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This paper describes the implementation of multivariate data analysis: NEURODOC applies the 

axial k-means method for automatic, non-hierarchical cluster analysis and a Principal Component 

Analysis (PCA) for representing the clusters on a map. We next introduce Artificial Neural 

Networks (ANNs) to extend NEURODOC into a neural platform for the cluster analysis and 

cartography of bibliographic data. The ANNs tested are: the Adaptive Resonance Theory (ART 1), 

a Multilayer Perceptron (MLP), and an associative network with unsupervised learning 

(KOHONEN). This platform is intended for quantitative analysis of information. 

 

1.  INTRODUCTION 

 

Informetrics’ general fonction is the analysis of information (Polanco 1996).  The aim of our work 

is to perform this general fonction by computer using automatic data cluster analysis algorithms 

and the representation of the clusters so generated in the form of maps.  We apply this approach to 

the domain of Scientific and Technical Information (STI). 

The STI analysis involves the use of three indicator types or levels: keywords as content 

indicators, of the knowledge conveyed by the documents; clusters as indicators of the topics or the 

centres of interest contained in the information (articles, authors, institutions, journals); map as 

strategic indicator of the relative position of the topics in the knowledge space covered by the 

documents analysed. 

These techniques (cluster analysis and representation) belong to the mathematical domain 

of statistical analysis known as multivariate data analysis. The statistical analysis of the 

information (informetrics) can be completed with the aid of neural networks (models which are 

essentially non-linear and threshold-driven). 

In the design and development of informetric techniques, one path to be explored is the 

application of connectionist models which use learning mechanisms to classify and represent data.  

Our interest in artificial neural algorithms lies in the links which exist between data analysis and 

the connectionist approach.  ANNs and statistical methods of multivariate data analysis have much 

in common. Connectionist methods can be considered as non-linear data analysis methods. PCA, 

k-means or dynamic cloud clustering methods correspond to unsupervised neural methods; 

regression and linear discriminant analysis are special cases of supervised neural methods (Lebart 

et al. 1995; Cheng & Titterington 1994; Ripley 1994; Lelu 1991, 1993). 

Our first studies of the application of ANNs to informetrics have resulted in the definition 

of the axial k-means method of cluster analysis. This method is inspired from the neural formalism 

of Kohenen's model is an application of a modified version of Oja's winner-takes-all type of 

learning rule (Lelu 1993). This method is implemented in NEURODOC (Lelu & François 1992a, 

1992b). 

In this article, we first present the approach used by NEURODOC for the analysis of the 

information (section 2). We then present the first stage of a project in which ANNs are used to 

develop NEURODOC into an ANN platform (Section 3). 

2.  NEURODOC 

 

The three main components of NEURODOC are: [1] Cluster analysis which groups the documents 

by cluster, and therefore also the authors, their affiliations and the journals in which they were 

published. This cluster analysis is achieved using the axial k-means method. [2] A factor 

representation of topics (or clusters) identified above based on the PCA. [3] A hypertext interface 
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generator for PC (under WinHelp) and for Macintosh (under Hypercard) which provides the user 

with a user-friendly interface with the map, the topics and the documents themselves. 

2.1 Classification 

As its name suggests, the axial k-means method is a variant of the k-means method developed by 

MacQueen (1967). MacQueen's algorithm belongs to the family of "moving centre" cluster 

analysis algorithms. Alain Lelu (1993), the author of the "axial k-means" method, presents it as a 

synthesis of factor analysis and cluster analysis, drawing on the neural formalism of Kohonen's 

model, that is to say, the associative projection model. This method considers the collection of 

bibliographic references as a cloud of points in a multidimensional space where each dimension 

corresponds to a keyword. Characteristically, it represents clusters as vectors pointing towards 

areas of highest density.  The usual non-hierarchical clustering techniques represent the k clusters 

found according to their centre of gravity; the axial k-means define the k clusters found by k half-

axes passing through the origin of the multidimensional space, or k unit vectors pointing in the 

direction of the half-axes. 

