated version of this property is that a function f 1 , f 2 or f 1 × f 2 , where f 1 or f 2 is pure, is characterized, up to ≡, by its projections, one up to ≡ and the other one up to . It should be noted that even when some decorated version of a basic proposition is valid, usually not all the basic proofs can be decorated. In addition, when equations are decorated as semi-equations, some care is required when the symmetry and replacement properties are used.

Proposition 3.6 (congruence). For each congruent functions f

1 ≡ f ′ 1 : X → Y 1 and pure functions v 2 ≡ v ′ 2 : X Y 2 1. if X 1 = X 2 f 1 , v 2 ≡ f ′ 1 , v ′ 2 . 2. in all cases f 1 × v 2 ≡ f ′ 1 × v ′ 2 .

Proposition 3.7 (composition). For each functions f

1 : X 1 → Y 1 , g 1 : Y 1 → Z 1 and pure functions v 2 : X 2 Y 2 , w 2 : Y 2 Z 2 1. if X 1 = X 2 and Y 1 = Y 2 and f 1 = v 2 (= v) g 1 , w 2 • f ≡ g 1 • v, w 2 • v , 2. if X 1 = X 2 (g 1 × w 2 ) • f 1 , v 2 ≡ g 1 • f 1 , w 2 • v 2 , 3. in all cases (g 1 × w 2 ) • ( f 1 × v 2 ) ≡ (g 1 • f 1 ) × (w 2 • v 2 ) .
The swap and associativity functions are defined in the same way as in section 2; they are products of projections, so that they are pure functions. It follows that the swap and associativity functions are characterized by the same equations as in section 2, and that they are still isomorphisms.

Proposition 3.8 (swap). For each function f

1 : X → Y 1 and pure function v 2 : X Y 2 , let γ Y = γ (Y 1 ,Y 2 ) and γ X = γ (X 1 ,X 2 ) , then: 1. if X 1 = X 2 γ Y • v 2 , f 1 ≡ f 1 , v 2 ,

in all cases

γ Y • (v 2 × f 1 ) • γ -1 X ≡ f 1 × v 2 .

Proposition 3.9 (associativity). For each function f

1 : X 1 → Y 1 and pure functions v 2 : X 2 Y 2 , v 3 : X 3 Y 3 , let α Y = α (Y 1 ,Y 2 ,Y 3 ) and α X = α (X 1 ,X 2 ,X 3 ) , then: 1. if X 1 = X 2 = X 3 α Y • f 1 , v 2 , v 3 ≡ f 1 , v 2 , v 3 ,

in all cases:

α Y • ( f 1 × (v 2 × v 3 )) ≡ (( f 1 × v 2 ) × v 3 ) • α X .
The sequential product of a function f 1 : X 1 → Y 1 and a pure function v 2 : X 2 Y 2 can be defined as in section 2, using the intermediate products

Y 1 s 1 Y 1 × X 2 s 2 X 2 and X 1 t 1 X 1 × Y 2 t 2 Y 2 .
It does coincide with the semi-product of f 1 and v 2 , up to congruence: Proposition 3.10 (parallelism). For each function f 1 :

X 1 → Y 1 and pure function v 2 : X 2 Y 2 f 1 × v 2 ≡ (id Y 1 × v 2 ) • ( f 1 × id X 2 ) ≡ ( f 1 × id X 2 ) • (id Y 1 × v 2 ) .

Sequential products of functions

It has been stated in proposition 2.10 that, in a cartesian weak category, the binary product of functions coincide with both sequential products, up to congruence:

f 1 × f 2 ≡ (id Y 1 × f 2 ) • ( f 1 × id X 2 ) ≡ ( f 1 × id X 2 ) • (id Y 1 × f 2 ) .
In a cartesian effect category, when f 1 and f 2 are any functions, the product

f 1 × f 2 is not defined. But (id Y 1 × f 2 ) • ( f 1 × id X 2 ) and ( f 1 × id X 2 ) • (id Y 1 × f 2
) make sense, thanks to semi-products, because identities are pure. They are called the sequential products of f 1 and f 2 , and they do not coincide up to congruence, in general: parallelism is not satisfied.

Definition 3.11. The left binary sequential product of two functions f 1 : X 1 → Y 1 and f 2 : X 2 → Y 2 is the function:

f 1 ⋉ f 2 = (id Y 1 × f 2 ) • ( f 1 × id X 2 ) : X 1 × X 2 → Y 1 × Y 2 .
So, the left binary sequential product is obtained from:

X 1 f 1 / / Y 1 id / / / o / o / o / o / o / o / o / o / o / o / o Y 1 X 1 × X 2 p 1 O O O O O p 2 O O O f 1 ×id / / ≡ Y 1 × X 2 s 1 O O O O O s 2 O O O id× f 2 / / ≡ Y 1 × Y 2 q 1 O O O O O q 2 O O O X 2 id / / / o / o / o / o / o / o / o / o / o / o / o X 2 f 2 / / Y 2
The left sequential product extends the semi-product: Proposition 3.12. For each function f 1 and pure function v

2 , f 1 ⋉ v 2 ≡ f 1 × v 2 .
Proof. ¿From proposition 3.7,

f 1 ⋉ v 2 = (id × v 2 ) • ( f 1 × id) ≡ (id • f 1 ) × (v 2 • id) ≡ f 1 × v 2 .
Note that the diagonal id X , id X is a pair of pure functions. So, by analogy with the property

f 1 , f 2 ≡ ( f 1 × f 2 ) • id X , id X in weak categories:
Definition 3.13. The left sequential pair of two functions f 1 : X → Y 1 and

f 2 : X → Y 2 is: f 1 , f 2 l = ( f 1 ⋉ f 2 ) • id X , id X .
The left sequential pairs do not satisfy the usual equations for pairs, as in definition 2.3. However, they satisfy some weaker properties, as stated in corollary 3.22.

