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A dichotomy characterizing analytic digraphs of uncountable
Borel chromatic number in any dimension.

Dominique LECOMTE

Trans. Amer. Math. Soc.361 (2009), 4181-4193

Abstract. We study the extension of the Kechris-Solecki-Todorčevi´c dichotomy on analytic graphs to
dimensions higher than 2. We prove that the extension is possible in any dimension, finite or infinite.
The original proof works in the case of the finite dimension. We first prove that the natural extension
does not work in the case of the infinite dimension, for the notion of continuous homomorphism used
in the original theorem. Then we solve the problem in the caseof the infinite dimension. Finally,
we prove that the natural extension works in the case of the infinite dimension, but for the notion of
Baire-measurable homomorphism.

1 Introduction.

The reader should see [K] for the standard descriptive set theoretic notation used in this paper.
We study a definable coloring problem, in any dimension. We will need some more notation:

Notation. In this paper,2≤d≤ω will be a cardinal, i.e., any dimension of an actual product making
sense in the context of descriptive set theory. The lettersX, Y will refer to some sets. We set

∆d(X) :={(xi)i∈d∈X
d | ∀i∈d xi=x0}.

Definition 1.1 LetA⊆Xd. We say thatA is adigraph if A ∩ ∆d(X)=∅.

Notation. Let u :X→Y be a map. We define a mapud :Xd→Y d by

ud[(xi)i∈d] :=[u(xi)]i∈d.

Definition 1.2 LetA⊆Xd be a digraph.

(a) A coloring of [X,A] is a mapc :X→ Y such thatA ∩ (cd)−1[∆d(Y )]=∅.

(b) Assume thatX is a Polish space. TheBorel chromatic number of [X,A] is

χB(A) :=min{ Card(Y ) | Y is a Polish space and there is a Borel coloringc :X→ Y of [X,A] }.
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The goal of this paper is to characterize the analytic digraphs of uncountable Borel chromatic
number. This has been done in [K-S-T] for graphs, i.e., for symmetric digraphs, whend=2. We will
give such a characterization in terms of the following notion of comparison between relations.

Notation. Assume thatX, Y are Polish spaces, and letA (resp.,B) be a subset ofXd (resp.,Y d).
We set

[X,A] �B [Y,B] ⇔ ∃u :X→Y Borel withA⊆(ud)−1(B).

In this case, we say thatu is a Borelhomomorphism from [X,A] into [Y,B]. This notion essentially
makes sense for digraphs (we can takeu to be constant ifB is not a digraph). Ifu is continuous (resp.,
Baire-measurable, arbitrary), then we write�c (resp.,�Bm, �) instead of�B. Note thatχB(A)≤ω
is equivalent to[X,A] �B [ω,¬∆d(ω)].

We also have to introduce minimum digraphs of uncountable Borel chromatic number:

• Letψd :ω→d<ω be the natural bijection, ford≤ω. More specifically,

- If d < ω, thenψd(0) := ∅ is the sequence of length0, ψd(1) := 0, ..., ψd(d) := d−1 are the
sequences of length1, and so on.

- If d = ω, then let(pn)n∈ω be the sequence of prime numbers, andI : ω<ω → ω defined by

I(∅) := 1, andI(s) := p
s(0)+1
0 ...p

s(|s|−1)+1
|s|−1 if s 6= ∅. Note thatI is one-to-one, so that there is an

increasing bijectionϕ :Seq:=I[ω<ω]→ω. If t∈Seq⊆ω, then we will denotet :=I−1(t)∈ω<ω. We
setψω :=(ϕ ◦ I)−1 :ω→ω<ω. Note thatψω is a bijection.

• Note also that|ψd(n)|≤n if n∈ω. Indeed, this is clear ifd<ω. If d=ω, then

I[ψω(n)|0]<I[ψω(n)|1]<...<I[ψω(n)],

so that(ϕ ◦ I)[ψω(n)|0]<(ϕ ◦ I)[ψω(n)|1]<...<(ϕ ◦ I)[ψω(n)]=n. This implies that|ψω(n)|≤n.

