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LOWER BOUNDS FOR SUP + INF AND SUP * INF AND AN EXTENSION OF CHEN-LIN RESULT IN DIMENSION 3

We give two results about Harnack type inequalities. First, on compact smooth Riemannian surface without boundary, we have an estimate of the type sup + inf. The second result concerns the solutions of prescribed scalar curvature equation on the unit ball of R n with Dirichlet condition.

Next, we give an inequality of the type

For the case s = 1/2, we prove that if min Ω u > m > 0 and the hölderian constant A of V is small enough ( in certain meaning), we have the uniform boundedness of the supremum of the solutions of the previous equation on any compact set of Ω.

INTRODUCTION AND RESULTS.

We denote ∆ = -∇ j (∇ j ), the geometric Laplacian.

On compact smooth Riemann surface without boundary (M, g) we consider the following equation :

∆u + k = V e u , (E 1 ) with, k ∈ R * ,+ and 0 ≤ V ≤ b ( V ≡ 0 ).
We suppose V smooth. The previous equation is of type prescribed scalar curvature. We search to know if it's possible to have a priori estimate of the type sup + inf.

Note that in dimension 2, on R 2 , we have different results about sup + inf inequalities for the following equation: ∆u = V e u , (E 2 ) see [B-L-S], [B-M], [C-L 2], [L 2] and [S].

In [S], Shafrir proved an inequality of the type sup u + C inf u < C ′ with minimal conditions on the prescribed scalar curvature. In [B-L-S], Brezis-Li-Shafrir have proved a sup u + inf u inequality with lipschitzian assumption on prescribed curvature. Finaly, [C-L 2] have proved the same result with hölderian assumption on V in the equation (E 2 ).

Here, we are interested by the minoration of this sum. We can suppose that V olume(M ) = 1. We obtain, Theorem 1. For all k, b > 0, there exists a constant c = c(k, b, M, g) such that, for all solution of (E 1 ):

k -4π 4π sup M u + inf M u ≥ c.
We can remark that for k = 8π, we have the same result than in [B 1]. Here there is no restriction on k. Now we work in dimension n ≥ 3, we set B = B 1 (0) the unit ball of R n . We try to study some properties of the solutions of the following equation:

∆u = V u N -1-ǫ , u > 0 in B, u = 0 on ∂B (E 3 ) with 0 ≤ V (x) ≤ b < +∞, 0 ≤ ǫ < 2/(n-2) and N = 2n n -2
the critical Sobolev exponant.

Equation (E 3 ) is the prescribed scalar curvature equation, it was studied a lot. We know, after using Pohozaev identity that, there is no solution for this equation if we assume ǫ = 0 and V ≡ 1, see [P].

Theorem 2. For all compact K of B, there exists one positive constant c = c(n, b, K) such that for all solution of (E 3 ) :

(sup B u) 7 × inf K u ≥ c.
Recall that estimates like in the last theorem exist, see for example [B 1] et [B 2]. Now we work on Ω ⊂ R 3 and we consider the following equation:

∆u = V u 5 , u > 0, (E 4 ) with, 0 < a ≤ V (x) ≤ b and |V (x) -V (y)| ≤ A|x -y| s , s ∈ [ 1 2 , 1], x, y ∈ Ω. (C)
Without loss of genarality, we suppose Ω = B the unit ball of R 3 .

The equation (E 4 ) is the scalar curvature equation in three dimensions. It was studied a lot,

see for example [B 3], [C-L 1], [L 1]. In [C-L 1],
Chen and Lin have proved that if s > 1 2 , then each sequence (u k ) k which are solutions of (E 4 ) ( with fixed V ) are in L ∞ loc if we suppose min B u k > m > 0. When s = 1 they prove that the sup × inf inequality holds. To prove those results, they use the moving-plane method.

In [L 1], Li proved (in particular) that the product sup × inf is bounded if we replace Ω by the three sphere S 3 . He used the notion of isolated and isolated simple blow-up points.

We can see in [B 3] another proof of the boundedness of sup 1/3 × inf, also with the movingplane method.

Note that, if we suppose Ω a Riemannian manifold of dimension 3 (not necessarily compact), Li and Zhang (see [L-Z]) have proved that the sup × inf holds when the prescribed scalar curvature is a constant. Note that, in our work, we have no assumption on energy. There are many results, if we suppose the energy bounded.