The position of the k half-axes is initialised either at random or by the first k documents.  

We then calculate the square projections yi(k) of each normalized document i, upon  the k half-axes 

thus defined, by calculating the scalar products of the normalized document i with the unit vectors 

of the k half-axes. Each document is attached to the cluster k where the projection y(k) on the axis 

0Ak is maximal. To take this attachment into account in the adaptive form of the algorithm, the 

position of the axis is immediately recalculated.  In the iterative form it is recalculated after all the 

documents have been treated. By successive iterations the axes are repositioned and stabilise in the 

high density areas of the data cloud, thus forming a strict classification of the documents. 

To obtain overlapping clusters, a "typicality threshold" is defined: while a document 

belongs to the cluster to which it was associated during the final pass, it can also belong to a 

different cluster if the value of its projection upon this second axis is greater than the threshold.  A 

document can thus belong to several clusters if the values of its projection upon the corresponding 

axes are greater than the threshold. 

For example, the value of the projection of the document i upon the various clusters is 

greatest for the axis Ak (yi(k)) while the value of its  projection upon the axis Ak'(yi(k')) is less than 

the threshold. The document i thus belongs uniquely to the cluster k. The value of the projection of 

the document ii upon the various clusters is greatest for the axis Ak and the value of its projection 

upon the axis Ak' is greater than the threshold. The document ii belongs thus to both clusters k and 

k'. 

Documents belonging to a given cluster can be ranked according to the value of their 

projection upon the axis which represents the cluster.  For example, the projection of the document 

ii upon the axis Ak(yii(k)) is greater than that of document i (yi(k)). This order corresponds to a 

decreasing order of "typicity" of the documents compared with the "ideal" type of the cluster 

which is a fictitious document positioned exactly on the axis in the multidimensional space. 

By using the values of the components of the cluster unit vector, we can define a partition 

of keywords from the documentary corpus in the same way.  As for the documents, the partition 

thus created can lead to overlapping clusters. A keyword can belong to several clusters and 

keywords are ordered according to the decreasing pertinence to the ideal cluster type. The 

weighting used to determine the value of pertinence is used to bring out specific (or typical) 

keywords for the cluster, that is to say, frequent in the cluster and rare in the documentation 

overall. 

This algorithm, which can be parameterized with the maximum number of clusters 

desired and the threshold of co-ordinates of the documents and keywords on the axes, is used to 

construct clusters of a particular type. [1] These clusters overlap because a document or a keyword 

can belong to several clusters at once. [2] The documents or keywords are ranked according to 

their degree of resemblance to the ideal cluster type. 

2.2 Cartography 

A cluster of documents corresponds to a topic, a homogeneous sub-set of the information 

contained in the documentary corpus being studied. The PCA of the group of clusters in the 

multidimensional space is used to determine a plane causing the least deformation to the clusters 

cloud. All the points representing clusters are then projected upon this plane to create the global 

topic map. On such a map, two topics which appear at opposite ends of the axis represent clusters 

defined by keywords which are as different as possible (see figure 2). 
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2.3 Automatic Hypertext Generation 

The STI which has thus been structured by classification and cartography is then organized in 

hypertext. The hypertext is used to obtain an overview of the documentary corpus from the global 

map and then to gain access to pertinent information organised by topic (clusters). Selecting a 

topic allows one to see its description in the form of four lists [1] keywords, [2] titles, [3] authors, 

[4] journal titles. 

In 1995, INIST used NEURODOC for producing five thematic data files based on 

PASCAL and FRANCIS databases related to "Pain and pain treatment", "Physiology of central 

nervous system receptors", "Cosmetics", "Natural energy sources", and "Human resources". These 

data files have been distributed in French on diskettes. These applications also exist on a CD-ROM 

version (dmcontact@inist.fr). In addition, these applications can be accessed and searched with 

HENOCH system over the Internet (Grivel et al. 1997). 

