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Introduction

I.I.Hirschman-W. Beckner entropy argument is one further variant of Heisenbergs uncertainty principle.

Let f be the Fourier transform of f defined by

f (x) = ∞ -∞
f (y)e 2iπxy f (y)dy, x ∈ R.

If f ∈ L 2 (R) with L 2 -norme f 2 = 1, then by Plancherel's theorem f 2 = 1, so that |f (x)| 2 and | f (x)| 2 are probability frequency functions. The variance of a probability frequency g is defined by

V [g] = R x 2 g(x)dx.
The Heisenberg uncertainty principle can be stated as follows

V [|f | 2 ]V [| f | 2 ] ≥ 1 16π 2 .
(1)

If g is a probability frequency function, then the entropy of g is defined by

E(g) = R g(x) log(x)dx.
With f as above, Hirschman [START_REF] Hirschman | A note on entropy[END_REF] proved that

E(|f | 2 ) + E(| f | 2 ) ≤ 0. ( 2 
)
By an inequality of Shannon and Weaver it follows that (2) implies [START_REF] Bettaibi | Uncertainty principles for the q-trigonometric Fourier transforms[END_REF].

Using the Babenko-Beckner inequality

f p ′ ≤ A(p) f p , 1 < p < 2, A(p) = p 1/p (p ′ ) -1/p ′ 1/2
, in Hirschman's proof of (2) another uncertainty inequality is deduced. For more detail the reader can consult [START_REF] Folland | The uncertainty principle: a mathematical survey[END_REF][START_REF] Hirschman | A note on entropy[END_REF][START_REF] Heinig | Extensions of the Heisenberg-Weyl inequality[END_REF].

In this paper we use I.I. Hirschman entropy argument de give an uncertainty inequality for the q-Bessel Fourier transform (also called q-Hankel transform).

Note that other versions of the Heisenberg uncertainty principle for the q-Fourier transform have recently appeared in the literature [START_REF] Bettaibi | Uncertainty principles for the q-trigonometric Fourier transforms[END_REF][START_REF] Bettaibi | Uncertainty principles in q 2 -analogue Fourier analysis[END_REF][START_REF] Fitouhi | Uncertainty principles for the basic Bessel transform[END_REF]. There are some differences of the results cited above and our result:

• In [START_REF] Bettaibi | Uncertainty principles for the q-trigonometric Fourier transforms[END_REF] the uncertainty inequality is established for the q-cosine and q-sine transform but here is established for the q-Bessel transform.

• In [START_REF] Bettaibi | Uncertainty principles in q 2 -analogue Fourier analysis[END_REF] the uncertainty inequality is for the q 2 -Fourier transform but here is for the q-Hankel transform.

• In [START_REF] Fitouhi | Uncertainty principles for the basic Bessel transform[END_REF] the uncertainty inequality is established for functions in q-Schwartz space. In this paper the uncertainty inequality is established for functions in L q,2,v space.

The inequality discuss here is a quantitative uncertainty principles which give an information about how a function and its q-Bessel Fourier transform relate. A qualitative uncertainty principles give an information about how a function (and its Fourier transform) behave under certain circumstances. A classical qualitative uncertainty principle called Hardy's theorem. In [START_REF] Dhaouadi | Hardy's theorem for the q-Bessel Fourier transform[END_REF][START_REF] Fitouhi | On Hardy's inequality for symmetric integral transforms and analogous[END_REF] a q-version of the Hardy's theorem for the q-Bessel Fourier transform was established.

In the end, our objective is to develop a coherent harmonic analysis attached to the q-Bessel operator

∆ q,v f (x) = 1 x 2 f (q -1 x) -(1 + q 2v )f (x) + q 2v f (qx) .
Thus, this paper is an opportunity to implement the arguments of the q-Bessel Fourier analysis proved before, as the Plancherel formula, the positivity of the q-translation operator, the q-convolution product, the q-Gauss kernel...

2 The q-Bessel Fourier transform

In the following we will always assume 0 < q < 1 and v > -1. We denote by R q = {±q n , n ∈ Z} , R + q = {q n , n ∈ Z} . For more informations on the q-series theory the reader can see the references [START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications 35[END_REF][START_REF] Jackson | On a q-Definite Integrals[END_REF][START_REF] Swarttouw | The Hahn-Exton q-Bessel functions[END_REF] and the references [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF][START_REF] Fitouhi | The q -j α Bessel function[END_REF][START_REF] Koornwinder | On q-Analogues of the Hankel and Fourier Transform[END_REF] about the q-bessel Fourier analysis. Also for details of the proofs of the following results in this section can be fond in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF].