The right binary sequential product of f 1 and f 2 is defined in the symmetric way; it is the function:

f 1 ⋊ f 2 = ( f 1 × id Y 2 ) • (id X 1 × f 2 ) : X 1 × X 2 → Y 1 × Y 2 .
It does also extend the product of a pure function and a function: for each pure function

v 1 , v 1 ⋊ f 2 ≡ v 1 × f 2 . The right sequential pair of f 1 : X → Y 1 and f 2 : X → Y 2 is: f 1 , f 2 r = ( f 1 ⋊ f 2 ) • id X , id X .
Here are some properties of the sequential products that are easily deduced from the properties of semi-products in 3.2. The symmetric properties also hold.

Proposition 3.14 (congruence). For each congruent functions f

1 ≡ f ′ 1 : X 1 → Y 1 and f 2 ≡ f ′ 2 : X 2 → Y 2 f 1 ⋉ f 2 ≡ f ′ 1 ⋉ f ′ 2 .
Proof. Clear, from 3.6.

Proposition 3.15 (composition).

For each functions f 1 :

X 1 → Y 1 , g 1 : Y 1 → Z 1 , g 2 : Y 2 → Z 2 and pure function v 2 : X 2 Y 2 (g 1 ⋉ g 2 ) • ( f 1 × v 2 ) ≡ (g 1 • f 1 ) ⋉ (g 2 • v 2 ) . X 1 f 1 / / Y 1 g 1 / / Z 1 id / / / o / o / o / o / o / o / o / o / o / o / o Z 1 X 1 × X 2 O O O O O O O O f 1 ×v 2 / / ≡ ≡ Y 1 × Y 2 O O O O O O O O g 1 ×id / / ≡ Z 1 × Y 2 O O O O O O O O id×g 2 / / ≡ Z 1 × Z 2 O O O O O O O O X 2 v 2 / / / o / o / o / o / o / o / o / o / o / o / o Y 2 id / / / o / o / o / o / o / o / o / o / o / o / o Y 2 g 2 / / Z 2
Proof. ¿From several applications of proposition 3.7 and its symmetric version:

(id × g 2 ) • (g 1 × id) • ( f 1 × v 2 ) ≡ (id × g 2 ) • ((g 1 • f 1 ) × v 2 ) ≡ (id × g 2 ) • (id × v 2 ) • ((g 1 • f 1 ) × id) ≡ (id × (g 2 • v 2 )) • ((g 1 • f 1 ) × id).

Proposition 3.16 (swap).

For each functions f 1 :

X 1 → Y 1 and f 2 : X 2 → Y 2
, the left and right sequential products are related by swaps:

γ Y • ( f 2 ⋊ f 1 ) • γ -1 X ≡ f 1 ⋉ f 2 .
Proof. ¿From proposition 3.8 and its symmetric version:

γ • (id × f 2 ) • ( f 1 × id) ≡ ( f 2 × id) • γ • ( f 1 × id) ≡ ( f 2 × id) • (id × f 1 ) • γ.
Proposition 3.17 (associativity). For each functions f 1 :

X 1 → Y 1 , f 2 : X 2 → Y 2 and f 3 : X 3 → Y 3 , let α Y = α (Y 1 ,Y 2 ,Y 3
) and α X = α (X 1 ,X 2 ,X 3 ) , then: :

α Y • ( f 1 ⋉ ( f 2 ⋉ f 3 )) ≡ (( f 1 ⋉ f 2 ) ⋉ f 3 ) • α X .
Proof. ¿From proposition 3.9.

Projections of sequential products

Let us come back to a weak category, as in section 2. The binary product of functions is characterized, up to congruence, by the equations:

q 1 • ( f 1 × f 2 ) ≡ f 1 • p 1 and q 2 • ( f 1 × f 2 ) ≡ f 2 • p 2 ,
so that for all constant functions x 1 : U → X 1 and x 2 :

U → X 2 q 1 • ( f 1 × f 2 ) • x 1 , x 2 ≡ f 1 • x 1 and q 2 • ( f 1 × f 2 ) • x 1 , x 2 ≡ f 2 • x 2 .
In a cartesian effect category, it is proved in theorem 3.21 that f 1 ⋉ f 2 , when applied to a pair of constant pure functions x 1 , x 2 , returns on the Y 1 side a function that is semi-congruent to f 1 (x 1 ), and on the Y 2 side a function that is congruent to

f 2 • x 2 • • f 1 • x 1 , which means "first f 1 (x 1 )
, then forget the result, then f 2 (x 2 )". More precise statements are given in propositions 3.18 and 3.20. Proofs are presented in the same formalized way as in appendix A.

