A dichotomy characterizing analytic digraphs of uncountable Borel
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chromatic number in any dimension.

The goal of this paper is to characterize the analytic digraphs of uncountable Borel chromatic number. This has been done in [K-S-T] for graphs, i.e., for symmetric digraphs, when d = 2. We will give such a characterization in terms of the following notion of comparison between relations.

Notation. Assume that X, Y are Polish spaces, and let A (resp., B) be a subset of X d (resp., Y d ).

We set [X, A] B [Y, B] ⇔ ∃u : X → Y Borel with A ⊆ (u d ) -1 (B).

In this case, we say that u is a Borel homomorphism from [X, A] into [Y, B]. This notion essentially makes sense for digraphs (we can take u to be constant if B is not a digraph). If u is continuous (resp., Baire-measurable, arbitrary), then we write c (resp., Bm , ) instead of B . Note that χ

B (A) ≤ ω is equivalent to [X, A] B [ω, ¬∆ d (ω)].
We also have to introduce minimum digraphs of uncountable Borel chromatic number:

• if s = ∅. Note that I is one-to-one, so that there is an increasing bijection ϕ : Seq := I[ω <ω ] → ω. If t ∈ Seq ⊆ ω, then we will denote t := I -1 (t) ∈ ω <ω . We set ψ ω := (ϕ • I) -1 : ω → ω <ω . Note that ψ ω is a bijection.

• Note also that |ψ d (n)| ≤ n if n ∈ ω. Indeed, this is clear if d < ω. If d = ω, then I[ψ ω (n)|0] < I[ψ ω (n)|1] < ... < I[ψ ω (n)], so that (ϕ • I)[ψ ω (n)|0] < (ϕ • I)[ψ ω (n)|1] < ... < (ϕ • I)[ψ ω (n)] = n. This implies that |ψ ω (n)| ≤ n. • Let n ∈ ω. As |ψ d (n)| ≤ n, we can define s d n := ψ d (n)0 n-|ψ d (n)| .
The crucial properties of the sequence (s d n ) n∈ω are the following:

-For each s ∈ d <ω , there is n ∈ ω such that s ⊆ s d n (we say that (s d n ) n∈ω is dense in d <ω ).

-

|s d n | = n. • We put A d := {(s d n iγ) i∈d | n ∈ ω and γ ∈ d ω } ⊆ (d ω ) d . Note that A d ∈ Σ 1 1 since the map (n, γ) → (s d n iγ) i∈d is continuous.
The previous definitions were given, when d = 2, in [K-S-T], where the following is proved: (Kechris, Solecki, Todorčević) Let X be a Polish space, and A ∈ Σ 1 1 (X 2 ). Then exactly one of the following holds:

Theorem 1.3
(a) [X, A] B [ω, ¬∆ 2 (ω)]. (b) [2 ω , A 2 ] c [X, A].
This result can be extended to any finite dimension d, with the same proof.

Theorem 1.4 Let d ≥ 2 be an integer, X a Polish space, and A ∈ Σ 1 1 (X d ). Then exactly one of the following holds:

(a) [X, A] B [ω, ¬∆ d (ω)]. (b) [d ω , A d ] c [X, A].
We want to study the case of the infinite dimension.

Theorem 1.5 We cannot extend Theorem 1.4 to the case where d = ω.

Notation.

In order to get a positive result in the case of the infinite dimension, we put

G := {α ∈ ω ω | ∀m ∈ ω ∃n ≥ m s ω n 0 ⊆ α}. Note that G is a dense G δ subset of ω ω .
The main result of this paper is the following: Theorem 1.6 Let X be a Polish space, and A ∈ Σ 1 1 (X ω ). Then exactly one of the following holds:

(a) [X, A] B [ω, ¬∆ ω (ω)]. (b) [G, A ω ∩ G ω ] c [X, A].

So we have a general characterization, in any dimension d, of analytic relations

A ⊆ X d for which [X, A] B [ω, ¬∆ d (ω)].
In particular, we have a characterization of analytic digraphs of uncountable Borel chromatic number.

Theorem 1.5 says that we cannot extend Theorem 1.4 to the case where d = ω for the notion of continuous homomorphism in (b). However, the extension of Theorem 1.4 to the case where d = ω is possible for the notion of Baire-measurable homomorphism: Theorem 1.7 Let X be a Polish space, and A ∈ Σ 1 1 (X ω ). Then exactly one of the following holds:

(a) [X, A] B [ω, ¬∆ ω (ω)]. (b) [ω ω , A ω ] Bm [X, A].

The proof in finite dimension.