Here, we use the moving-plane method to have sup × inf inequalities. This method was developed by Gidas-Ni-Nirenberg, used by Chen-Lin and Li-Zhang, see

[G-N-N], [C-L 1] and [L-Z].
In our work we follow and use the technique of Li and Zhang, see [L-Z].

Theorem 3. If s ∈] 1 2 , 1],
then, for all positive numbers a, b, A and all compact K of B, there exists a positive constant c = c(a, b, A, s, K) such that:

(sup K u) 2s-1 × inf B u ≤ c,
where u is solution of (E 4 ) with V satisfying (C).

For s = 1 2 and a, b, m > 0, there exists δ = δ(a, b, m) > 0 such that for u solution of (E 4 ) with A ∈]0, δ] for V in (C) and u ≥ m, we have:

sup K u ≤ c = c(a, b, m, K),
where K ⊂⊂ B 1 .

Note that in [B 3], for the dimension 4, we have a result like in the second part of the theorem 3.

About usual Harnack inequalities, we can find in [G-T] lots of those estimates. For harmonic functions (∆u

= - n i=1 ∂ ii u = 0 on open set of R n ),
we have an estimate of the type:

sup BR u inf BR u ≤ 3 n , on small ball B R of radius R (see chapter 1 in [G-T]).
We have other results if we consider a general elliptic operator

(L = ∂ i (a ij ∂ j )+ n j=1 b j ∂ j +c on open set of R n ), we obtain: sup BR u inf BR u ≤ C[n, R, c, (b j ) j , (a ij ) i,j ]
for a non negative function u such that Lu = 0

( B R is a ball of radius R . See for example theorem 8.20 in [G-T].
For subharmonic and superharmonic functions there is another type of Harnack inequalities linking their norm L p to their infimum or supremum. (See chapter 8 in [G-T]).

Here we follow the same idea and we try to compare the sup and the inf in a certain meaning.

PROOFS OF THE THEOREMS.

Proof of Theorem 1:

Consider the equation :

∆u i + k = V i e ui , Case 1: sup M u i ≤ c < +∞.
We set x i the point where u i is maximum, u i (x i ) = sup M u i , then:

0 ≤ ∆u i (x i ) = V i (x i )e ui(xi) -k ≤ be ui(xi) -k, thus, log k b ≤ u i (x i ) ≤ c ′ .
We denote G the Green function of laplacian,

∆ y,distribution G(x, .) = 1 -δ x and G(x, y) ≥ 0, M G(x, y) ≡ C.
we can write,

log k b ≤ u i (x i ) = M u i dV g - M G(x i , y)[V i (y)e ui(y) -k]dV g ≤ M u i + C(be c -k).
We deduce:

-∞ < c 2 ≤ M u i ≤ c 1 < +∞, ∀ i. Now, we write, min M u i = u i (y i ) = M u i + M G(y i , y)[V i (y)e ui(y) -k]dV g ≥ c 2 -kC > -∞.
Thus,

||u i || L ∞ ≤ c ′ < +∞, ∀ i. Case 2: sup M u i → +∞.
According to T. Aubin (see [A]), we have,

G(x, y) = - 1 2π log d(x, y) + g(x, y),
where , g is a regular part of G, it is a continuous function on M × M .

Let us note x i the point where u i is maximum, u i (x i ) = max M u i . We can suppose that x i → x 0 and in the conformal isothermal coordinates around x 0 we set v i (x) = u i (x i +xe -ui(xi)/2 )u i (x i ), then,

∆v i + h i = Ṽi e vi , h i → 0 v i (0) = 0, v i (x) ≤ 0, 0 ≤ Ṽi (x) ≤ b.
We can use theorem 3 of [B-M] and we deduce after passing to the subsequence that:

v i (x) ≥ C > -∞, for |x| ≤ r.
Thus,

u i (y) ≥ u i (x i ) + C, if d(y, x i ) ≤ re -ui(xi)/2 , Now, we work on M -B(x i , re -ui(xi)/2 ), G(x i , y) ≤ 1 4π u i (x i ) + C 1 , on ∂B(x i , re -ui(xi)/2 ) ∆[u i -kG(x i , .)] ≥ 0, on M -B(x i , re -ui(xi)/2 ) u i (y) -kG(x i , y) - 4π -k 4π u i (x i ) + kC 1 -C ≥ 0, on ∂B(x i , re -ui(xi)/2 ).
By maximum principle, we obtain:

u i ≥ kG(x i , .) + 4π -k 4π u i (x i ) -kC 1 + C, on M -B(x i , re -ui(xi)/2 ),
We use the fact, M G(x i , y) ≡ constant, and by integration of the last inequality we have,

inf M u i + k -4π 4π sup M u i ≥ c > -∞,
Example with V i → 0 : we can take, u i ≡ log k + log i and V i ≡ 1/i.