3.  MOVING TOWARDS AN INTEGRATED PLATFORM 

 

In order to develop NEURODOC into a platform allowing the application of ANN to bibliographic 

data, we have initiated an applied research project in collaboration with the CORTEX group of the 

RFIA Team, common to CRIN-CNRS and INRIA-Lorraine (Nancy, France; http://www.loria.fr).  

This section describes the results of the first stage of this project: the application of unsupervised 

formal neural networks to the domains of classification and cartography: 

− To clusterize bibliographic data, we needed a network with unsupervised neural clustering 

analysis capabilities similar to axial k-means clustering. Our raw data are represented as 

binary vectors with 0 and 1 values.  The ART 1 meets these requirements.  The MLP produces 

supervised clustering being more similar to the Discriminant Factor Analysis. 

− To map topics, (i.e. to place topics produced by the clustering phase into a map), we used two 

ANNs: a self-assoaciation MPL which, in this case, is similar to the PCA approach and 

KOHONEN self-organizing map (SOM) (Kohonen 1982, 1995). 

The aim of this project is to show how the implementation of the various neural methods 

can assist with the analysis of the information provided. This is done with a view to its reusability 

and insertion in NEURODOC to produce a neural information analysis platform. 

 

Axial k-means

ART1

KOHONEN

NEURODOC

Classification

Cartography

PCA

PERCEPTRON

 
 

Figure 1: Evolution of NEURODOC towards an ANN platform 

 

3.1 Content of utilized data 

We tested these algorithms on a corpus of bibliographic data from INIST's PASCAL database.  

These data contain all references pertaining to cosmetics from this database as published in 1995.  

This corpus includes 276 records, 95% of which are derived from 85 journals. NEURODOC 

clustering produced 20 topics as shown on the map in the figure 2.  This corpus is available for 

evaluation. 

3.2 Cluster Analysis by Adaptive Resonance Theory (ART) 

The ART 1 used here comes from the work of Carpenter and Grossberg (1988). The cluster 

analysis is performed by using the keywords as indicators of the contents of the bibliographic data. 

The data are represented in the form of a matrix where the rows correspond to the documents and 

the columns to the keywords. This matrix contains 0s and 1s which represent the presence (1) or 

absence (0) of a keyword in a document.  Such a matrix is principally constructed of 0s. The aim 
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of ART 1 is to associate a set of codes to a group of data. These codes determine the data clusters 

as according to their resemblance. The main interest of ART 1 is its capacity to create as many 

codes as necessary. These codes will ultimately be used to define the clusters. The most important 

thing to bear in mind in trying to understand ART 1 is that only the 1s contain any information. 

The resemblance is calculated using the following formula: 
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k
.  It appears then that 

the bits set to 0 are not considered at all in calculating the resemblance between two vectors. This 

implies that if a data and its code have 90% of their 0s in common, this does not mean that they 

will necessarily be associated. 

This resemblance depends on two factors: ρ, the vigilance parameter which determines 

the minimum resemblance between a data and its code in terms of the number of bits set to 1, and 

β, a coefficient which gives added weight to codes having the most number of 1s when associating 

data to a code. 

The first stage in the study of ART 1 was to verify the influence of these two factors on 

the number of clusters produced. The effect of β turns out to be very small. For our corpus of 276 

documents, the minimum number of clusters obtained is about 76.  In order to reduce the number 

of clusters, we have removed the codes where only one bit is set to 1 and redistributed the 

documents in the remaining clusters. This results in the appearance of documents which cannot be 

classified. These documents have no keywords in common with the remaining codes. So as not to 

lose them, we have created a separate cluster containing all these documents. We have then 

developed a method of merging clusters so as to end up with 18 clusters. 

Assessment: Although the number of clusters produced is higher compared with the 

number of documents to be classified, the main problem is to evaluate the pertinence of these 

clusters as indicators of the research topics. The codes corresponding to the clusters contain few 

keywords.  In order to evaluate them and compare them with the results obtained with the axial k-

means, it is necessary to characterise the clusters better by defining an order of pertinence for the 

documents associated with the clusters, as well as for all the keywords which index the documents.  