As above, we consider the semi-terminal point U and semi-products

X 1 p 1 X 1 × X 2 p 2 X 2 , Y 1 q 1 Y 1 × Y 2 q 2 Y 2 and Y 1 s 1 Y 1 × X 2 s 2 X 2 .
Proposition 3.18. For each functions f 1 :

X 1 → Y 1 and f 2 : X 2 → Y 2 q 1 • ( f 1 ⋉ f 2 ) f 1 • p 1 : X 1 × X 2 → Y 1 . X 1 f 1 / / Y 1 id / / / o / o / o / o / o / o / o / o / o / o / o Y 1 X 1 × X 2 p 1 O O O O O f 1 ×id / / ≡ f 1 ⋉ f 2 = 4 4 Y 1 × X 2 s 1 O O O O O id× f 2 / / Y 1 × Y 2 q 1 O O O O O Proof. (a) q 1 • (id × f 2 ) s 1 (b) q 1 • ( f 1 ⋉ f 2 ) s 1 • ( f 1 × id) (a), subst (c) s 1 • ( f 1 × id) ≡ f 1 • p 1 (d) q 1 • ( f 1 ⋉ f 2 ) f 1 • p 1 (b), (c), comp Lemma 3.19. For each function f 1 : X 1 → Y 1 and pure function x 2 : U X 2 id Y 1 , x 2 • Y 1 • f 1 ≡ f 1 , x 2 • X 1 : X 1 → Y 1 × X 2 .
Both handsides can be illustrated as follows:

Y 1 id / / / o / o / o / o / o / o / o / o / o Y 1 X 1 f 1 / / Y 1 O O O id,x 2 • / / / o / o / o / o / o / o / o / o ≡ ≡ Y 1 × X 2 s 1 O O O O O s 2 O O O U x 2 / / / o / o / o / o / o / o / o / o / o X 2 X 1 f 1 / / Y 1 X 1 O O O f 1 ,x 2 • / / ≡ Y 1 × X 2 s 1 O O O O O s 2 O O O U x 2 / / / o / o / o / o / o / o / o / o / o X 2 Proof. (a 1 ) s 1 • id, x 2 • ≡ id (b 1 ) s 1 • id, x 2 • • f 1 ≡ f 1 (a 1 ), subst ≡ (a 2 ) s 2 • id, x 2 • ≡ x 2 • (b 2 ) s 2 • id, x 2 • • f 1 ≡ x 2 • • f 1 (a 2 ), subst ≡ (c 2 ) • f 1 semi-terminality of U (d 2 ) x 2 • • f 1 x 2 • (c 2 ), repl (x 2 is pure) (e 2 ) s 2 • id, x 2 • • f 1 x 2 • (b 2 ), (d 2 ), trans ( f ) id, x 2 • • f 1 ≡ f 1 , x 2 • (b 1 ), (e 2 )
Proposition 3.20. For each functions f 1 :

X 1 → Y 1 , f 2 : X 2 → Y 2 and pure function x 2 : U X 2 q 2 • ( f 1 ⋉ f 2 ) • id X 1 , x 2 • X 1 ≡ f 2 • x 2 • Y 1 • f 1 : X 1 → Y 2 .
Both handsides can be illustrated as follows:

X 1 id / / / o / o / o / o / o / o X 1 X 1 O O O id,x 2 • / / / o / o / o / o X 1 × X 2 f 1 ⋉ f 2 = ) ) p 1 O O O O O p 2 O O O f 1 ×id / / ≡ ≡ Y 1 × X 2 s 2 O O O id× f 2 / / ≡ Y 1 × Y 2 q 2 O O O U x 2 / / / o / o / o / o / o / o X 2 id / / / o / o / o / o / o / o / o X 2 f 2 / / Y 2 X 1 f 1 / / Y 1 O O O U x 2 / / / o / o / o X 2 f 2 / / Y 2 Proof. (a) q 2 • (id × f 2 ) ≡ f 2 • s 2 (b) q 2 • ( f 1 ⋉ f 2 ) • id, x 2 • ≡ f 2 • s 2 • ( f 1 × id) • id, x 2 • (a), subst ≡ (c) ( f 1 × id) • id, x 2 • ≡ f 1 , x 2 • prop. 3.7 (d) f 1 , x 2 • ≡ id, x 2 • • f 1 lemma 3.19 (e) ( f 1 × id) • id, x 2 • ≡ id, x 2 • • f 1 (c), (d), trans ≡ ( f ) f 2 • s 2 • ( f 1 × id) • id, x 2 • ≡ f 2 • s 2 • id, x 2 • • f 1 (e), repl ≡ (g) q 2 • ( f 1 ⋉ f 2 ) • id, x 2 • ≡ f 2 • s 2 • id, x 2 • • f 1 (b), ( f ), trans ≡ (h) p 2 • id, x 2 • ≡ x 2 • (i) f 2 • s 2 • id, x 2 • • f 1 ≡ f 2 • x 2 • • f 1 (h), subst ≡ , repl ≡ ( j) q 2 • ( f 1 ⋉ f 2 ) • id, x 2 • ≡ f 2 • x 2 • • f 1 (g), (i), trans ≡ Theorem 3.21. For each functions f 1 : X 1 → Y 1 , f 2 : X 2 → Y 2 and pure functions x 1 : U X 1 and x 2 : U X 2 , the function ( f 1 ⋉ f 2 ) • x 1 , x 2 satisfies: q 1 • ( f 1 ⋉ f 2 ) • x 1 , x 2 f 1 • x 1 and q 2 • ( f 1 ⋉ f 2 ) • x 1 , x 2 ≡ f 2 • x 2 • Y 1 • f 1 • x 1 . U x 1 / / / o / o / o / o / o / o / o / o / o / o / o / o / o X 1 f 1 / / Y 1 U x 1 ,x 2 / / / o / o / o / o / o / o / o / o / o / o / o / o X 1 × X 2 f 1 ⋉ f 2 / / ≡ Y 1 × Y 2 q 1 O O O O O q 2 O O O U x 1 / / / o / o / o / o X 1 f 1 / / Y 1 / / / o / o / o / o / o / o U x 2 / / / o / o / o / o X 2 f 2 / / Y 2 Proof. (a 1 ) q 1 • ( f 1 ⋉ f 2 ) f 1 • p 1 prop. 3.18 (b 1 ) q 1 • ( f 1 ⋉ f 2 ) • x 1 , x 2 f 1 • p 1 • x 1 , x 2 (a 1 ), subst (c 1 ) p 1 • x 1 , x 2 ≡ x 1 (on values) (d 1 ) f 1 • p 1 • x 1 , x 2 ≡ f 1 • x 1 (c 1 ), repl ≡ (e 1 ) q 1 • ( f 1 ⋉ f 2 ) • x 1 , x 2 f 1 • x 1 (b 1 ), (d 1 ), comp (a 2 ) x 1 , x 2 ≡ id X 1 , x 2 • X 1 • x 1 (on values) (b 2 ) q 2 • ( f 1 ⋉ f 2 ) • x 1 , x 2 ≡ q 2 • ( f 1 ⋉ f 2 ) • id X 1 , x 2 • X 1 • x 1 (a 2 ), repl ≡ (c 2 ) q 2 • ( f 1 ⋉ f 2 ) • id X 1 , x 2 • X 1 ≡ f 2 • x 2 • Y 1 • f 1 prop. 3.20 (d 2 ) q 2 • ( f 1 ⋉ f 2 ) • id X 1 , x 2 • X 1 • x 1 ≡ f 2 • x 2 • Y 1 • f 1 • x 1 (c 2 ), subst ≡ (e 2 ) q 2 • ( f 1 ⋉ f 2 ) • x 1 , x 2 ≡ f 2 • x 2 • Y 1 • f 1 • x 1 (b 2 ), (d 2 ), trans ≡
The corresponding properties of left sequential pairs easily follow.

Corollary 3.22. For each functions f 1 :

X → Y 1 , f 2 : X → Y 2 and pure function x : U X q 1 • f 1 , f 2 l f 1 , hence q 1 • f 1 , f 2 l •x f 1 •x , and q 2 • f 1 , f 2 l •x ≡ f 2 •x• Y 1 • f 1 •x .

Effect categories and Arrows

Starting from [START_REF] Moggi | Notions of computation and monads[END_REF][START_REF] Wadler | Monads for functional programming[END_REF], monads are used in Haskell for dealing with computational effects. A Monad type in Haskell is a unary type constructor that corresponds to a strong monad, in the categorical sense. Monads have been generalized on the categorical side to Freyd categories [START_REF] Power | Premonoidal categories and notions of computation[END_REF] and on the functional programming side to Arrows [START_REF] Hughes | Generalising monads to arrows[END_REF]. A precise statement of the facts that Arrows generalize Monads and that Arrows are Freyd categories can be found in [START_REF] Heunen | Arrows, like monads, are monoids[END_REF], where each of the three notions is seen as a monoid in a relevant category. Now we prove that cartesian effect categories determine Arrows. In section 5 our approach is compared with the Monads approach, for two fundamental examples. In this section, all effect categories are strict: the congruence ≡ is the equality.

Arrows

According to [START_REF] Paterson | A new notation for arrows[END_REF], Arrows in Haskell are defined as follows.

Definition 4.1. An Arrow is a binary type constructor class A of the form:

class Arrow A where arr ::

(X → Y) → A X Y (> > >) :: A X Y → A Y Z → A X Z first :: A X Y → A (X, Z) (Y, Z)
satisfying the following equations:

(1)

arr id > > > f = f (2) f > > > arr id = f (3) ( f > > > g) > > > h = f > > > (g > > > h) (4) arr (w.v) = arr v > > > arr w (5) first (arr v) = arr (v × id) (6) first ( f > > > g) = first f > > > first g (7) first f > > > arr (id × v) = arr (id × v) > > > first f (8) first f > > > arr fst = arr fst > > > f (9) first (first f ) > > > arr assoc = arr assoc > > > first f
where the functions (×), fst and assoc are defined as:

(×) :: (X → X ′ ) → (Y → Y ′ ) → (X, Y) → (X ′ , Y ′ ) ( f × g)(x, y) = ( f x, g y) fst :: (X, Y) → X fst(x, y) = x (assoc) :: ((X, Y), Z) → (X, (Y, Z))
assoc((x, y), z) = (x, (y, z))

Cartesian effect categories determine Arrows

Let V H denote the category of Haskell types and ordinary functions, so that the Haskell notation (X → Y) represents V H (X, Y), made of the Haskell ordinary functions from X to Y. An arrow A contructs a type A X Y for all types X and Y.