Let us start with two general lemmas:

Lemma 2.1 Let G be a dense G δ subset of d ω . Then [G, A d ∩ G d ] Bm [ω, ¬∆ d (ω)].
Proof. We argue by contradiction. This gives a Baire-measurable function u :

G → ω such that A d ∩ G d ⊆ (u d ) -1 [¬∆ d (ω)]. As G = i∈ω u -1 ({i}),
there is an integer i 0 such that u -1 ({i 0 }) is not meager and has the Baire property in G. This implies the existence of s ∈ d <ω such that

(G ∩ N s )\u -1 ({i 0 }) is meager. Let H be a dense G δ subset of G such that H ∩ N s ⊆ u -1 ({i 0 }). We choose n ∈ ω with s ⊆ s d n . Note that f i n : N s d n 0 → N s d n i defined by f i n (s d n 0γ) := s d n iγ is an homeomorphism. This implies that i∈ω (f i n ) -1 (H) is a dense G δ subset of N s d n 0 . We choose s d n 0γ ∈ i∈ω (f i n ) -1 (H). We get (s d n iγ) i∈d ∈ A d ∩ (H ∩ N s ) d ⊆ [u -1 ({i 0 })] d , which contradicts the fact that A d ∩ G d ⊆ (u d ) -1 [¬∆ d (ω)]. Definition 2.2 Let A ⊆ X d . We say that C ⊆ X is A-discrete if A ∩ C d = ∅.
Notation. The reader should see [M] for the basic notions of effective descriptive set theory. Assume that X and X d are recursively presented Polish spaces, and that A ∈ Σ 1 1 (X d ). We put

U := {D ∈ ∆ 1 1 (X) | D is A-discrete}.
Note that U ∈ Π 1 1 (X) if the projections are recursive.

Lemma 2.3 Assume that X and X d are recursively presented Polish spaces, A ∈ Σ 1 1 (X d ), and

U = X. Then [X, A] B [ω, ¬∆ d (ω)]. Proof. As U = X, there is a partition (D n ) n∈ω of X into A-discrete ∆ 1 1 sets. We define a Borel map u : X → ω by u(x) = n ⇔ x ∈ D n . If (x i ) i∈d ∈ A, then we cannot have [u(x i )] i∈d ∈ ∆ d (ω), since the D n 's are A-discrete.
We will recall the proof of Theorem 1.4, to show the problem appearing in the case of the infinite dimension. It is essentially identical to the one in [K-S-T], except that we do not use Choquet games.

Notation. Let Z be a recursively presented Polish space. The Gandy-Harrington topology on Z is generated by Σ 1 1 (Z) and denoted Σ Z . It is finer than the initial topology of Z, so that [Z, [S]; the second assertion is Gandy's basis theorem). Recall also that

Σ Z ] is T 1 . As Σ 1 1 (Z) is countable (see 3F.6 in [M]), [Z, Σ Z ] is second countable. We set Ω Z := {z ∈ Z | ω z 1 = ω CK 1 }. Recall that Ω Z is Σ 1 1 (Z) and dense in [Z, Σ Z ] (see III.1.5 in
W ∩ Ω Z is a clopen subset of [Ω Z , Σ Z ] for each W ∈ Σ 1 1 (Z). Indeed, it is obviously open. Let f : Z → ω ω be ∆ 1 1 such that Z\(W ∩ Ω Z ) = f -1 (W O) (see 4A.3 in [M]
). We get

z ∈ Ω Z \(W ∩ Ω Z ) ⇔ z ∈ Ω Z and ∃ξ < ω CK 1 (f (z) ∈ W O and |f (z)| ≤ ξ).
This proves that W ∩ Ω Z is closed (see 4A.2 in [M]). In particular, [Ω Z , Σ Z ] is zero-dimensional, and regular. By Theorem 4.2 in [H-K-L] and 8.16.(iii) in [K],

[Ω Z , Σ Z ] is strong Choquet. By 8.18 in [K], [Ω Z , Σ Z ] is a Polish space. So we fix a complete compatible metric d Z on [Ω Z , Σ Z ].
Proof of Theorem 1.4. Note first that we cannot have (a) and (b) simultaneously, by Lemma 2.1.