• Let n ∈ ω. As |ψd(n)| ≤ n, we can definesdn := ψd(n)0n−|ψd(n)|. The crucial properties of the
sequence(sdn)n∈ω are the following:

- For eachs∈d<ω, there isn∈ω such thats⊆sdn (we say that(sdn)n∈ω is dense in d<ω).

- |sdn|=n.

• We put
Ad :={(sdniγ)i∈d | n∈ω andγ∈dω}⊆(dω)d.

Note thatAd∈Σ
1
1 since the map(n, γ) 7→(sdniγ)i∈d is continuous.

The previous definitions were given, whend=2, in [K-S-T], where the following is proved:

Theorem 1.3 (Kechris, Solecki, Todorčevíc) LetX be a Polish space, andA∈Σ
1
1(X

2). Then exactly
one of the following holds:

(a) [X,A] �B [ω,¬∆2(ω)].

(b) [2ω,A2] �c [X,A].

This result can be extended to any finite dimensiond, with the same proof.
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Theorem 1.4 Let d≥ 2 be an integer,X a Polish space, andA∈Σ
1
1(X

d). Then exactly one of the
following holds:

(a) [X,A] �B [ω,¬∆d(ω)].

(b) [dω,Ad] �c [X,A].

We want to study the case of the infinite dimension.

Theorem 1.5 We cannot extend Theorem 1.4 to the case whered=ω.

Notation. In order to get a positive result in the case of the infinite dimension, we put

G :={α∈ωω | ∀m∈ω ∃n≥m sωn0⊆α}.

Note thatG is a denseGδ subset ofωω.

The main result of this paper is the following:

Theorem 1.6 LetX be a Polish space, andA∈Σ
1
1(X

ω). Then exactly one of the following holds:

(a) [X,A] �B [ω,¬∆ω(ω)].

(b) [G,Aω ∩ G
ω] �c [X,A].

So we have a general characterization, in any dimensiond, of analytic relationsA⊆Xd for which
[X,A] 6�B [ω,¬∆d(ω)]. In particular, we have a characterization of analytic digraphs of uncountable
Borel chromatic number.

Theorem 1.5 says that we cannot extend Theorem 1.4 to the casewhered= ω for the notion of
continuous homomorphism in (b). However, the extension of Theorem 1.4 to the case whered=ω is
possible for the notion of Baire-measurable homomorphism:

Theorem 1.7 LetX be a Polish space, andA∈Σ
1
1(X

ω). Then exactly one of the following holds:

(a) [X,A] �B [ω,¬∆ω(ω)].

(b) [ωω,Aω] �Bm [X,A].

2 The proof in finite dimension.

Let us start with two general lemmas:

Lemma 2.1 LetG be a denseGδ subset ofdω. Then[G,Ad ∩G
d] 6�Bm [ω,¬∆d(ω)].

Proof. We argue by contradiction. This gives a Baire-measurable function u : G → ω such that
Ad ∩ Gd ⊆ (ud)−1[¬∆d(ω)]. As G =

⋃

i∈ω u−1({i}), there is an integeri0 such thatu−1({i0})
is not meager and has the Baire property inG. This implies the existence ofs ∈ d<ω such that
(G ∩ Ns)\u

−1({i0}) is meager. LetH be a denseGδ subset ofG such thatH ∩ Ns ⊆ u−1({i0}).
We choosen ∈ ω with s ⊆ sdn. Note thatf in : Nsd

n0 → Nsd
ni

defined byf in(s
d
n0γ) := sdniγ is an

homeomorphism. This implies that
⋂

i∈ω (f in)
−1(H) is a denseGδ subset ofNsd

n0. We choose
sdn0γ∈

⋂

i∈ω (f in)
−1(H). We get(sdniγ)i∈d∈Ad ∩ (H ∩Ns)

d⊆ [u−1({i0})]
d, which contradicts the

fact thatAd ∩G
d⊆(ud)−1[¬∆d(ω)]. �
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Definition 2.2 LetA⊆Xd. We say thatC⊆X isA−discrete if A ∩ Cd=∅.