We slightly modify the definition of Arrows by allowing (X → Y) to represent V(X, Y) for any cartesian category V and by requiring that A X Y is a set rather than a type. In addition, we use categorical notations instead of Haskell syntax. So, from now on, for any cartesian category V, an Arrow A on V associates to each points X, Y of V a set A(X, Y), together with three operations:

arr : V(X, Y) → A(X, Y) > > >: A(X, Y) → A(Y, Z) → A(X, Z) first : A(X, Y) → A(X × Z, Y × Z)
that satisfy the equations ( 1)- [START_REF] Paterson | A new notation for arrows[END_REF].

Basically, the correspondence between a cartesian effect category C extending V and an Arrow A on V identifies C(X, Y) with A(X, Y) for all types X and Y. More precisely:

Theorem 4.2. Every cartesian effect category C extending V gives rise to an Arrow A on V, according to the following table:

Cartesian effect categories Arrows C(X, Y) A(X, Y) V(X, Y) ⊆ C(X, Y) arr : V(X, Y) → A(X, Y) f → (g → g • f ) > > >: A(X, Y) → A(Y, Z) → A(X, Z) f → f × id first : A(X, Y) → A(X × Z, Y × Z)
Proof. The first and second line in the table say that A(X, Y) is made of the functions from X to Y in C and that arr is the convertion from pure functions to arbitrary functions. The third and fourth lines say that > > > is the (reverse) composition of functions and that first is the semi-product with the identity. Let us check that A is an Arrow; the following table translates each property (1)-( 9) in terms of cartesian effect categories (where ρ X : X × U → X is the projection), and gives the argument for its proof.

(1)

f • id = f unitarity in C (2) id • f = f unitarity in C (3) h • (g • f ) = (h • g) • f associativity in C (4) w • v in V = w • v in C V ⊆ C is a functor (5) v × id in V = v × id in C non-ambiguity of "×" (6) (g • f ) × id = (g × id) • ( f × id) proposition 3.7 (7) (id × v) • ( f × id) = ( f × id) • (id × v) proposition 3.7 (8) ρ • ( f × id U ) = f • ρ definition 3.5 (9) α -1 • (( f × id) × id) = ( f × id) • α -1
proposition 3.9

The translation of the Arrow combinators follows easily, using f, g l = ( f ⋉ g) • id, id as in section 3.4:

Cartesian effect categories Arrows (id × f ) = γ • ( f × id) • γ second f = arr swap > > > first f > > > arr swap f ⋉ g = (id × g) • ( f × id) f * * * g = first f > > > second g f, g l = ( f ⋉ g) • id, id f & & &g = arr(λb → (b, b)) > > > ( f * * * g)
For instance, in [START_REF] Hughes | Generalising monads to arrows[END_REF], the author states that & & & is not a categorical product since in general ( f & & &g) > > > arr fst is different from f . We can state this more precisely in the effect category, where ( f & & &g) > > > arr fst corresponds to q 1 • f, g l . Indeed, according to corollary 3.22:

q 1 • f, g l f .

Examples

Here are presented some examples of strict cartesian effect categories. Several versions are given, some of them rely on monads.

Partiality

Let V = Set be the category of sets and maps, and C = Part the category of sets and partial maps, so that V is a wide subcategory of C. Let denote the usual ordering on partial maps: f g if and only if D( f ) ⊆ D(g) (where D denotes the domain of definition) and f (x) = g(x) for all x ∈ D( f ). The restriction of to V is the equality of total maps. Clearly is not symmetric, but it satisfies all the other properties of a congruence, in particular the replacement property with respect to all maps. So, is a semi-congruence (which satisfies replacement), that makes C a strict effect category extending V. Warning: usually the notations are v : X → Y for a total map and f : X ⇀ Y for a partial map, but here we use respectively v : X Y (total) and f : X → Y (partial). Let us define the pair f, v of a partial map f : X → Y 1 and a total map v : X Y 2 as the partial map f, v : X → Y 1 × Y 2 with the same domain of definition as f and such that f, v (x) = f (x), v(x) for all x ∈ D( f ). It is easy to check that we get a cartesian effect category. For illustrating the semi-product f × v, there are two cases: either f (x 1 ) is defined, or not, in which case we note f (x 1 ) = ⊥. We use the traditional notation x f / / y when y = f (x) and its analog x v / / / o / o y when y = v(x) and v is pure.

x 1 f / / y 1 x 1 , x 2 _ O O O O O _ O O O f ×v / / = = y 1 , y 2 _ O O O O O _ O O O x 2 v / / / o / o / o / o / o / o / o / o / o / o / o y 2 or x 1 f / / ⊥ x 1 , x 2 _ O O O O O _ O O O f ×v / / = ⊥ _ O O O O O _ O O O x 2 v / / / o / o / o / o / o / o / o / o / o y 2 ⊥
It can be noted that, in the previous example, C is a 2-category, with a 2-cell from f to g if and only if f g. More generally, let C be a 2-category and V a sub-2-category where the unique 2-cells are the identities. Then by defining f g whenever there is a 2-cell from f to g, we get a strict effect category. In such effect categories, the replacement property holds with respect to all functions in C, but the semi-congruence is usually not symmetric.

