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Heisenberg Uncertainty Principle for the
g-Bessel Fourier transform

Lazhar Dhaouadi *

Abstract

In this paper we uses an I.I. Hirschman-W. Beckner entropy argu-
ment to give an uncertainty inequality for the g-Bessel Fourier trans-
form:

fquf(l') = Cq,v / f(t)jv(xtv q2>t2v+1dqt,
0

where j,(z, ¢) is the normalized Hahn-Exton ¢-Bessel function.

1 Introduction

LI.Hirschman-W. Beckner entropy argument is one further variant of Heisen-
bergs uncertainty principle.
Let f be the Fourier transform of f defined by

for= [ 1wy, o er
If f € L*(R) with L%mnorme |fll2 = 1, then by Plancherel’s theorem

Ifll2 = 1, so that |f(z)|? and |f(z)|?® are probability frequency functions.
The variance of a probability frequency g is defined by

Vil = | #*gla)da.

The Heisenberg uncertainty principle can be stated as follows
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If g is a probability frequency function, then the entropy of g is defined by

E(g) =/Rg(w)10g(x)dx-
With f as above, Hirschman [10] proved that
E(f1%) + B(IF) < 0. (2)

By an inequality of Shannon and Weaver it follows that (2) implies (1).
Using the Babenko-Beckner inequality

—~ 12
1Fl < AWl 1<p<2 Alp) = [p"7e) 7]

in Hirschman’s proof of (2) another uncertainty inequality is deduced. For
more detail the reader can consult [8,10,11].

In this paper we use I.I. Hirschman entropy argument de give an un-
certainty inequality for the ¢-Bessel Fourier transform (also called g-Hankel
transform).

Note that other versions of the Heisenberg uncertainty principle for the
g-Fourier transform have recently appeared in the literature [1,2,6]. There
are some differences of the results cited above and our result:

e In [1] the uncertainty inequality is established for the g-cosine and
g-sine transform but here is established for the g-Bessel transform.

e In [2] the uncertainty inequality is for the ¢?-Fourier transform but
here is for the g-Hankel transform.

e In [6] the uncertainty inequality is established for functions in g¢-
Schwartz space. In this paper the uncertainty inequality is established for
functions in £, 2, space.

The inequality discuss here is a quantitative uncertainty principles which
give an information about how a function and its ¢-Bessel Fourier transform
relate. A qualitative uncertainty principles give an information about how
a function (and its Fourier transform) behave under certain circumstances.
A classical qualitative uncertainty principle called Hardy’s theorem. In [4,7]
a g-version of the Hardy’s theorem for the g-Bessel Fourier transform was
established.

In the end, our objective is to develop a coherent harmonic analysis
attached to the g-Bessel operator

Bguf (@) = =5 [Fla™2) = (1 4+ ) f (@) + ¢ f(ar)]



Thus, this paper is an opportunity to implement the arguments of the g¢-
Bessel Fourier analysis proved before, as the Plancherel formula, the posi-
tivity of the g-translation operator, the g-convolution product, the ¢-Gauss
kernel...

2 The g-Bessel Fourier transform

In the following we will always assume 0 < ¢ < 1 and v > —1. We denote
by

R, ={£¢", neZ}, R;:{q”, nez}.
For more informations on the g-series theory the reader can see the references
[9,12,14] and the references [3,5,13] about the g-bessel Fourier analysis. Also

for details of the proofs of the following results in this section can be fond
in [3].

Definition 1 The ¢-Bessel operator is defined as follows

Bgof(@) = =5 [Fla™'0) ~ (1 + )7 (@) + ¢ f(ar)]

Definition 2 The normalized q-Bessel function of Hahn-Exton is defined

by
o0 n(n+1)
. 2 n q 2n
Ju\T,q" ) = -1 .
)= 2 V" e

Proposition 1 The function

z — jo(Az, ¢%)
is the eigenfunction of the operator A, associated with the eigenvalue —\2.
Definition 3 The g-Jackson integral of a function f defined on R, s

/0 T H gt = (1 - 0) S a" ().

nez

Definition 4 We denote by L, . the space of even functions f defined on
R, such that

[e'e) 9 1 1/1’7
1l = [ [ s dqx} <.