ART 1 is simple and has limited capacity. It can only treat binary entries. However, ART 2 

network can treat vectors with continuous values allowing a cluster analysis of normalized 

documents.  We plan to study both these ART networks. 

 

3.3 Cartography using MULTILAYER PERCEPTRON and KOHONEN NETWORK 

As well as being a means of visualization, maps also represent an analytical method insofar as they 

can be used to evaluate the relative position of topics in a multidimensional representation space. 

The use of the PCA in the domain of bibliographic data is confronted with the fact that 

the data are very multidimensional. The representativeness of the first two axes when measured as 

an inertia percentage is always weak (about 20 to 30%). There are always a number of isolated 

topics in the multidimensional space which are misleadingly positioned on the map by the 

orthogonal projection. 

In order to find a better system to represent the clusters generated by the axial k-means 

method, we have tested a MULTILAYER PERCEPTRON (MLP), and a KOHONEN network. A 

number of improvements have been made to MLP algorithm following the advice given by 

Jodouin (1994).  Kohonen's algorithm was defined according to Jodouin (1994) and Hertz et al. 

(1991). The input data provided to these networks are represented by a matrix where the rows 

correspond to the clusters (fewer than 50 in general) and the columns to keywords (several 

hundred in general). 

3.3.1 Three layers PERCEPTRON 

We have not used the PERCEPTRON for its ability to make associations but for its spatial 

projection capabilities. We want the output signal to be the same as the input while passing 

through an intermediate layer with only two neurones. This network is thus required to reduce a n-
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dimensional vector into a two-dimensional one and then to reconstruct a n-dimensional vector. 

This topology is used to obtain two co-ordinates: the activation values of the central neurones for 

each topic. The learning level of the network is known due to the Mean Quadratic Error (MQE) 

which is calculated periodically. This MQE corresponds to the Euclidean distance between the 

input and output vectors. Its evolution has three phases: a relatively long plateau, a step-wise 

descent, and a final stabilization. The MQE is given by the following formula: 
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where N is the number of clusters to place; M is the dimensions number of vectors representing 

clusters; Si,j  is the value taken by the j
th

 neurone for the ith example; Ti,j is the value expected for 

the j
th

 neurone in the i
th

 example. 

Assessment: We have seen whether the grouping and separation of the topics reflect the 

contents of the corpus by submitting the maps with their hypertexts to expert in documentation.  

We have defined a three-stage evaluation protocol. [1] The Euclidean distances between the 

vectors of all the clusters are calculated. [2] The position of the topics is verified in the following 

manner: for each cluster studied, the positions of the others is considered correct; in this way we 

verify that the cluster is well centred in comparison with those nearest to it (criterion 1) and a long 

way from those which are most different (criterion 2). A topic is well positioned if those two 

criterions are respected, and moderately well placed if only one criterion is respected. [3] By a 

global consideration of the results of the second step, we have been able to evaluate the quality of 

each map. 

In this way we have seen that those maps obtained by the PERCEPTRON (figure 3) were 

clearly superior to those obtained by the PCA (figure 2). The distances on these maps are not 

proportional to the distances calculated in N-space but the oppositions are virtually all respected. 

 

 
Figure 2: Sample of a topic map obtained by PCA on a corpus in cosmetics.  The topics 

underlined by a solid line are badly positioned while those underlined by a dotted line are 

moderately well placed. 
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Figure 3: Example of a topic map obtained by the three-layer PERCEPTRON. 

3.3.2 KOHONEN Network 

The KOHONEN network has a two-layer topology consisting of an input layer and a output grid 

and learns in an unsupervised manner. This structure allows us to place the n-dimensional data 

directly in the plane represented by the grid. The learning follow up is achieved in the same way as 

for the PERCEPTRON, i.e. following the evolution of the MQE. 