Remark: If we suppose V i ≥ a > 0 uniformly, then, when k < 4π we can not have sup M u i → +∞. To see this, it is sufficient to integrate the equation.

Proof of Theorem 2:

We are going to prove that each sequence has a subsequence who has the searched inequality.

Next, we use the fact that, if we have possibility to extract a subsequence we do it and we denote (u i ) i the subsequence.

We have,

∆u i = V i u N -1-ǫi i , u i > 0 on B, ( Ẽ) with 0 ≤ V i (x) ≤ b ( V i ≡ 0).
Let us note G the Green function of the laplacian on unit ball with Dirichlet condition. G is of the form:

G(x, y) = 1 n(n -2)ω n |x -y| n-2 - 1 n(n -2)ω n (|x| 2 |y| 2 + 1 -2x.y) (n-2)/2 .
Denote x i the point where u i is maximum. We write:

u i (x i ) = B G(x i , y)V i (x)[u i (y)] N -1-ǫi dy ≤ b[u i (x i )] N -1-ǫi B G(x i , y)dy.
Consider the function h(x) = |x| 2 -1, we have:

B G(x i , y)dy = 1 -|x i | 2 2n ≤ d(x i , ∂B)/n.
We deduce:

0 < n b ≤ [u i (x i )] 4/(n-2)-ǫi d(x i , ∂B). Case 1: max B u i ≤ c Then, d(x i , ∂B) ≥ c ′ > 0. By elliptic estimates, u i → u, with u > 0. Then, inf K u i ≥ c > 0 with K ⊂⊂ B.
To see this, we can write ( Ẽ) as:

∆u i = f i with, f i uniformly in L p for p > n.
We can use the elliptic estimates to have u i uniformly in W 2,p (B) and by the Sobolev embedding, we have u i uniformly in C 1,θ ( B), for some θ ∈]0, 1[. Now, we can see that:

B ∇u i .∇ϕ = B V i u N -1-ǫi i ϕ ≥ 0, for all ϕ ∈ C ∞ 0 (B), ϕ ≥ 0 (distribution).
We can passe to the limit u i → u ≥ 0 (subsequence) and u ∈ C 1 ( B). Then, we have:

B ∇u.∇ϕ ≥ 0, ϕ ∈ C ∞ 0 (B), ϕ ≥ 0 (distribution).
We can use the strong maximum principle for weak solutions, see for example, Gilbarg-Trudinger, theorem 8.19 (applied to -u ≤ 0):

If, there is a point t in B such that, u(t) = 0 then, u ≡ 0. But we can see that u i (x i ) ≥ c′ > 0 with c′ do not depends on i and x i → ∂B (subsequence).

Finaly, u > 0 on B.

Remark 1. Why do we do this ? in fact, we have neither u i ∈ C 2 ( B) nor u i → u in C 2 norm because we don't have more regularity on V i and finally we don't have ∆u ≥ 0 in the strong sense. We have weakly ∆u ≥ 0 with a good regularity on u. Here, it is sufficient to have: C 1 regularity on u and an uniform boundedness for u i in C 1,θ (0 < θ < 1), to obtain a good convergence for u i . After we can use a strong maximum principle for weak solutions.

Remark 2. If we take a sequence of functions V i which converge uniformly to 0 ( for example), the previous case 1 is not possible.