• We may assume that X is a recursively presented Polish space and that

A ∈ Σ 1 1 (X d ). We set Φ := {C ⊆ X | C is A-discrete}. As Φ is Π 1 1 on Σ 1 1 , the first reflection theorem ensures that if C ∈ Σ 1 1 (X) is A-discrete, then there is D ∈ ∆ 1 1 (X) which is A-discrete and contains C (see 35.C in [K]).
• By Lemma 2.3 we may assume that U = X, so that Y := X \U is a nonempty Σ 1 1 subset of X. The previous point gives the following key property:

∀C ∈ Σ 1 1 (X) (∅ = C ⊆ Y ⇒ A ∩ C d = ∅). • We construct (x s ) s∈d <ω ⊆ Y , (V s ) s∈d <ω ⊆ Σ 1 1 (X) and (U n,t ) (n,t)∈ω×d <ω ⊆ Σ 1 1 (X d ) satisfying the following conditions: (1) x s ∈ V s ⊆ Y ∩ Ω X and (x s d n it ) i∈d ∈ U n,t ⊆ A ∩ Y d ∩ Ω X d , (2) V sm ⊆ V s and U n,tm ⊆ U n,t , (3) diam d X (V s ) ≤ 2 -|s| and diam d X d (U n,t ) ≤ 2 -n-1-|t| .
• Assume that this is done. Fix α ∈ d ω . Then (V α|p ) p∈ω is a decreasing sequence of nonempty clopen subsets of [Ω X , Σ X ] whose d X -diameters tend to zero, so there is u(α) in their intersection. This defines u :

d ω → X. Note that d X [x α|p , u(α)] ≤ diam d X (V α|p ) ≤ 2 -p
, so that u is continuous and

(x α|p ) p∈ω tends to u(α) in [X, Σ X ]. If (s d n iγ) i∈d ∈ A d , then (U n,γ|p ) p∈ω is a decreasing sequence of nonempty clopen subsets of [Ω X d , Σ X d ] whose d X d -diameters tend to zero, so there is (α i ) i∈d in their intersection. Note that (α i ) i∈d ∈ A. Moreover, the sequence ([x s d n i(γ|p) ] i∈d ) p∈ω tends to (α i ) i∈d in [X d , Σ X d ],
and in 1)-(3) have been constructed, which is the case for l = 0. Let C be the following set: 

[X d , Σ d X ] too. As (x s d n i(γ|p) ) p∈ω tends to u(s d n iγ), we get u(s d n iγ) = α i , for each i ∈ d. Thus [u(s d n iγ)] i∈d ∈ A. • So it is enough to see that the construction is possible. As Y is a nonempty Σ 1 1 subset of X, we can choose x ∅ ∈ Y ∩ Ω X , and V ∅ ∈ Σ 1 1 (X) such that x ∅ ∈ V ∅ ⊆ Y ∩ Ω X and diam d X (V ∅ ) ≤ 1. Assume that (x s ) |s|≤l , (V s ) |s|≤l and (U n,t ) n+1+|t|≤l satisfying (
{x ∈ X | ∃(y s ) s∈d l ∈ X d l y s d l = x and ∀s ∈ d l y s ∈ V s and ∀n < l ∀t ∈ d l-n-1 (y s d n it ) i∈d ∈ U n,t }. Then C ∈ Σ 1 1 (X) since d is an integer, x s d l ∈ C ⊆ Y by induction assumption. So there is (x s d l i ) i∈d in A ∩ C d ∩ Ω X d ,
-V sm ∈ Σ 1 1 (X) with x sm ∈ V sm ⊆ V s and diam d X (V sm ) ≤ 2 -l-1 , for s ∈ d l and m ∈ d. -U l,∅ ∈ Σ 1 1 (X d ) with (x s d l i ) i∈d ∈ U l,∅ ⊆ A ∩ Y d ∩ Ω X d and diam d X d (U l,∅ ) ≤ 2 -l-1 . -U n,tm ∈ Σ 1 1 (X d ) with (x s d n itm ) i∈d ∈ U n,tm ⊆ U n,t and diam d X d (U n,tm ) ≤ 2 -l-1 , for (n, t) in ω×d <ω with n+1+|t| = l and m ∈ d.

The natural extension in infinite dimension does not work.

Theorem 1.5 is a consequence of Lemma 2.1 and of the following result:

Theorem 3 [ω ω , A ω ] c [G, A ω ∩ G ω ].
Proof. We argue by contradiction. This gives a continuous map u :

ω ω → G with A ω ⊆ (u ω ) -1 (A ω ).
• Let us prove that there is α ∈ ω ω and (s n ) n∈ω ∈ (ω <ω ) ω such that u[β(0)0 α(0) β(1)0 α(1) ...] = s 0 β(0)s 1 β(1)... for each β ∈ ω ω . We construct α(n) and s n by induction on n. Assume that α|n and (s p ) p<n are constructed satisfying

s ω Σ j≤p [1+α(j)] ⊆ 0 ∞ and [t(0)0 α(0) ...t(p)0 α(p) ⊆ γ ⇒ s 0 t(0)...s p t(p) ⊆ u(γ)]
for each p < n and t ∈ ω p+1 . We will construct α(n) and s n satisfying

s ω Σ j≤n [1+α(j)] ⊆ 0 ∞ and [t(0)0 α(0) ...t(n)0 α(n) ⊆ γ ⇒ s 0 t(0)...s n t(n) ⊆ u(γ)]
for each t ∈ ω n+1 , which will be enough. Note first that there are m ∈ ω and δ