Let us come back to the partiality example, from the slightly different point of view of the Maybe monad. First, let us present this point of view in a naive way, without monads. Let U = {⊥} be a singleton, let "+" denote the disjoint union of sets, and for each set X let GX = X + U and let η X : X → GX be the inclusion. Each partial map f from X to Y can be extended as a total map G f from X to GY, such that G f (x) = f (x) for x ∈ D( f ) and G f (x) = ⊥ otherwise. This defines a bijection between the partial maps from X to Y and the total maps from X to GY. Let C be the category such that its points are the sets, and a function X → Y in C is a function X → GY in Set; we say that X → Y in C stands for X → GY in Set. Let J : Set → C be the functor that is the identity on points and associates to each map v 0 :

X → Y the map η Y • v 0 . Let V = J(Set).
Then V is a wide subcategory of C. For all f, g : X → Y in C, that stand for f, g : X → GY in Set, let:

f g ⇐⇒ ∀x ∈ X ( f (x) ⊥ ⇒ (g(x) ⊥ ∧ g(x) = f (x)) .
This yields a strict effect category C extending V, with the semi-congruence , and as above the replacement property holds with respect to all functions in C but is not symmetric. Let f : X → Y 1 in C and v : X → Y 2 in V, they stand respectively for f : X → GY 1 and v = η Y 2 • v 0 with v 0 : X → Y 2 . Then, in Set, the pair f, v 0 : X → GY 1 × Y 2 can be composed with:

t : GY 1 × Y 2 = (Y 1 + U) × Y 2 → (Y 1 × Y 2 ) + U = G(Y 1 × Y 2 ) , that maps y 1 , y 2 to itself and ⊥, y 2 to ⊥. Now, let f, v : X → Y 1 × Y 2 in C stand for f, v = t • f, v 0 : X → G(Y 1 × Y 2 ) in Set.
Then f, v is a semiproduct, so that C is a cartesian effect category. The diagrams for illustrating the semi-product f × v are the same as above.

This point of view can also be presented using the the Maybe monad for managing failures, as follows. We have defined a functor G : Part → Set, that is a right adjoint to the inclusion functor I : Set ⊆ Part. The corresponding monad has endofunctor M = GI on Set, the category C is the Kleisli category of M, and J : Set → C is the canonical functor associated to the monad. In addition, this monad M is strong, and t is the (Y 1 , Y 2 ) component of the strength of M. But the definition of the semi-congruence , as above, is not part of the usual framework of monads.

State

Let V 0 be a cartesian category, with a distinguished point S for "the type of states"; for all X, let π X : S × X → X denotes the projection. Let C be the category with the same points as V 0 and with a function f : X → Y for each function f : S × X → S × Y in V 0 ; we say that f : X → Y in C stands for f : S × X → S × Y in V 0 . Let J : V 0 → C be the identity-on-points functor which maps each v 0 : X → Y in V 0 to the function J(v 0 ) : X → Y in C that stands for id S × v 0 : S × X → S × Y in V 0 . Let V = J(V 0 ), it is a wide subcategory of C. For all f, g : X → Y in C, let:

f g ⇐⇒ π Y • g = π Y • f .
We get a strict effect category, where the semi-congruence is symmetric, but does not satisfy the replacement property with respect to all functions in C. The semi-product of f : X → Y 1 and v : X Y 2 is defined as follows. Since

f : S × X → S × Y 1 in V 0 and v = id S × v 0 for some v 0 : X → Y in V 0 , the pair f, v 0 • π X : S × X → (S × Y 1 ) × Y 2 exists in V 0 . By composing it with the isomorphism (S × Y 1 ) × Y 2 → S × (Y 1 × Y 2 ) we get f, v : S × X → S × (Y 1 × Y 2 ) in V 0 , i.e., f, v : X → Y 1 × Y 2 in C.
It is easy to check that this defines a semi-product, so that C is a cartesian effect category, where the characteristic property of the semi-product f × v can be illustrated as follows:

(s, x 1 ) f / / (s ′ , y 1 ) (s, x 1 , x 2 ) _ O O O O O _ O O O f ×v / / = (s ′ , y 1 , y 2 ) _ O O O O O _ O O O (s, x 2 ) v / / / o / o / o / o / o / o / o / o / o (s, y 2 ) (s ′ , y 2 ) π Y / / / o / o / o / o / o / o / o / o y 2
The example above can be curried, thus recovering the State monad. A motivation for the introduction of Freyd categories in [START_REF] Power | Premonoidal categories and notions of computation[END_REF] is the possibility of dealing with state in a linear way, as above, rather than in the exponential way provided by the State monad. Now V 0 is still a cartesian category with a distinguished point S, the "type of states", and in addition V 0 has exponentials (S × X) S for each X. Then the endofunctor M(X) = (S × X) S defines the State monad on V 0 , with composition defined as usual. It is well-known that M is a strong monad, with strength

t Y 1 ,Y 2 = (S × Y 1 ) S × Y 2 → (S × Y 1 × Y 2 ) S obtained from app S×Y 1 × id Y 2 : S × (S × Y 1 ) S × Y 2 → S × Y 1 × Y 2 ,
where "app" denotes the application function. Hence, from f :

X → M(Y 1 ) and v 0 : X → Y 2 in V 0 , we can build f, v = t Y 1 ,Y 2 • f, v 0 : X → M(Y 1 × Y 2 ).
Let C be the Kleisli category of the monad M, let J : V 0 → C be the canonical functor associated to the monad, and let

V = J(V 0 ), then V is a wide subcategory of C. A function f : X → Y in C stands for a function f : X → (S × Y) S in V 0 . Now, in addition to the usual framework of monads, for all f, g : X → Y in C, i.e., f, g : X → (S × Y) S in V 0 , let: f g ⇐⇒ π Y S • g = π Y S • f ,
where π Y S : (S × Y) S → Y S associates to each map m : S → S × Y the map π Y × m : S → Y. The relation defines a semi-conguence on C, and f, v is a semi-product, so that C is a cartesian effect category. The characteristic property of the semi-product f × v can be illustrated as follows:

x 1 f / / (s → (s ′ , y 1 )) (x 1 , x 2 ) _ O O O O O _ O O O f ×v / / = (s → (s ′ , y 1 , y 2 )) _ O O O O O _ O O O x 2 v / / / o / o / o / o / o / o / o / o / o (s → (s, y 2 )) (s → (s ′ , y 2 )) π S Y / / / o / o / o / o / o / o / o / o (s → y 2 )

Conclusion

We have presented a new categorical framework, called a cartesian effect category, for dealing with the issue of multiple arguments in programming languages with computational effects. The major new feature in cartesian effect categories is the introduction of a semi-congruence, which allows to define semi-products and to prove their properties by decorating the usual definitions, properties and proofs about products in a category. Forthcoming work should study the nesting of several effects. In order to deal with other issues related to effects, we believe that the idea of decorations in logic can be more widely used. This is the case for dealing with exceptions [START_REF] Duval | Dynamic logic and exceptions: an introduction[END_REF] (note that a previous attempt to define decorated products can be found in [START_REF] Duval | Diagrammatic logic and effects: the example of exceptions[END_REF]). The framework of decorations might be used for generalizing this work in the direction of closed Freyd categories [START_REF] Power | Closed Freyd-and κ-categories[END_REF]. or traced premonoidal categories [START_REF] Benton | Traced premonoidal categories[END_REF]. Moreover, with one additional level of abstraction, decorations can be obtained from morphisms between logics, in the context of diagrammatic logics [START_REF] Duval | Diagrammatic specifications[END_REF][START_REF] Duval | Diagrammatic specifications[END_REF].

1. When X 1 = X 2 (c 1 ) q 1 • f 1 , f 2 ≡ f ′ 1 like basic (a 2 ) q 2 • f 1 , f 2 f 2 (b 2 ) f 2 ≡ f ′ 2 (c 2 ) q 2 • f 1 , f 2 f ′ 2 (a 2 ), (b 2 ), comp (d) f 1 , f 2 ≡ f ′ 1 , f ′ 2 (c 1 ), (c 2 ) 2.
In all cases (g)

f 1 • p 1 , f 2 • p 2 ≡ f ′ 1 • p 1 , f ′ 2 • p 2 like basic
Proof of proposition 2.7 (composition).

The three left handsides can be illustrated as follows:

Z 1 X f / / Y g 1 9 9 s s s s s s s s s g 2 % % K K K K K K K K K / / • O O ≡ ≡ Z 2 Y 1 g 1 / / Z 1 X f 1 9 9 s s s s s s s s s f 2 % % K K K K K K K K K / / • O O / / ≡ ≡ • O O ≡ ≡ Y 2 g 2 / / Z 2 X 1 f 1 / / Y 1 g 1 / / Z 1 • O O / / • O O / / ≡ ≡ • O O ≡ ≡ X 2 f 2 / / Y 2 g 2 / / Z 2 1.
When

f 1 = f 2 (= f ) (a 1 ) r 1 • g 1 , g 2 ≡ g 1 (b 1 ) r 1 • g 1 , g 2 • f ≡ g 1 • f (a 1 ), subst (b 2 ) r 2 • g 1 , g 2 • f ≡ g 2 • f like (b 1 ) (c) g 1 , g 2 • f ≡ g 1 • f, g 2 • f (b 1 ), (b 2 ) 2.
When