Definition 1 The q-Bessel operator is defined as follows

∆ q,v f (x) = 1 x 2 f (q -1 x) -(1 + q 2v )f (x) + q 2v f (qx) .
Definition 2 The normalized q-Bessel function of Hahn-Exton is defined by

j v (x, q 2 ) = ∞ n=0
(-1) n q n(n+1) (q 2v+2 , q 2 ) n (q 2 , q 2 ) n

x 2n .

Proposition 1 The function

x → j v (λx, q 2 )
is the eigenfunction of the operator ∆ q,v associated with the eigenvalue -λ 2 .

Definition 3 The q-Jackson integral of a function

f defined on R q is ∞ 0 f (t)d q t = (1 -q) n∈Z q n f (q n ).
Definition 4 We denote by L q,p,v the space of even functions f defined on R q such that

f q,p,v = ∞ 0 |f (x)| p x 2v+1 d q x 1/p < ∞.
Definition 5 We denote by C q,0 the space of even functions defined on R q tending to 0 as x → ±∞ and continuous at 0 equipped with the topology of uniform convergence. The space C q,0 is complete with respect to the norm

f q,∞ = sup x∈Rq |f (x)|.
Definition 6 The q-Bessel Fourier transform F q,v (also called q-Hankel transform) is defined by

F q,v f (x) = c q,v ∞ 0 f (t)j v (xt, q 2 )t 2v+1 d q t, ∀x ∈ R q .
where

c q,v = 1 1 -q (q 2v+2 ; q 2 ) ∞ (q 2 ; q 2 ) ∞ . Proposition 2 Let f ∈ L q,1,v then F q,v f existe and F q,v f ∈ C q,0 .
Definition 7 The q-translation operator is given as follows

T v q,x f (y) = c q,v ∞ 0 F q,v f (t)j v (yt, q 2 )j v (xt, q 2 )t 2v+1 d q t ∀f ∈ L q,1,v . Definition 8 The operator T v q,x is said positive if T v q,x f ≥ 0 when f ≥ 0 for all x ∈ R q . We denote by Q v the domain of positivity of T v q,x Q v = q ∈]0, 1[, T v q,
x is positive .

In the following we assume that q ∈ Q v .

Proposition 3 If f ∈ L q,1,v then ∞ 0 T v q,x f (y)y 2v+1 d q y = ∞ 0 f (y)y 2v+1 d q y.
Definition 9 The q-convolution product is defined as follows

f * q g(x) = c q,v ∞ 0 T v q,x f (y)g(y)y 2v+1 d q y.
Proposition 4 Let f, g ∈ L q,1,v then f * q g ∈ L q,1,v and we have

F q,v (f * q g) = F q,v (g) × F q,v (f ).
Proposition 5 Let f ∈ L q,1,v and g ∈ L q,2,v then f * q g ∈ L q,2,v and we have

F q,v (f * q g) = F q,v (f ) × F q,v (g).
Theorem 1 The q-Bessel Fourier transform F q,v satisfies 1. F q,v sends L q,2,v to L q,2,v .

2. For f ∈ L q,2,v , we have

F q,v (f ) q,2,v = f q,2,v .
3. The operator F q,v : L q,2,v → L q,2,v is bijective and

F -1 q,v = F q,v . Proposition 6 Given 1 < p ≤ 2 and 1 p + 1 p = 1. If f ∈ L q,p,v then F q,v (f ) ∈ L p,2,v and F q,v (f ) q,p,v ≤ B ( 2 p -1) q,v f q,p,v ,
where B q,v = 1 1 -q (-q 2 ; q 2 ) ∞ (-q 2v+2 ; q 2 ) ∞ (q 2 ; q 2 ) ∞ .

Definition 10 The q-exponential function is defined by

e(z, q) = ∞ n=0 z n (q, q) n = 1 (z; q) ∞ , |z| < 1.
Proposition 7 The q-Gauss kernel

G v (x, t 2 , q 2 ) = (-q 2v+2 t 2 , -q -2v /t 2 ; q 2 ) ∞ (-t 2 , -q 2 /t 2 ; q 2 ) ∞ e - q -2v t 2 x 2 , q 2 , ∀x, t ∈ R + q satisfies F q,v e(-t 2 y 2 , q 2 ) (x) = G v (x, t 2 , q 2 ),
and for all function

f ∈ L q,2,v lim n→∞ G v (x, q 2n , q 2 ) * q f -f q,2,v = 0.