∈ ω ω with [u(s ω Σ j<n [1+α(j)] i0 ∞ )] i∈ω = (s ω m iδ) i∈ω . As u is continuous, there is p ∈ ω such that s ω Σ j<n [1+α(j)] 0 p+1 ⊆ γ ⇒ s ω m 0 ⊆ u(γ), s ω Σ j<n [1+α(j)] 10 p ⊆ γ ⇒ s ω m 1 ⊆ u(γ). Note that s ω Σ j<n [1+α(j)] i0 p ⊆ γ ⇒ s ω m i ⊆ u(γ), for each i ∈ ω. Indeed, let ε ∈ ω ω . Then [u(s ω Σ j<n [1+α(j)] i0 p ε)] i∈ω ∈ A ω ∩ [N s ω m 0 ×N s ω m 1 ×(ω ω ) ω ] ⊆ Π i∈ω N s ω m i . In particular, this implies that s 0 0...s n-1 0 ⊆ s ω m since s 0 0...s n-1 0 ⊆ u(s ω Σ j<n [1+α(j)] i0 p ε).
-If n = 0, then we choose α(0) ≥ p such that 0 1+α(0) = s ω 1+α(0) , we set s 0 := s ω m , and we are done.

-If n > 0, then we set s n := s ω m -(s 0 0...s n-1 0). We will prove, by induction on l ≤ n, that ∀t ∈ ω n+1 0 n-l ⊆ t ⇒ [t(0)0 α(0) ...t(n-1)0 α(n-1) t(n)0 p ⊆ γ ⇒ s 0 t(0)...s n t(n) ⊆ u(γ)].

We already proved it for l = 0. Assume that it is true for l < n, let t ∈ ω n+1 with 0 n-l-1 ⊆ t, and assume that t(0)0 α(0) ...t(n-1)0 α(n-1) t(n)0 p ⊆ γ. We set ε := γ-[t(0)0 α(0) ...t(n-1)0 α(n-1) t(n)0 p ]. Then by induction assumption on l we get

s 0 0...s n-l-1 0s n-l t(n-l)...s n t(n) ⊆ u[s ω Σ j<n-l [1+α(j)] t(n-l)0 α(n-l) ...t(n-1)0 α(n-1) t(n)0 p ε].
But by induction assumption on n we get, for each i ∈ ω, -l) ...t(n-1)0 α(n-1) t(n)0 p ε] begins with s 0 0...s n-l-2 0s n-l-1 is n-l t(nl)...s n t(n). In particular, this holds for i = t(nl -1), and we are done.

s 0 0...s n-l-2 0s n-l-1 i ⊆ u[s ω Σ j<n-l-1 [1+α(j)] i0 α(n-l-1) t(n-l)0 α(n-l) ...t(n-1)0 α(n-1) t(n)0 p ε]. But (u[s ω Σ j<n-l-1 [1+α(j)] i0 α(n-l-1) t(n-l)0 α(n-l) ...t(n-1)0 α(n-1) t(n)0 p ε]) i∈ω ∈ A ω . This implies, for each i ∈ ω, that u[s ω Σ j<n-l-1 [1+α(j)] i0 α(n-l-1) t(n-l)0 α(n

It remains to choose

α(n) ≥ p such that 0 Σ j≤n [1+α(j)] = s ω Σ j≤n [1+α(j)] . • If s ∈ ω ≤ω , then we set N [s] := Card{n ∈ ω | s ω n 0 ⊆ s}. Note that N [α] = ω if α ∈ G. By induction on p, we can construct β(p) ∈ ω such that N [s 0 β(0)...s p β(p)s p+1 ] = N [s 0 ]. This implies that N [s 0 β(0)s 1 β(1)...] = N [s 0 ] < ω, and u[β(0)0 α(0) β(1)0 α(1) ...] /
∈ G by the previous point, which is absurd.

The proof in infinite dimension.