Notation. The reader should see [M] for the basic notions of effective descriptive set theory. Assume
thatX andXd are recursively presented Polish spaces, and thatA∈Σ

1
1(X

d). We put

U :=
⋃

{D∈∆
1
1(X) | D isA-discrete}.

Note thatU ∈Π
1
1 (X) if the projections are recursive.

Lemma 2.3 Assume thatX and Xd are recursively presented Polish spaces,A ∈ Σ
1
1 (Xd), and

U=X. Then[X,A] �B [ω,¬∆d(ω)].

Proof. AsU =X, there is a partition(Dn)n∈ω of X intoA-discrete∆1
1 sets. We define a Borel map

u :X→ω by u(x)=n ⇔ x∈Dn. If (xi)i∈d∈A, then we cannot have[u(xi)]i∈d∈∆d(ω), since the
Dn’s areA-discrete. �

We will recall the proof of Theorem 1.4, to show the problem appearing in the case of the infinite
dimension. It is essentially identical to the one in [K-S-T], except that we do not use Choquet games.

Notation. LetZ be a recursively presented Polish space. TheGandy−Harrington topology onZ
is generated byΣ 1

1 (Z) and denotedΣZ . It is finer than the initial topology ofZ, so that[Z,ΣZ ] is
T1. As Σ

1
1 (Z) is countable (see 3F.6 in [M]),[Z,ΣZ ] is second countable. We set

ΩZ := {z∈Z | ωz1 =ωCK
1 }.

Recall thatΩZ is Σ
1
1 (Z) and dense in[Z,ΣZ ] (see III.1.5 in [S]; the second assertion is Gandy’s basis

theorem). Recall also thatW ∩ ΩZ is a clopen subset of[ΩZ ,ΣZ ] for eachW ∈Σ
1
1 (Z). Indeed, it is

obviously open. Letf :Z→ωω be∆
1
1 such thatZ\(W ∩ΩZ)=f−1(WO) (see 4A.3 in [M]). We get

z∈ΩZ\(W ∩ ΩZ) ⇔ z∈ΩZ and ∃ξ<ωCK
1 (f(z)∈WO and |f(z)|≤ξ).

This proves thatW ∩ ΩZ is closed (see 4A.2 in [M]). In particular,[ΩZ ,ΣZ ] is zero-dimensional,
and regular. By Theorem 4.2 in [H-K-L] and 8.16.(iii) in [K],[ΩZ ,ΣZ ] is strong Choquet. By 8.18
in [K], [ΩZ ,ΣZ ] is a Polish space. So we fix a complete compatible metricdZ on [ΩZ ,ΣZ ].

Proof of Theorem 1.4.Note first that we cannot have (a) and (b) simultaneously, by Lemma 2.1.

• We may assume thatX is a recursively presented Polish space and thatA ∈ Σ
1
1 (Xd). We set

Φ := {C ⊆ X | C is A-discrete}. As Φ is Π
1
1 on Σ

1
1 , the first reflection theorem ensures that if

C ∈Σ
1
1 (X) is A-discrete, then there isD∈∆

1
1(X) which isA-discrete and containsC (see 35.C in

[K]).

• By Lemma 2.3 we may assume thatU 6=X, so thatY :=X\U is a nonemptyΣ 1
1 subset ofX. The

previous point gives the following key property:

∀C∈Σ
1
1 (X) (∅ 6=C⊆Y ⇒ A ∩Cd 6=∅).
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• We construct(xs)s∈d<ω ⊆Y , (Vs)s∈d<ω ⊆Σ
1
1 (X) and(Un,t)(n,t)∈ω×d<ω ⊆Σ

1
1 (Xd) satisfying the

following conditions:

(1) xs∈Vs⊆Y ∩ ΩX and (xsd
nit

)i∈d∈Un,t⊆A ∩ Y d ∩ ΩXd ,

(2) Vsm⊆Vs and Un,tm⊆Un,t,

(3) diamdX
(Vs)≤2−|s| and diamd

Xd
(Un,t)≤2−n−1−|t|.