Case 2: max

B u i → +∞ I) x i → x 0 ∈ ∂B :
To simplify our computations, we assume n/b > 1/2. Then, B(x i , r i ) ∈ B, with r i = 1 2[u i (x i )] 4/(n-2)-ǫi . We consider the following functions :

v i (x) = u i [x i + x/[u i (x i )] 2/(n-2)-ǫi/2 ] u i (x i ) ,
Those functions v i , exist on Ω i = B(0, 5t i ), t i = 1/10[u i (x i )] 2/(n-2)-ǫi/2 . We have :

∆v i = Ṽi v N -1-ǫi i , 0 < v i (x) ≤ v i (0) = 1, 0 ≤ Ṽi (x) ≤ b. with, Ṽi (x) = V i [x i + x/[u i (x i )] 2/(n-2)-ǫi/2 ].
We use Harnack inequality for v i ( see Theoreme 8.20 of [G-T]), we obtain:

max B(0,ti) v i ≤ C inf B(0,ti) v i .
where

C = [C 0 (n)] 1+b ( see [G-T] and t i ≤ 1).
In 0, we obtain:

u i (x) ≥ C(n, b)u i (x i ) for |x| ≤ s i = 1/10[u i (x i )] 4/(n-2)-ǫi . Let us note that, C(n, b) = C = [C 0 (n)] 1+b . If we consider B -B(x i , s i ), then, G(x i , y) ≤ c(n)[u i (x i )] 4-(n-2)ǫi , for d(x i , y) = s i , ∆G(x i , .) = 0, G(x i , .) |∂B = 0, with, c(n) = 10 n-2 n(n -2)ω n .
Thus,

u i (y) - C(n, b)G(x i , y) c(n)[u i (x i )] 3-(n-2)ǫi ≥ 0, for d(y, x i ) = s i , or, on ∂B. ∆ u i - C(n, b)G(x i , .) c(n)[u i (x i )] 3-(n-2)ǫi ≥ 0.
By maximum principle, we have:

u i (y) - C(n, b)G(x i , y) c(n)[u i (x i )] 3-(n-2)ǫi ≥ 0, on B -B(x i , s i ).
In other terms,

u i (y) ≥ C(n, b) c(n) G(x i , y)[u i (x i )] -3+(n-2)ǫi , on B -B(x i , s i ).
Now, we know that,

G(x i , y) ≥ c ′ (n)(1 -|y|) n-2 × (1 -|x i |) n-2 . where c ′ (n) = 1 2(n -2)2 2(n-2) ω n . We denote, c ′ (n, b) = n b . Using the fact, 1 -|x i | = d(x i , ∂B) ≥ c ′ (n, b)[u i (x i )] -4/(n-2)+ǫi , we obtain, u i (y) ≥ C(n, b)c ′ (n)c ′ (n, b) c(n) (1 -|y|) n-2 [u i (x i )] -7+2(n-2)ǫi , on B -B(x i , s i ).
On B(0, k) with k < 1, by maximum principle we have:

inf B(0,k) u i = inf ∂B(0,k) u i .
Then,

u i (y) ≥ C(n, b)(1 -k) n-2 [u i (x i )] -7+2(n-2)ǫi , on B(0, k) -B(x i , s i ),
but, x i → x 0 ∈ ∂B, and for i large we can conclude that B(x i , s i ) ∩ B(0, k) = ∅ and thus, inf

B(0,k) u i × [u i (x i )] 7 ≥ C(n, b, k).
We can remark that:

C(n, b, k) = C(n, b)c ′ (n)c ′ (n, b) c(n) (1 -k) n-2 . with, C(n, b) = C 0 (n) 1+b , c(n) = 10 n-2 n(n -2)ω n , c ′ (n) = 1 2(n -2)2 2(n-2) ω n and c ′ (n, b) = n b .
Then,

C(n, b, k) = [C 0 (n)] 1+b 2n 2 (n -2)2 2(n-2) ω n bn(n -2)ω n (1 -k) n-2 = [C 0 (n)] 1+b 2n2 2(n-2) b (1 -k) n-2 . II) x i → x 0 ∈ B :
Our computations are the same as in the previous case I), there are some modifications.

We take, t i = 1 and s i = [u i (x i )] 2/(n-2)-ǫi/2 . We have:

G(x i , y) ≤ C(n)[u i (x i )] 2-(n-2)ǫi/2 . After, u i (y) ≥ C ′ (n, b)G(x i , y)[u i (x i )] -1+(n-2)ǫi/2 , we use the fact, x i → x 0 ∈ B, G(x i , y) ≥ C ′′ (n, b, x 0 )(1 -k) n-2 , then, inf B(0,k) u i × [u i (x i )] 1-(n-2)ǫi/2 ≥ c(n, b, k, x 0 ) > 0.