Before proving Theorem 1.6, note first the following result: Theorem 4.1 There is no (X 0 , A 0 ), where X 0 is a metrizable compact space and A 0 ∈ Σ 1 1 (X ω 0 ), such that for any Polish space X, and for any A ∈ Σ 1 1 (X ω ), exactly one of the following holds:

(a) [X, A] B [ω, ¬∆ ω (ω)]. (b) [X 0 , A 0 ] c [X, A].
Proof. Suppose towards a contradiction that such (X 0 , A 0 ) exists. Note that A 0 = ∅, since otherwise we would have [X 0 , A 0 ] B [ω, ¬∆ ω (ω)]. By Lemma 2.1, we now get some continuous u : X 0 → ω ω such that A 0 ⊆ (u ω ) -1 (A ω ). Then u[X 0 ] will be a compact subset of ω ω and hence contained in some product k 0 ×k 1 ×... ⊆ ω ω , where the k i 's are finite. Notice however that (k 0 ×k 1 ×...) ω ∩ A ω = ∅, and thus

A 0 ⊆ (u ω ) -1 [(k 0 ×k 1 ×...) ω ∩ A ω ] = ∅, which is a contradiction.
Assume temporarily that there is a Polish space X 0 and A 0 such that the end of the statement of Theorem 4.1 holds. By Theorem 4.1, X 0 cannot be compact. Note that we may assume that X 0 is zero-dimensional, since there is a finer zero-dimensional Polish topology on X 0 (see 13.5 in [K]). This means that we can view X 0 as a closed subspace of ω ω (see 7.8 in [K]). As X 0 is not compact, the tree associated with this closed set (see 2.4 in [K]) is not finite splitting (see 4.11 in [K]). The proof of Theorem 1.6 will have the same scheme as the proof of Theorem 1.4. We have to build infinitely many V s 's at some levels of the construction, since the tree associated with X 0 is not finite splitting. The only place where the proof of Theorem 1.4 does not work in infinite dimension is when we write "C ∈ Σ 1 1 (X)".

The main modifications to make are the following:

-As we have to build infinitely many V s 's at some levels of the construction, it is not clear at all that C remains Σ 1 1 , since Σ 1 1 is not closed under infinite intersections. However, Σ 1 1 is closed under ∀ ω , and this will be enough. We will have to build the V s 's uniformly in s at each level of the construction to ensure that C is Σ 1 1 , and it is possible. We will also ensure that there are only finitely many U n,t 's at each level of the construction, to ensure that C is Σ 1 1 .

-The reason why Theorem 3 is true is that we cannot control all the diameters in G at each level of a construction that would give a map u : ω ω → G. We will only control finitely many diameters, since we want C to be Σ 1 1 . This is the reason why we will work in G instead of ω ω . This gives the possibility to control only one diameter at each level of the construction among the V s 's (and finitely many among the U n,t 's). So the point in the proof of Theorem 1.6 is that we cannot build the Σ 1 1 sets uniformly at each level of the construction and control all the diameters at the same time.

• Assume that this is done. Fix α ∈ G. Then (V α|p ) p∈ω is a decreasing sequence of nonempty clopen subsets of [Ω X , Σ X ] whose d X -diameters tend to zero, so there is u(α) in their intersection. This defines

u : G → X. Note that d X [x α|p , u(α)] ≤ diam d X (V α|p ), so that u is continuous and (x α|p ) p∈ω tends to u(α) in [X, Σ X ]. If (s ω n iγ) i∈ω ∈ A ω ∩ G ω , then (U n,γ|p
) p∈ω is a decreasing sequence of nonempty clopen subsets of [Ω X ω , Σ X ω ] whose d X ω -diameters tend to zero, so there is (α i ) i∈ω in their intersection. Note that (α i ) i∈ω ∈ A. Moreover, the sequence ([x s ω n i(γ|p) ] i∈ω ) p∈ω tends to

(α i ) i∈ω in [X ω , Σ X ω ],
and in [X ω , Σ ω X ] too. As (x s ω n i(γ|p) ) p∈ω tends to u(s ω n iγ) in [X, Σ X ], we get u(s ω n iγ) = α i , for each i ∈ ω. Thus [u(s ω n iγ)] i∈ω ∈ A.

• So it is enough to see that the construction is possible. If V ∅ is any Σ 1 1 set, then clearly (4) holds for s of length 0. Now suppose that V s has been defined for all s ∈ ω ≤l and that (4) holds. Then in order to define V r for r ∈ ω l+1 , while ensuring (4), we will let V s ω l 0 ⊆ V s ω l be some chosen Σ 1 1 set of diameter at most 2 -l (to be determined later on) and V sm := V s for all sm = s ω l 0. Then for r ∈ ω l+1 x ∈ V r ⇔ (r = s ω l 0 and x ∈ V s ω l 0 ) or (r = sm = s ω l 0 and x ∈ V s ),

which is Σ 1 1 in (x, r) by the induction hypothesis.