• Assume that this is done. Fixα∈dω. Then(Vα|p)p∈ω is a decreasing sequence of nonempty clopen
subsets of[ΩX ,ΣX ] whosedX -diameters tend to zero, so there isu(α) in their intersection. This
definesu : dω → X. Note thatdX [xα|p, u(α)] ≤ diamdX

(Vα|p) ≤ 2−p, so thatu is continuous and
(xα|p)p∈ω tends tou(α) in [X,ΣX ].

If (sdniγ)i∈d ∈ Ad, then (Un,γ|p)p∈ω is a decreasing sequence of nonempty clopen subsets of
[ΩXd ,ΣXd ] whosedXd-diameters tend to zero, so there is(αi)i∈d in their intersection. Note that
(αi)i∈d ∈ A. Moreover, the sequence([xsd

ni(γ|p)
]i∈d)p∈ω tends to(αi)i∈d in [Xd,ΣXd ], and in

[Xd,Σ d
X ] too. As (xsd

ni(γ|p)
)p∈ω tends tou(sdniγ), we getu(sdniγ) = αi, for eachi ∈ d. Thus

[u(sdniγ)]i∈d∈A.

• So it is enough to see that the construction is possible. AsY is a nonemptyΣ 1
1 subset ofX, we can

choosex∅∈Y ∩ΩX , andV∅∈Σ
1
1 (X) such thatx∅∈V∅⊆Y ∩ΩX and diamdX

(V∅)≤1. Assume that
(xs)|s|≤l, (Vs)|s|≤l and(Un,t)n+1+|t|≤l satisfying (1)-(3) have been constructed, which is the casefor
l=0. LetC be the following set:

{x∈X | ∃(ys)s∈dl ∈Xdl

ysd
l
=x and ∀s∈dl ys∈Vs and ∀n<l ∀t∈dl−n−1 (ysd

nit
)i∈d∈Un,t}.

ThenC ∈Σ
1
1 (X) sinced is an integer, xsd

l
∈C⊆Y by induction assumption. So there is(xsd

l
i)i∈d

in A ∩ Cd ∩ ΩXd , by the key property. Asxsd
l
m∈C, we get(xsm)s∈dl\{sd

l
}. It remains to choose

- Vsm∈Σ
1
1 (X) with xsm∈Vsm⊆Vs and diamdX

(Vsm)≤2−l−1, for s∈dl andm∈d.

- Ul,∅∈Σ
1
1 (Xd) with (xsd

l
i)i∈d∈Ul,∅⊆A ∩ Y d ∩ ΩXd and diamd

Xd
(Ul,∅)≤2−l−1.

- Un,tm ∈ Σ
1
1 (Xd) with (xsd

nitm
)i∈d ∈ Un,tm ⊆ Un,t and diamd

Xd
(Un,tm) ≤ 2−l−1, for (n, t) in

ω×d<ω with n+1+|t|= l andm∈d. �

3 The natural extension in infinite dimension does not work.

Theorem 1.5 is a consequence of Lemma 2.1 and of the followingresult:

Theorem 3[ωω,Aω] 6�c [G,Aω ∩ G
ω].
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Proof. We argue by contradiction. This gives a continuous mapu :ωω→G with Aω⊆(uω)−1(Aω).

• Let us prove that there isα∈ωω and(sn)n∈ω∈(ω<ω)ω such that

u[β(0)0α(0)β(1)0α(1)...]=s0β(0)s1β(1)...

for eachβ ∈ ωω. We constructα(n) andsn by induction onn. Assume thatα|n and(sp)p<n are
constructed satisfying

sωΣj≤p[1+α(j)]⊆0∞ and [t(0)0α(0)...t(p)0α(p)⊆γ ⇒ s0t(0)...spt(p)⊆u(γ)]

for eachp<n andt∈ωp+1. We will constructα(n) andsn satisfying

sωΣj≤n[1+α(j)]⊆0∞ and [t(0)0α(0)...t(n)0α(n)⊆γ ⇒ s0t(0)...snt(n)⊆u(γ)]

for each t ∈ ωn+1, which will be enough. Note first that there arem ∈ ω and δ ∈ ωω with
[u(sωΣj<n[1+α(j)]i0

∞)]i∈ω=(sωmiδ)i∈ω . Asu is continuous, there isp∈ω such that

sωΣj<n[1+α(j)]0
p+1 ⊆γ ⇒ sωm0⊆u(γ),

sωΣj<n[1+α(j)]10
p ⊆γ ⇒ sωm1⊆u(γ).