X 1 = X 2 (d) (g 1 × g 2 ) • f 1 , f 2 ≡ g 1 • q 1 • f 1 , f 2 , g 2 • q 2 • f 1 , f 2 (1) (e 1 ) q 1 • f 1 , f 2 ≡ f 1 ( f 1 ) g 1 • q 1 • f 1 , f 2 ≡ g 1 • f 1 repl ( f 2 ) g 2 • q 2 • f 1 , f 2 ≡ g 2 • f 2 like ( f 1 ) (g) g 1 • q 1 • f 1 , f 2 , g 2 • q 2 • f 1 , f 2 ≡ g 1 • f 1 , g 2 • f 2 ( f 1 ), ( f 2 ), prop. 2.6 (h) (g 1 × g 2 ) • f 1 , f 2 ≡ g 1 • f 1 , g 2 • f 2 (d), (g), trans 3.
In all cases (k) (g 1 × g 2 )

• f 1 • p 1 , f 2 • p 2 ≡ g 1 • f 1 • p 1 , g 2 • f 2 • p 2 (2)
Proof of proposition 3.7 (composition).

The three left handsides can be illustrated as follows: When

Z 1 X v / / / o
f 1 = v 2 (= v) (b 1 ) r 1 • g 1 , w 2 • v ≡ g 1 • v like basic (a 2 ) r 2 • g 1 , w 2 w 2 (b 2 ) r 2 • g 1 , w 2 • v w 2 • v (a 1 ), subst (c) g 1 , w 2 • v ≡ g 1 • v, w 2 • v (b 1 ), (b 2 ) 2.
When

X 1 = X 2 (d) (g 1 × w 2 ) • f 1 , v 2 ≡ g 1 • q 1 • f 1 , v 2 , w 2 • q 2 • f 1 , v 2 (1) ( f 1 ) g 1 • q 1 • f 1 , v 2 ≡ g 1 • f 1 like basic (e 2 ) q 2 • f 1 , v 2 v 2 ( f 2 ) w 2 • q 2 • f 1 , v 2 w 2 • v 2 repl (w 2 is pure) (g) g 1 • q 1 • f 1 , v 2 , w 2 • q 2 • f 1 , v 2 ≡ g 1 • f 1 , w 2 • v 2 ( f 1 ), ( f 2 ), prop. 2.6 (h) (g 1 × w 2 ) • f 1 , v 2 ≡ g 1 • f 1 , w 2 • v 2 (d), (g), trans ≡ 3.
In all cases (k) (g 1 × w 2 )

• f 1 • p 1 , v 2 • p 2 ≡ g 1 • f 1 • p 1 , w 2 • v 2 • p 2 (2)
Proof of proposition 2.8 (swap).

The two left handsides can be illustrated as follows:

Y 1 id / / Y 1 X f 1 9 9 t t t t t t t t t f 2 % % J J J J J J J J J / / Y 2 × Y 1 O O / / ≡ ≡ Y 1 × Y 2 O O ≡ ≡ Y 2 id / / Y 2 X 1 id / / X 1 f 1 / / Y 1 id / / Y 1 X 1 × X 2 O O / / X 2 × X 1 O O / / ≡ ≡ Y 2 × Y 1 O O / /
The two left handsides can be illustrated as follows: When

Y 1 id / / / o
X 1 = X 2 (d 1 ) q 1 • γ Y • v 2 , f 1 ≡ f 1 like basic (a 2 ) q 2 • γ Y ≡ q ′ 2 (b 2 ) q 2 • γ Y • v 2 , f 1 ≡ q ′ 2 • v 2 , f 1 (a 2 ), subst ≡ (c 2 ) q ′ 2 • v 2 , f 1 v 2 (d 2 ) q 2 • γ Y • v 2 , f 1 v 2 (b 2 ), (c 2 ), comp (e) γ Y • v 2 , f 1 ≡ f 1 , v 2 (d 1 ), (d 2 ) 2.
In all cases (l)

γ Y • f 2 • p ′ 2 , f 1 • p ′ 1 • γ -1 X ≡ f 1 • p 1 , f 2 • p 2 like basic

( ( ( h ( h ( h ( h ( h ( h ( h ( h ( h ( hf 1 ,v 2 / / Y 1 × Y 2 q 1

A Proofs in cartesian effect categories

Here are proofs for some results in section 2.2, called basic proofs, followed by their decorated versions for the corresponding results in section 3.2. All basic proofs are straightforward. All proofs are presented in a formalized way: each property is preceded by its label and followed by its proof. For the basic proofs, the properties of the congruence are denoted trans, sym, subst, repl, for respectively transitivity, symmetry, substitution, replacement. For the decorated proofs, the properties of the congruence and the semi-congruence are still denoted trans, sym, subst, repl, with subscript either ≡ or . It should be reminded that sym does not hold, and that repl is allowed only with respect to a pure function: if

In decorated proofs, "like basic" means that this part of the proof is exactly the same as in the basic proof. Proofs of propositions 2.9, 3.9(associativity) and 2.10, 3.10 (parallelism) are left to the reader.

Proof of proposition 2.6 (congruence).

1.

When

In all cases (e 1 )

Proof of proposition 3.6 (congruence).

In all cases ( f )

g), (h), (k), trans

Proof of proposition 3.8 (swap).