Artificial Neural Network Technology: for the Classification and Cartography of Scientific and Technical Information - Archive ouverte HAL Access content directly
Journal Articles Scientometrics Year : 1998

Artificial Neural Network Technology: for the Classification and Cartography of Scientific and Technical Information

(1) , , (1)
1

Abstract

This paper describes the implementation of multivariate data analysis: NEURODOC applies the axial k-means method for automatic, non-hierarchical cluster analysis and a Principal Component Analysis (PCA) for representing the clusters on a map. We next introduce Artificial Neural Networks (ANNs) to extend NEURODOC into a neural platform for the cluster analysis and cartography of bibliographic data. The ANNs tested are: the Adaptive Resonance Theory (ART 1), a Multilayer Perceptron (MLP), and an associative network with unsupervised learning (KOHONEN). This platform is intended for quantitative analysis of information.
Fichier principal
Vignette du fichier
XP_et_al_ANNClaCart.pdf (115.97 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00161166 , version 1 (10-07-2007)

Identifiers

Cite

Xavier Polanco, Claire François, Jean-Pierre Keim. Artificial Neural Network Technology: for the Classification and Cartography of Scientific and Technical Information. Scientometrics, 1998, 41 (1), pp.69-82. ⟨10.1007/BF02457968⟩. ⟨hal-00161166⟩
121 View
351 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More