Definition 5 We denote by C, o the space of even functions defined on R,
tending to 0 as x — +o0o and continuous at 0 equipped with the topology of
uniform convergence. The space Cy is complete with respect to the norm

[fllg,00 = sup [f ()]
R

TERg

Definition 6 The g¢-Bessel Fourier transform Fy, (also called q-Hankel
transform) is defined by

Foof(x) = cq,v/o f(@t)ju(at, q2)t2”+1dqt, Vz € R,.

where
1 (q2v+2 . q2)oo

-q (¢%¢®)

chv = 1
Proposition 2 Let f € L1, then Fy,f existe and Fy,f € Cyp-

Definition 7 The g-translation operator is given as follows
oo
Tqv,:cf(y) = cq,v/o Faof )du(yt, qz)jv(m?qQ)t%qut Vf € Ly

Definition 8 The operator T, is said positive if Ty, f > 0 when f >0 for

q?x

all z € Ry. We denote by Q. the domain of positivity of T,/
Qv = {q €]0,1], Ty, is positive} .
In the following we assume that ¢ € Q.

Proposition 3 If f € L, 1., then

/0 T f )y gy = / F)y*dgy.

0

Definition 9 The g-convolution product is defined as follows

o0
f *q g(l’) - cq,v/ T(sz(y)g(y)y%ﬂdqy
0
Proposition 4 Let f,g € Lg1,0 then f %49 € Lg1, and we have

qu(f *q g) = fq,v(g) X fq,v(f)-



Proposition 5 Let f € L1, and g € L2, then fx,9 € L2, and we
have
fq,v(f *q g) = fq,v(f) X fq,v(g)'

Theorem 1 The q-Bessel Fourier transform Fgq . satisfies
1. Fyon sends Lgoy to Lyoy.
2. For f € Ly2., we have

1Fa.0(Nllg.2.0 = [[fllg,2.0-

3. The operator Fq, : Lg2.0 — Lg2,0 15 bijective and

-1 _
Fow = Fqu-

Proposition 6 Given 1 < p <2 and % + 1:1) =1. If fe Lypo then

fq,v(f) € ﬁﬁ,Q,U

and
2-1)
[Faw(lgpe < Bao 1 f lgp0s

where - ors 9
I (=% 0%) oo (=07 0% oo
1—gq (%4%) oo

By =

)

Definition 10 The g-exponential function is defined by

e}

e(Z,Q):Z(Zn = 1 .zl < L

= ()0 (%0

Proposition 7 The q-Gauss kernel

2U+2t2 . —2v t2' 2 —2v
| 2/2797)006<_q2 xz’qz)’ Vo,t € R}
(=12, —¢*/t%¢?) o t

Gv(x,tQ,QQ) _ (_q

satisfies
Faw {e(—t2y2,q2)} (z) = G¥(z, 1%, ¢%),
and for all function f € Lg2,

lim ||Gv(x7q2n’q2) *q f - qu,2,v =0.
n—00



3 Uncertainty Principle

The following Lemma are crucial for the proof of our main result. First we
enunciate the Jensens inequality

Lemma 1 Lety be a probability measure on ]R;‘. Let g be a convex function
on a subset I of R. If : R; — I satisfies

e ¢}

; Y(u)dy(u) € 1,

then we have

Proof. Let

0
There exist ¢ € R such that for all y € I it holds

g(y) > g(t) +cly — 1)

Now let y = 1(z) we obtain
g9 (@) = g(t) + c(¥(x) —1).
Integrating both sides and using the special value of t gives
| sw@are = [Tl + cwia) - 0lr@) = g0
This finish the proof. m

Lemma 2 Let f be an even function defined on R,. Assume ¢ : R — R
is a convexe function and Yo f € Lg1.4. If 0n 15 a sequence of non-negative
function in Ly, such that

‘aa%xm:%mﬂ on(@)2? dyz — 1
and on, *q J— [ thenvo <Qn *q f) 18 in ﬁq,l,v and

lim - o (Qn *q f> (x)xQUqux = /OO o f(x)m2”+1dqx.
0

n—oo 0



Proof. For a given x and by Proposition 3 we have

(o]
Cq,”/o thmgn(y)yzwldqy =1

From the positivity of 77, we see that

canTLpon(W)y* dgy

is a probability measure on ]R;‘. The following holds by Jensens Inequality

Yo (Qn *q f) (x)=1v [Cq,v /O )Ty won()y™ gy

< oo /0 o FU)T pon(y)y®dyy
:Qn*qwof(x)'

By the use of the Fatou’s Lemma and Proposition 4 we obtain
o
/ Yo flx)x? T d,a
0
o
= / liminf o <Qn *q f) (x)va‘qux
0 n—oo

< liminf/ P o <Qn *q f) (x)x%ﬂdqx
0

n—oo

< lim sup/ o <Qn *q f) (x)a:%“dqﬂ:
n—oo J0
< lim On *q Y © f(x)x%qux

n—oo 0

= = Jim 7y (00)(0) x o (00£)(0)
_ /0 "o f(2)aHdye.
This finish the proof. m
Definition 11 For a positive function ¢ define the entropy of ¢ to be
E(¢) = /000 ¢(x)log p(z)x* Td,x.