For the PERCEPTRON, we used the vectors representing the clusters to the input but, in 

the case of KOHONEN, to improve its performance, we presented the vectors representing the 

keywords, in other words the transposed matrix. We obtained a keyword map where the co-

ordinates of topics on the map are calculated in the following manner: the position of the topic is 

the barycentre of the co-ordinates of all the keywords making up the topic. 

Assessment: We note that the KOHONEN method produces results more quickly than 

the PERCEPTRON. However, the final MQE is higher than the three-layer PERCEPTRON. The 

map evaluation protocol is the same as that used for the three-layer PERCEPTRON. 

As we have already mentioned, we are planning to test the KOHONEN model in its 

unsupervised clustering on competition-based learning aspects and its mapping capabilities. In this 

respect, Campanario (1995) used a KOHONEN self-organizing map algorithm in its work on 

journal-to-journal citation data. He noted that this algorithm has the following advantages 

compared to the multidimensional methods: [1] an improved representation of the asymmetric 

form of the cross-citation matrix among journals, and consequently [2] a better understanding of 

the nature of interrelations between journals. 
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Figure 4: Example of a topic map obtained using the KOHONEN method. 

3.3.3 Evaluation and Perspectives of the two neural methods 

It is necessary to find a statistical evaluation methodology to measure the effect of the ANNs in the 

cartographic representation of topics. This method could be based on the Euclidean distances 

between topics and give values to their closeness and/or separation, measure the occupation of the 

map, and how well the order of proximity is respected. Once such a tool has been created, we will 

be able to study the modifications brought about by the transposition of data. Then, we could 

envisage optimising the map using a simulated annealing method.  In terms of the implementation 

of the PERCEPTRON and KOHONEN programmes, it would be interesting to alter the stop 

conditions. Up until now, we have had two possibilities, either to wait for stabilisation in the MQE 

or to impose a certain number of iterations.  In the light of the results, it may be interesting to use 

the following formula: 
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where N is the number of clusters to place; Si,j is the value taken by the jth neurone for the ith 

example; Ti,j is the value expected for the jth neurone in the ith example.  If the MQE is less than a 

fixed threshold, stop. Otherwise, continue. We think that it would be easy to calculate a stop 

threshold as a function of the number of examples. The aim of this calculation would be to impose 

a maximum tolerated average distance between the input and the output. 

4. CONCLUSION 

 

In this paper, we have attempted to present the preliminary results and assessments of a research 

project oriented towards the application of neural algorithms for the cluster analysis and 

cartography of the STI.  We now have an ANN platform at our disposal. The first stage of the 

implementation was realised between April and July 1996 (Keim 1996). The results that we have 

shown (section 3) must be followed by more statistically-rigorous evaluation tests in order to 

compare [1] the results obtained by the different cluster analysis methods, axial k-means, ART 1 
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and ART 2, classification by self-associating KOHONEN maps, and [2] the maps obtained by the 

statistical (PCA and MDS) and neural methods (PERCEPTRON and KOHONEN). 

We believe that we have filled a gap in informetrics concerning the use of ANNs already 

exploited for information retrieval (Doszkocs et al. 1990). By applying to quantitative studies of 

science and technology, methods used by science itself in many domains (see, for example, the 

bibliometric study of Van Raan and Tijssen in 1993 on Neural Network Research), we are creating 

a back-propagation movement known here as the "science of science", and which is the source of 

scientometrics (Price 1963). 

Finally, let us to point out that our aim is not limited to use ANNs for quantitative studies 

of bibliographical data in STI, but above all to develop a computerized informetric platform based 

on ANNs.  Such a platform should be able to combine, or to apply the different statistical and 

neural approaches consecutively, according to the user's analysis and mapping strategies. 

We believe that this design is one of the most promising ways to obtain implicit, 

unknown, but potentially useful information from a database. This is called today "data mining" or 

"knowledge discovery in databases".  Our ongoing research is oriented towards a such direction.  

Note in passing that the technologies designed in order to analyze, evaluated and apply 

information to define strategies, can be called intelligence technologies. The NEURODOC 

platform can be seen as an example of this sort of technology. 
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