Similarly, if U n,∅ is any Σ 1 1 set, then clearly (5) holds for t of length 0. Now suppose that U n,t has been defined for all t ∈ ω ≤k and that (5) holds. Then in order to define U n,r for r ∈ ω k+1 , while ensuring (5), we again split into two cases. If s ω n 0r = s ω n 0t0 = s ω l 0, then U n,r ⊆ U n,t will be some chosen Σ 1 1 set of diameter at most 2 -l (to be determined later on). On the other hand, if s ω n 0r = s ω n 0tm = s ω l 0, then we set U n,r := U n,t . Then for r ∈ ω k+1

(x i ) i∈ω ∈ U n,r ⇔    (s ω n 0r = s ω n 0t0 = s ω l 0 and (x i ) i∈ω ∈ U n,r ) or (s ω n 0r = s ω n 0tm = s ω l 0 and (x i ) i∈ω ∈ U n,t ), which is Σ 1 1 in [(x i ) i∈ω , r
] by the induction hypothesis, since s ω n 0r = s ω l 0 can hold for only finitely many (n, r) ∈ ω×ω <ω .

Notice that in this way (2) and (3) are also satisfied, so it remains to define V s ω l 0 , U n,∅ and U n,r for s ω n 0r = s ω l 0 of diameter small enough such that (1) also holds.

-As Y is a nonempty Σ 1 1 subset of X, we can choose x ∅ ∈ Y ∩ Ω X , and set

V ∅ := Y ∩ Ω X .
-The key property applied to V ∅ gives (

x i ) i∈ω ∈ A ∩ V ω ∅ ∩ Ω X ω . We choose U 0,∅ ∈ Σ 1 1 (X ω ) such that (x i ) i∈ω ∈ U 0,∅ ⊆ A ∩ V ω ∅ ∩ Ω X ω and diam d X ω (U 0,∅ ) ≤ 1. Then we choose V 0 ∈ Σ 1 1 (X) such that x 0 ∈ V 0 ⊆ V ∅ and diam d X (V 0 ) ≤ 1. Assume that (x s ) |s|≤l , (V s ) |s|≤l ,
and (U n,t ) n+1+|t|≤l satisfying (1)-( 5) have been constructed, which is the case for l ≤ 1.

-We put

C := x ∈ X | ∃(y s ) s∈ω l ∈ X ω l y s ω l = x and ∀s ∈ ω l y s ∈ V s and ∀n < l ∀t ∈ ω l-n-1 (y s ω n it ) i∈ω ∈ U n,t .
Proof. We have seen that if α E ω ω 0 β, then there is s ∈ ω <ω such that α = s(β-β||s|). We will construct u(α) ∈ G by induction on |s|.

• If |s| = 0, then we simply choose u(β) ∈ G.

• If |s| = 1, then we choose n 0 ∈ ω such that s ω n 0 β(0) ⊆ u(β), and we set

u[i(β -β|1)] := s ω n 0 i[u(β)-u(β)|(n 0 +1)] if i = β(0). Note that u[i(β -β|1)] E ω ω 0 u(β) ∈ G, so that u[i(β -β|1)] ∈ G. Moreover, we have (u[i(β -β|1)]) i∈ω ∈ A ω .
• Assume that u(α) ∈ G is constructed for |s| ≤ l+1, which is the case for l = 0. Let ϕ : ω l+1 → ω be a bijection with ϕ(s ω l+1 ) = 0.

• We construct (E q ) q∈ω ∈ [P(ω)] ω ⊆-increasing such that [{ϕ -1 (p) | p ∈ E q }, G l+1
] is connected for each q ∈ ω (see Lemma 5.3). We proceed by induction on q. We first set E 0 := {0}. Assume that E q is constructed.

-If E q = ω, then we set E q+1 := ω.

-If E q = ω, then we use the paths p l+1 s,s ′ defined after Lemma 5.3. We choose r ∈ ω \E q minimal for which there is p ∈ E q such that |p l+1 ϕ -1 (p),ϕ -1 (r) | = 2. Such an r exists since if m ∈ ω \E q , then there is i < |p l+1 

| = 2 since i > 0. As [{ϕ -1 (p) | p ∈ E q }, G l+1 ] is connected, and acyclic by Lemma 5.3, there is a unique p ∈ E q such that ϕ -1 (p) G l+1 ϕ -1 (r). There are n ≤ l, i 0 = 0 and t ∈ ω l-n such that {ϕ -1 (p), ϕ -1 (r)} = {s ω n 0t, s ω n i 0 t}. We set E q+1 := E q ∪ {ϕ(s ω n it) | i ∈ ω}.

Claim 1 q∈ω E q = ω.

Indeed, let r ∈ ω\{0}. By induction on k ∈ ω we see that ϕ[p l+1 s ω l+1 ,ϕ -1 (r) (1 + k)] ∈ q∈ω E q . Thus r is in q∈ω E q . This allows us to define q(s) := min{q ∈ ω | ϕ(s) ∈ E q }, for s ∈ ω l+1 .