E(¢) can have values in [—oo, 00].



Remark 1 For a given ¢ € R} let
dy(z) = k. exp (— |cx|*) 2* T d,x

where
> 20+1 Oq
ro= [ exn(=la) e e k= o

Then dv(z) is a probability measure on R} .

Lemma 3 Let a > 0. For a positive function ¢ € Lg1,, such that

1llg1,0 =1

and

o) = [ lal ¢<w>x2”“dqx)i

0

is finite, we have
—E(¢) <log ke + c"Mg(¢). (3)

Proof. Indeed, defining

P(x) = keexp (Jcz|”) p(),

From Remark 1 we see that
o0
| v@ria) = 1.
0

According to the fact that g : ¢ — tlogt is convex on R%, so Jensen’s
inequality gives

g [ I w(fﬂ)dv(w)] < [T govirta)

Hence,

0= | [T v g | [T s@arw)] < [T vozsaa),

This implies
0 < / ¢($) log [kc exp (’C.%"a) ¢(.%')] 1_21)+1dqx
0

= /OOO o() [log ke + |cx|* 4 log (z)] 2% d, .

8



0 <logk.+ c* / |2|* ¢(z)x*  dyx + / o(x)log p(x)x* T d, .
0 0

In the end
0 <logke + "Mz (9) + E(¢).

This finish the proof. m

Lemma 4 Let f € L1, N Ly 2, then we have

E (1) +E (1F0fl?) <2 2ozlog (Buoll fI202). ()
Proof. Holder inequality implies that f will be in £, , for 1 < p < 2. With
1 1
- + - = 1;
p p

Hausdorff-Young’s inequality (Proposition 6) tells us that F, . f isin L4 5..
So we can define the functions

A(p) = /O°° |f(x)[P dgz and B(p) = /OOO | F, mf(x)‘pw%—i_ldqx.

Now define

C(p)

2_1
108 17305~ o8 (B3 171,

1 2

log B(p) — — log A(p) — (— - 1> log By .
p p

By Hausdorff-Young’s inequality

C(p) <0, for 1 <p<2,

and by Plancherel equality (Theorem 1 part 2)

C(2)=0.
Then
c'(27) > 0.
On the other hand for 1 < p < 2 we have
FEG) P, . 1A 1 2
C’'(p :2% ~—— — — log B(p) — — + — log A(p) + — log By 4.
=550 7 P) = A tloe At ploe By



The derivative of p with respect to p is

— 1
(p—1)*
For a given z > 0 we have
CoaP — g2 5
11)1_)1% P = z“logx.
Then 4 A2 )
) = tim AOZAB L (),
p—2— p—2 2
. B -B(2) 1 2
oty — —
B2 = lim ——— o ('fq’”ﬂ )
Since
xP — 22
p— p_2

is an increasing function, the exchange of the signs limit and integral is valid
sense. On the other hand

i Ap) = 17,02 ﬁliggB(p) = 1 Fawfllgm2 = 1F1502

So
_ . C(p)—-C(2) 1 _ 1
C'(27) = lim = — A'(27)+ B'(2M)]+=1og ( Byl fIIZ0a)-
(27) = lim =5 ST A1)+ BN+ g (Ballf12.2)
Therefore
A7)+ B'(2%) = I I3 02108 (ByallfI2.02) <0,
and then

B (1) + B (1F40f1?) < 211202108 (Byoll f12.2).
This finish the proof. m

Lemma 5 Let f € L2, then we have

E (1) + B (1Ffl) 2 202l0g (Buall fI202)-  (5)

10



Proof. Assume that E(|f|?) and E(|F,,f|*) are defined and then approx-
imate f by functions in Lg1., N Ly 2. Let

ho(z) = e(—q*"2%, ¢°).