Uncertainty Principle

The following Lemma are crucial for the proof of our main result. First we enunciate the Jensens inequality Lemma 1 Let γ be a probability measure on R + q . Let g be a convex function on a subset I of R. If ψ : R + q → I satisfies

∞ 0 ψ(u)dγ(u) ∈ I,
then we have

g ∞ 0 ψ(x)dγ(x) ≤ ∞ 0 g • ψ(x)dγ(x). Proof. Let t = ∞ 0 ψ(u)dγ(u).
There exist c ∈ R such that for all y ∈ I it holds g(y) ≥ g(t) + c(y -t).

Now let y = ψ(x) we obtain g (ψ(x)) ≥ g(t) + c(ψ(x) -t).

Integrating both sides and using the special value of t gives

∞ 0 g (ψ(x)) dγ(x) ≥ ∞ 0 [g(t) + c(ψ(x) -t)]dγ(x) = g(t).
This finish the proof.

Lemma 2 Let f be an even function defined on R q . Assume ψ : R → R + is a convexe function and ψ

• f ∈ L q,1,v . If ̺ n is a sequence of non-negative function in L q,1,v such that F q,v (̺ n )(0) = c q,v ∞ 0 ̺ n (x)x 2v+1 d q x = 1 and ̺ n * q f → f then ψ • ̺ n * q f is in L q,1,v and lim n→∞ ∞ 0 ψ • ̺ n * q f (x)x 2v+1 d q x = ∞ 0 ψ • f (x)x 2v+1 d q x.
Proof. For a given x and by Proposition 3 we have

c q,v ∞ 0 T v q,x ̺ n (y)y 2v+1 d q y = 1
From the positivity of T v q,x we see that

c q,v T v q,x ̺ n (y)y 2v+1 d q y
is a probability measure on R + q . The following holds by Jensens Inequality

ψ • ̺ n * q f (x) = ψ c q,v ∞ 0 f (y)T v q,x ̺ n (y)y 2v+1 d q y ≤ c q,v ∞ 0 ψ • f (y)T v q,x ̺ n (y)y 2v+1 d q y = ̺ n * q ψ • f (x).
By the use of the Fatou's Lemma and Proposition 4 we obtain

∞ 0 ψ • f (x)x 2v+1 d q x = ∞ 0 lim inf n→∞ ψ • ̺ n * q f (x)x 2v+1 d q x ≤ lim inf n→∞ ∞ 0 ψ • ̺ n * q f (x)x 2v+1 d q x ≤ lim sup n→∞ ∞ 0 ψ • ̺ n * q f (x)x 2v+1 d q x ≤ lim n→∞ ∞ 0 ̺ n * q ψ • f (x)x 2v+1 d q x = 1 c q,v lim n→∞ F q,v (̺ n )(0) × F q,v ψ • f (0) = ∞ 0 ψ • f (x)x 2v+1 d q x.
This finish the proof.

Definition 11 For a positive function φ define the entropy of φ to be

E(φ) = ∞ 0 φ(x) log φ(x)x 2v+1 d q x. E(φ) can have values in [-∞, ∞]. Remark 1 For a given c ∈ R + q let dγ(x) = k -1 c exp (-|cx| a ) x 2v+1 d q x where σ a = ∞ 0 exp (-|x| a ) x 2v+1 d q x, k c = σ a c 2v+2 .
Then dγ(x) is a probability measure on R + q .

Lemma 3 Let a > 0. For a positive function φ ∈ L q,1,v such that

φ q,1,v = 1 and M a (φ) = ∞ 0 |x| a φ(x)x 2v+1 d q x 1 a is finite, we have -E(φ) ≤ log k c + c a M a a (φ). (3) 
Proof. Indeed, defining

ψ(x) = k c exp (|cx| a ) φ(x),
From Remark 1 we see that

∞ 0 ψ(x)dγ(x) = 1.
According to the fact that g : t → t log t is convex on R * + , so Jensen's inequality gives

g ∞ 0 ψ(x)dγ(x) ≤ ∞ 0 g • ψ(x)dγ(x). Hence, 0 = ∞ 0 ψ(x)dγ(x) log ∞ 0 ψ(x)dγ(x) ≤ ∞ 0 ψ(x) log ψ(x)dγ(x). This implies 0 ≤ ∞ 0 φ(x) log [k c exp (|cx| a ) φ(x)] x 2v+1 d q x = ∞ 0 φ(x) [log k c + |cx| a + log φ(x)] x 2v+1 d q x. 0 ≤ log k c + c a ∞ 0 |x| a φ(x)x 2v+1 d q x + ∞ 0 φ(x) log φ(x)x 2v+1 d q x.
In the end 0 ≤ log k c + c a M a a (φ) + E(φ). This finish the proof.