Claim 2 Let n ≤ l, and t ∈ ω l-n . Then there is i ∈ ω such that q(s ω n it) < q(s ω n jt) for each j = i. Moreover, q(s ω n jt) = q(s ω n j ′ t) if j, j ′ = i.

Indeed, we argue by contradiction. Choose i = j such that q := q n,t i = q n,t j is minimal among the q n,t k 's. By definition of E 0 we have q = 0. As ϕ(s ω n it) ∈ E q \E q-1 , we have E q-1 = ω. This implies the existence of n ′ ≤ l and t ′ ∈ ω l-n ′ such that E q \E q-1 ⊆ {ϕ(s ω n ′ it ′ ) | i ∈ ω}. Thus s ω n it and s ω n jt differ at the coordinate n ′ , which implies that n = n ′ and t = t ′ . By construction of E q there is k ∈ ω such that s ω n kt ∈ E q-1 , which contradicts the minimality of q. This proves Claim 2.

  Let ψ d : ω → d <ω be the natural bijection, for d ≤ ω. More specifically, -If d < ω, then ψ d (0) := ∅ is the sequence of length 0, ψ d (1) := 0, ..., ψ d (d) := d -1 are the sequences of length 1, and so on. -If d = ω, then let (p n ) n∈ω be the sequence of prime numbers, and I : ω <ω → ω defined by I(∅) := 1, and I(s) := p s(0)+1 0 ...p s(|s|-1)+1 |s|-1

  by the key property. As x s d l m ∈ C, we get (x sm ) s∈d l \{s d l } . It remains to choose

  s ω l+1 ,ϕ -1 (m) | minimal such that ϕ[p l+1 s ω l+1 ,ϕ -1 (m) (i)] /∈ E q , and |p l+1

Proof of Theorem 1.6. Note first that we cannot have (a) and (b) simultaneously, by Lemma 2.1.

• Note that there is a recursive map s : ω → ω such that s(l) codes s ω l , i.e., s(l) = I(s ω l ) (see the notation in the introduction). Indeed, there is a recursive map φ : ω → ω whose restriction to Seq is an increasing bijection from Seq onto ω. Now ( φ| Seq ) -1 defines a recursive map ψω : ω → ω. It remains to note that s(l) = t is equivalent to t ∈ Seq and lh(t) = l and ∀i < l [i < lh[ ψω (l)] and (t) i = ( ψω (l)) i ] or [i ≥ lh[ ψω (l)] and (t) i = 0].

• We may assume that -The X ω l 's are recursively presented Polish spaces, for l ∈ ω.

-The projections are recursive.

-The maps Π l : ω×X ω l → X defined by Π l [t, (x s ) s∈ω l ] = x ⇔ t ∈ Seq and lh(t) = l and x = x t are partial recursive functions on {t ∈ ω | t ∈ Seq and lh(t) = l}×X ω l , for l ∈ ω.

-The maps Π ′ l :

• By Lemma 2.3 we may assume that U = X, so that Y := X \U is a nonempty Σ 1 1 subset of X. The previous point gives the following key property:

, and (U n,t ) (n,t)∈ω×ω <ω ⊆ Σ 1 1 (X ω ) satisfying the following conditions:

(1)

(4) For any fixed |s|, the relation "x ∈ V s " is a Σ 1 1 condition on (x, s),

(5) For any fixed n and fixed |t|, the relation "

Then x s ω l ∈ C, by induction assumption. Moreover, C ∈ Σ 1 1 , by conditions (4) and (5) since Σ 1 1 is closed under ∀ ω . The key property applied to C gives (x s ω l i ) i∈ω ∈ A ∩ C ω ∩ Ω X ω . As x s ω l m ∈ C, there is (x sm ) s∈ω l \{s ω l } ⊆ X such that x sm ∈ V s for each s ∈ ω l and (x s ω n itm ) i∈ω ∈ U n,t for each n < l and each t ∈ ω l-n-1 . This defines (x s ) s∈ω l+1 .

and

5 The Baire-measurable natural extension in infinite dimension works.

Theorem 1.7 is a consequence of Theorem 1.6, Lemma 2.1 and of the following result:

Notation. We define the following equivalence relation on the Baire space ω ω , which is the analogous version of the usual equivalence relation E 0 on the Cantor space 2 ω (see [H-K-L]):

Lemma 5.2 There is a dense and

Proof. We set

Note that f p n is onto, continuous, open, and has a clopen range. Then we set

This allows us to define, for q ∈ ω, G q+1 := Φ(G q ), and we set

, then there is s ∈ ω <ω such that β = s(α-α||s|) (which means that s ⊆ β and α, β agree from the coordinate |s| on). We set, for i ≤ |s|, β i := (s|i)(α-α|i), so that β 0 = α and β |s| = β. Note that β i+1 = f s(i) i (β i ) for each i < |s|, by induction on i. This proves that β i ∈ G for each i ≤ |s|, by induction on i. In particular, β ∈ G which is E ω ω 0 -invariant. This finishes the proof since G ⊆ G 0 .