The function hy, is in L2, then h,f € L4 1,. On the other hand h, € Cy0
then h, f € L42,. We obtain

hnf € Lg1oN Ly2.0.
The following holds by (2)
E (1hf1?) + B (1Fo0(hn)) < 2l f 1220108 (Boollhn fI220)-  (6)

One can see by the Lebesgue Dominated Convergence Theorem that

nll_{go ||hanq,2,v = HquQ,v (7)
and
Jim B () = B (1£7) )

By the use of Proposition 5 and the inversion formula (Theorem 1 part 3)
we see that
Faplhnf) = Fawhn g Fguf-

We will prove that

lim E (|fq,vhn %q fq,vf|2) —E <|f ,vflz).

n—oo

The functions
3
é1(z) = 2% log" |z| and ¢y (z) = 22 <— log™ |z| + 5) ,
are convex on R, where
logt 2 = max{0,logz} and log” = min{0,logz}.

Note that
261 () — 2¢9(z) + 32% = 2% log |z|*.

Since
e From the inversion formula we see that

Cqv /O Fywha (O dyt = by (0) = 1.

11



e The function F; ,h, > 0.
e The functions ¢; are convex on R.
o E(Fyuf) is finite then ¢;(Fy o f) isin Lg 1.
e From Proposition 7 we have
nILrI;O fq,vhn *q fq,vf(x) = fq,vf(x)

we deduce that F,,h, and ¢; satisfy the conditions of Lemma 2. Then we

obtain
o0

lim ¢io(fq7vhn*qfq,vf)(m)x2”+1dqx = / qSio(fq,vf)(x)x%Jrldqx, i=1,2.
0

n—oo 0

It also hold
E <’~7:q,vf‘2> = 2/0 o1 (fq,vf) x2v+1dq

9 /0 b2 (Fyoof) e gz + 31 Fyuf 1120

and
E (‘fq,vhn *g fquff) — 2/0 &1 (Fgohn *q Fgof) x2v+1dqx
- 2/ ®2 (fq,vhn *q fq,vf) x2v+1dqx
0
+ 3 || Fgvhn *q ]—“q,fo;ZU .
Then
nlLHéOE (‘fq,’vhn *q fq,q}f’Q) - E <‘fq,vf‘2> . (9)

With (6) and the limits (7), (8) and (9) we complete the proof of (5).

Note that these limits also hold in the case where E(| f|?) and E(|F,., f|?)
are 0o or —oo. W

Now we are in position to state and prove the uncertainty inequality for
the g-Bessel Fourier transform.

Theorem 2 Given a,b > 0. Then for all ¢,d € RQIL satisfying
2 Uaab
0<Bg, (cd)20+2

the following hold for any function f € Lg 2,

2 g Ub 2
> log (BW> T

<1,

2

2
c® ‘

Tl IR F

q,2,v q,2,v

12



Proof. Assume that ||f|;2, = 1. By (3) we can write

2
—E(|f[?) <logke + ¢

i
B (1Fyuf?) <loghy+d* |22,

020
Which implies with (5)

—2log By, < —FE (’f’Q) - F <‘~7:q,vf‘2>
2

< log (kkd) e ‘2

xa/sz L be/zquf

q,2,v q,2,v

By replacing f by we get

I
111,20

2

ca

2 9 2
‘ > — log (Bq,vkckd) ”f”q,Q,v :

2P d a2 F

q,2,v q,2,v

This finish the proof. m

Corollary 1 There exist k > 0 such that for any function f € L2, we
have

12 llg.20l2F g0 f g 2.0 2> Kl FIIZ 2,0-
Proof. Let a = b= 2 and ¢ = d then by Theorem 3

1 o3
2 2 2 2 2
el 1101, >~z 108 (Bl ) 1o

where
» 03
0< <BQ7UC4(U+1)> < L.
Now put
fila) = f(tz), teRy,
then

1 1
Foufi(r) = m}—q,vf@/t), |z F. ,vftHg,z,v = tg_vH]:q,foQ,z,m

and

1
I fell2 0.0 = m”f”i,z,m |z fill20., = m”xf”g,v,m

13



which gives

1 0'2 2
o 120 + 55108 (B2 ) I s + 121220 2 0,

and then
2 f llg2.0/leFq0f lg20 = YN F17 2.0
where
1
1 B v+1
90 = — L tog(ea)l, me= 2Bl g o1
[UQquv]m ¢

One can see that

log[o2Bg.0] 1

031211[)(6) = T,Z)(q )’ = 2(1 —|—U) 10gq 210gq'

Let
ny = |af, no=lal,

where|.] and [.] are respectively the floor and ceiling functions. Now the
constant k is given as follows

ni H 1
k=v(@"), 1 o] 2a- g
and 1
k=max{p(¢"),w(@™)}, if [o] <o- o

This finish the proof. m
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