Lemma 4 Let f ∈ L q,1,v ∩ L q,2,v then we have E |f | 2 + E |F q,v f | 2 ≤ 2 f 2 q,v,2 log B q,v f 2 q,v,2 . (4) 
Proof. Hölder inequality implies that f will be in L q,p,v for 1 < p ≤ 2. With

1 p + 1 p = 1,
Hausdorff-Young's inequality (Proposition 6) tells us that F q,v f is in L q,p,v . So we can define the functions

A(p) = ∞ 0 |f (x)| p d q x and B(p) = ∞ 0 |F q,v f (x)| p x 2v+1 d q x.

Now define

C(p) = log F q,v f q,p,v -log B 2 p -1 q,v f q,p,v = 1 p log B(p) - 1 p log A(p) - 2 p -1 log B q,v .
By Hausdorff-Young's inequality

C(p) ≤ 0, for 1 < p < 2,
and by Plancherel equality (Theorem 1 part 2)

C(2) = 0. Then C ′ (2 -) ≥ 0.
On the other hand for 1 < p < 2 we have

C ′ (p) = p ′ p B ′ (p) B(p) - p ′ p 2 log B(p) - 1 p A ′ (p) A(p) + 1 p 2 log A(p) + 2 p 2 log B q,v .
The derivative of p with respect to p is

p ′ = - 1 (p -1) 2 .
For a given x > 0 we have lim p→2

x p -x 2 p -2 = x 2 log x.
Then

A ′ (2 -) = lim p→2 - A(p) -A(2) p -2 = 1 2 E |f | 2 , B ′ (2 + ) = lim p→2 + B(p) -B(2) p -2 = 1 2 E |F q,v f | 2 . Since p → x p -x 2 p -2
is an increasing function, the exchange of the signs limit and integral is valid sense. On the other hand lim

p→2 - A(p) = f 2 q,v,2 , lim p→2 + B(p) = F q,v f 2 q,v,2 = f 2 q,v,2 . So C ′ (2 -) = lim p→2 - C(p) -C(2) p -2 = - 1 2 f 2 q,v,2 A ′ (2 -) + B ′ (2 + ) + 1 2 log B q,v f 2 q,v,2 .
Therefore

A ′ (2 -) + B ′ (2 + ) -f 2 q,v,2 log B q,v f 2 q,v,2 ≤ 0,
and then

E |f | 2 + E |F q,v f | 2 ≤ 2 f 2 q,v,2 log B q,v f 2 q,v,2 .
This finish the proof.

Lemma 5 Let f ∈ L q,2,v then we have

E |f | 2 + E |F q,v f | 2 ≤ 2 f 2 q,v,2 log B q,v f 2 q,v,2 . (5) 
Proof. Assume that E(|f | 2 ) and E(|F q,v f | 2 ) are defined and then approximate f by functions in L q,1,v ∩ L q,2,v . Let h n (x) = e(-q 2n x 2 , q 2 ).

The function h n is in L q,2,v then h n f ∈ L q,1,v . On the other hand h n ∈ C q,0 then h n f ∈ L q,2,v . We obtain

h n f ∈ L q,1,v ∩ L q,2,v .
The following holds by ( 2)

E |h n f | 2 + E |F q,v (h n f )| 2 ≤ 2 h n f 2 q,2,v log B q,v h n f 2 q,2,v . (6) 
One can see by the Lebesgue Dominated Convergence Theorem that

lim n→∞ h n f q,2,v = f q,2,v (7) 
and lim

n→∞ E |h n f | 2 = E |f | 2 . (8) 
By the use of Proposition 5 and the inversion formula (Theorem 1 part 3) we see that

F q,v (h n f ) = F q,v h n * q F q,v f.
We will prove that

lim n→∞ E |F q,v h n * q F q,v f | 2 = E |F q,v f | 2 .
The functions

φ 1 (x) = x 2 log + |x| and φ 2 (x) = x 2 -log -|x| + 3 2 ,
are convex on R, where log + x = max {0, log x} and log -x = min {0, log x} .

Note that 2φ 1 (x) -2φ 2 (x) + 3x 2 = x 2 log |x| 2 .

Since

• From the inversion formula we see that

c q,v ∞ 0 F q,v h n (t)t 2v+1 d q t = h n (0) = 1.
• The function F q,v h n ≥ 0.

• The functions φ i are convex on R.

• E(F q,v f ) is finite then φ i (F q,v f ) is in L q,1,v .