Notation. For each l ∈ ω, we define an oriented graph G → l+1 on ω l+1 as follows:

We denote by G l+1 the symmetrization of G → l+1 .

Lemma 5.3 The graph (ω l+1 , G l+1 ) is connected and acyclic.

Proof. We argue by induction on l. For l = 0, we have i G 1 i ′ ⇔ (i = 0 and i ′ = 0) or (i ′ = 0 and i = 0).

j≤L is a G 1 -cycle, then either i 0 = 0 and i 1 = i L-1 = 0, or i 0 = 0 and i 2 = 0. In both cases, this contradicts the fact that (i j ) j≤L is a cycle. Thus (ω, G 1 ) is acyclic.

Assume that the result is true for l. Note that

We set, for i ∈ ω, E i := {ti | t ∈ ω l+1 }. Note that ω l+2 is the disjoint union of the E i 's, that the map ti → t is an isomorphism from (E i , G l+2 ) onto (ω l+1 , G l+1 ), and that the map

) is connected and acyclic, and (ω l+2 , G l+2 ) is connected. Now if (t j ) j≤L is a G l+2 -cycle, then the sequence [t j (l+1)] j≤L is not constant. There are j 0 ≤ L minimal with t j 0 (l + 1) = t 0 (l + 1), and j 1 > j 0 minimal with t j 1 (l + 1) = t 0 (l + 1). Note that t j 0 -1 = t j 1 = s ω l+1 t 0 (l + 1). Thus j 0 = 1 and j 1 = L. If t 0 (l + 1) = 0, then t 1 = t L-1 = s ω l+1 0. If t 0 (l + 1) = 0, then the sequence [t j (l + 1)] 0<j<L is constant and t 1 = t L-1 = s ω l+1 t 1 (l + 1). In both cases, this contradicts the fact that (t j ) j≤L is a cycle. Thus (ω l+2 , G l+2 ) is acyclic.

Notation. Lemma 5.3 and Theorem I.2.5 in [B] imply the existence, for each pair {s, s ′ } of distinct vertices in ω l+1 , of a unique s-s ′ path in (ω l+1 , G l+1 ). We will call it p l+1 s,s ′ . If s = s ′ , then we set p l+1 s,s ′ :=< s >. The proof of Lemma 5.3 shows that

• We have to construct u(sk[β -β|(l + 2)]) ∈ G for |s| = l + 1 and k = β(l + 1). We will construct u(sk[β -β|(l+2)]) by induction on q(s).

-If q(s) = 0, then s = s ω l+1 and we choose n 1 ∈ ω such that s ω n 1 β(l+1) ⊆ u(s ω l+1 [β -β|(l+1)]), and we set

-Assume that u(sk[β -β|(l + 2)]) ∈ G is constructed for q(s) ≤ q, which is the case for q = 0. If q(s) = q+1, then ϕ(s) ∈ E q+1 \E q . This implies the existence of n ≤ l, t ∈ ω l-n , i 0 = 0 and of a unique p ∈ E q such that {ϕ -1 (p), s} = {s ω n 0t, s ω n i 0 t}.

Note that q[ϕ -1 (p)] ≤ q, so that

) is defined and in G. We choose n q+1 ∈ ω such that s ω n q+1 [ϕ -1 (p)(n)] ⊆ β p , and we set

. This is licit by Claim 2, since only β p is defined among the u(s

We may assume that t = ∅. We set k := t(| t| -1) and also t := t|(| t|-1). Then (s ω n iγ) i∈ω = (s ω n itkδ) i∈ω , and Claim 2 provides i. Now the construction of u shows that [u(s ω n iγ)] i∈ω ∈ A ω (consider l := n+|t|).

Proof of Theorem 5.1. Using the axiom of choice, fix a selector S : ω ω → ω ω for E ω ω 0 , i.e., a map satisfying α E ω ω 0 β ⇒ S(α) = S(β) E ω ω 0 α for each α, β ∈ ω ω (see 12.15 in [K]). We can write

and this union is disjoint. By Lemma 5.4 there is u Question. Is it true that [ω ω , A ω ] B [G, A ω ∩ G ω ]? This would imply that we can replace "Baire measurable" with "Borel" in Theorem 1.7.

6 References.