Proof of the Theorem 3

Step 1: blow-up technique

We are going to prove the following assertion:

∃ c, R > 0 such that, R sup B(0,R) u 2s-1 × inf B u ≤ c if 1 2 < s ≤ 1,
and,

∃ c, R > 0 such that, R sup B(0,R) u ≤ c if s = 1 2 .
We argue by contradiction ( and after passing to a subseqence) and we suppose that for R k → 0 we have:

R k sup B(0,R k ) u k 2s-1 × inf B u k → +∞, for s ∈]1/2, 1]. R k sup B(0,R k ) u k → +∞, for s = 1/2. Let x k be the point such that u k (x k ) = sup B(0,R k )
u k and consider the following function:

s k (x) = (R k -|x -x k |)u k (x). Let a k be the point such that: s k (a k ) = sup B(x k ,R k ) s k . We set M k = u k (a k ) and l k = R k -|a k -x k |. We have: M -1 k u k (x) ≤ √ 2, for |x -a k | ≤ l k 2 M 2 k . We have: l k 2 M k → +∞, v k (y) = M -1 k u k (a k + M -2 k y) for |y| ≤ l k 2 M 2 k , ∆v k = V k v k 5 , v k (0) = 1, 0 < v k ≤ √ 2.
We know, after passing to a subsequence, that:

v k → U, with ∆U = V (0)U 5 , U > 0, on R 3 .
It easy to see that we can suppose V (0) = 1. The result of Caffarelli-Gidas-Spruck (see [C-G-S] ) assures that U has an explicit form and is radially symmetric about some point.

Step 2: The moving plane method Now, we use the Kelvin transform and we set for λ > 0 :

v λ k (y) = λ |y| v k (y λ ) with y λ = λ 2 y |y| 2 . We denote Σ λ by: Σ λ = B 0, R k M 2s k -B(0, λ).
We have the following boundary condition:

lim k→+∞ min |y|=R k M 2s k (v k (y)|y|) → +∞.
We have:

∆v λ k = V λ k (v λ k ) 5 . We set: w λ = v k -v λ k . Then, ∆w λ + n + 2 n -2 ξ 4 V k w λ = E λ , with E λ = (V k -V λ k )(v λ k ) 5 .
Clearly, we have the following lemma.

Lemma 1:

We have:

|E λ | ≤ A k × C(λ 1 )M -2s k λ 5 |y| s-5 ≤ C(λ 1 )λ s 1 × A k M -2s k λ 5-s |y| s-5 .
Let

h λ = -C(s, λ 1 )A k M -2s k 1 - λ |y| 4-s
.

Lemma 2:

∃ λ k 0 > 0 such that w λ + h λ > 0 in Σ λ ∀ 0 < λ ≤ λ k 0 . The proof of the lemma 2 is like the proof of the step 1 of the lemma 2 in [L-Z], we omit it here.

We set: λ k = sup{λ ≤ λ 1 , such that w µ + h µ > 0 in Σ µ for all 0 < µ ≤ λ}.

We have:

If s ∈]1/2, 1] then |h λ k |R k M 2s
k ≤ C(s, λ 1 ) sup k A k , and thus, 

w λ k + h λ k > 0 ∀ |y| = R k M 2s k . If s = 1 2 , min M u k ≥ m >
w λ k + h λ k ≥ [-λ k v k (y λ ) + 2λ 1 -C(λ 1 , s)A k ] (2λ 1 M k )/m ≥ m 2λ 1 M k [-(1 + ǫ)λ 1 -ǫλ 1 + 2λ 1 ] > 0,
where ǫ > 0 is very small and v k (y λ ) → U (0) = 1.

For the case s = 1 2 , we work in Σ λ = B 0, 2λ 1 M k m -B(0, λ). It is easy to see that,

2λ 1 M k m << R k M 2 k .
We define λ k as in the case 1/2 < s ≤ 1.

If we use the Hopf maximum principle, we prove that λ k = λ 1 like in [L-Z]. We have the same contradiction as in [L-Z].

  0 and A k → 0, we obtain,min |y|=(2λ1M k )/m [v k (y)|y|] ≥ 2λ 1 > 0, thus, for |y| = 2λ 1 M k mand k large we have:

ACKNOWLEDGEMENT.

This work was done when the author was in Greece at Patras. The author is grateful to Professor Athanase Cotsiolis, the Department of Mathematics of Patras University and the IKY Foundation for hospitality and the excellent conditions of work.