• From Proposition 7 we have

lim n→∞ F q,v h n * q F q,v f (x) = F q,v f (x)
we deduce that F q,v h n and φ i satisfy the conditions of Lemma 2. Then we obtain

lim n→∞ ∞ 0 φ i •(F q,v h n * q F q,v f )(x)x 2v+1 d q x = ∞ 0 φ i •(F q,v f )(x)x 2v+1 d q x, i = 1, 2.
It also hold

E |F q,v f | 2 = 2 ∞ 0 φ 1 (F q,v f ) x 2v+1 d q -2 ∞ 0 φ 2 (F q,v f ) x 2v+1 d q x + 3 F q,v f 2 q,2,v , and 
E |F q,v h n * q F q,v f | 2 = 2 ∞ 0 φ 1 (F q,v h n * q F q,v f ) x 2v+1 d q x -2 ∞ 0 φ 2 (F q,v h n * q F q,v f ) x 2v+1 d q x + 3 F q,v h n * q F q,v f 2 q,2,v . Then lim n→∞ E |F q,v h n * q F q,v f | 2 = E |F q,v f | 2 . (9) 
With ( 6) and the limits ( 7), ( 8) and (9) we complete the proof of (5).

Note that these limits also hold in the case where

E(|f | 2 ) and E(|F q,v f | 2 ) are ∞ or -∞.
Now we are in position to state and prove the uncertainty inequality for the q-Bessel Fourier transform.

Theorem 2 Given a, b > 0. Then for all c, d ∈ R + q satisfying 0 < B 2 q,v σ a σ b (cd) 2v+2 < 1, the following hold for any function f ∈ L q,2,v c a x a/2 f 2 q,2,v + d b x b/2 F q,v f 2 q,2,v ≥ -log B 2 q,v σ a σ b (cd) 2v+2 f 2 q,2,v .
Proof. Assume that f q,2,v = 1. By (3) we can write

-E(|f | 2 ) ≤ log k c + c a x a/2 f 2 q,2,v -E |F q,v f | 2 ≤ log k d + d b x b/2 F q,v f 2 q,2,v
.

Which implies with ( 5)

-2 log B q,v ≤ -E |f | 2 -E |F q,v f | 2 ≤ log k c k d + c a x a/2 f 2 q,2,v + d b x b/2 F q,v f 2 q,2,v
.

By replacing f by f f q,2,v we get c a x a/2 f 2 q,2,v + d b x b/2 F q,v f 2 q,2,v ≥ -log B 2 q,v k c k d f 2 q,2,v .
This finish the proof.

Corollary 1 There exist k > 0 such that for any function f ∈ L q,2,v we have xf q,2,v xF q,v f q,2,v ≥ k f 2 q,2,v .

Proof. Let a = b = 2 and c = d then by Theorem 3 xf 2 q,2,v + xF q,v f 2 q,2,v ≥ -

1 c 2 log B 2 q,v σ 2 2 c 4(v+1) f 2 q,2,v , where 0 < B 2 q,v σ 2 2 c 4(v+1) < 1. Now put f t (x) = f (tx), t ∈ R + q , then F q,v f t (x) = 1 t 2v+2 F q,v f (x/t), xF q,v f t 2 q,2,v = 1 t 2v F q,v f 2 q,2,v , and 
f t 2 q,2,v = 1 t 2v+2 f 2 q,2,v , xf t 2 q,2,v = 1 t 2v+4 xf 2 q,v,2 ,
which gives t 4 xF q,v f 2 q,2,v + t 2 1 c 2 log B 2 q,v σ 2 2 c 4(v+1) f 2 q,v,2 + xf 2 q,2,v ≥ 0, and then xf q,2,v xF q,v f q,2,v ≥ ψ(c) f 2 q,2,v . where

ψ(c) = v + 1 [σ 2 B q,v ] 1 v+1 |z c log(z c )|, z c = [σ 2 B q,v ] 1 v+1 c 2
, 0 < z c < 1.

One can see that sup 0<zc<1 ψ(c) = ψ(q α ), α = log[σ 2 B q,v ] 2(1 + v) log q + 1 2 log q .

Let n 1 = ⌊α⌋, n 2 = ⌈α⌉, where⌊.⌋ and ⌈.⌉ are respectively the floor and ceiling functions. Now the constant k is given as follows k = ψ(q n 1 ), if ⌈α⌉ ≥ α -1 2 log q and k = max{ψ(q n 1 ), ψ(q n 2 )}, if ⌈α⌉ < α -1 2 log q .

This finish the proof.