Note thatsωΣj<n[1+α(j)]i0
p ⊆ γ ⇒ sωmi ⊆ u(γ), for eachi ∈ ω. Indeed, letε ∈ ωω. Then

[u(sωΣj<n[1+α(j)]i0
pε)]i∈ω∈Aω ∩ [Nsω

m0×Nsω
m1×(ωω)ω]⊆Πi∈ω Nsω

mi. In particular, this implies that

s00...sn−10⊆s
ω
m sinces00...sn−10⊆u(s

ω
Σj<n[1+α(j)]i0

pε).

- If n=0, then we chooseα(0)≥p such that01+α(0) =sω1+α(0), we sets0 :=sωm, and we are done.

- If n>0, then we setsn :=sωm−(s00...sn−10). We will prove, by induction onl≤n, that

∀t∈ωn+1 0n−l⊆ t ⇒ [t(0)0α(0) ...t(n−1)0α(n−1)t(n)0p⊆γ ⇒ s0t(0)...snt(n)⊆u(γ)].

We already proved it forl = 0. Assume that it is true forl < n, let t ∈ ωn+1 with 0n−l−1 ⊆ t, and
assume thatt(0)0α(0)...t(n−1)0α(n−1)t(n)0p⊆γ. We setε :=γ−[t(0)0α(0) ...t(n−1)0α(n−1)t(n)0p].
Then by induction assumption onl we get

s00...sn−l−10sn−lt(n−l)...snt(n)⊆u[sωΣj<n−l[1+α(j)]t(n−l)0
α(n−l)...t(n−1)0α(n−1)t(n)0pε].

But by induction assumption onn we get, for eachi∈ω,

s00...sn−l−20sn−l−1i⊆u[s
ω
Σj<n−l−1[1+α(j)]i0

α(n−l−1)t(n−l)0α(n−l)...t(n−1)0α(n−1)t(n)0pε].

But (u[sωΣj<n−l−1[1+α(j)]i0
α(n−l−1)t(n−l)0α(n−l)...t(n−1)0α(n−1)t(n)0pε])i∈ω ∈Aω. This implies,

for eachi∈ω, thatu[sωΣj<n−l−1[1+α(j)]i0
α(n−l−1)t(n−l)0α(n−l)...t(n−1)0α(n−1)t(n)0pε] begins with

s00...sn−l−20sn−l−1isn−lt(n− l)...snt(n). In particular, this holds fori = t(n− l−1), and we are
done.

It remains to chooseα(n)≥p such that0Σj≤n[1+α(j)] =sωΣj≤n[1+α(j)].
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• If s ∈ ω≤ω, then we setN [s] := Card{n ∈ ω | sωn0 ⊆ s}. Note thatN [α] = ω if α ∈ G. By
induction onp, we can constructβ(p)∈ω such thatN [s0β(0)...spβ(p)sp+1] =N [s0]. This implies
thatN [s0β(0)s1β(1)...]=N [s0 ]<ω, andu[β(0)0α(0)β(1)0α(1)...] /∈G by the previous point, which
is absurd. �

4 The proof in infinite dimension.

Before proving Theorem 1.6, note first the following result:

Theorem 4.1 There is no(X0,A0), whereX0 is a metrizable compact space andA0 ∈ Σ
1
1(X

ω
0 ),

such that for any Polish spaceX, and for anyA∈Σ
1
1(X

ω), exactly one of the following holds:

(a) [X,A] �B [ω,¬∆ω(ω)].

(b) [X0,A0] �c [X,A].

Proof. Suppose towards a contradiction that such(X0,A0) exists. Note thatA0 6=∅, since otherwise
we would have[X0,A0] �B [ω,¬∆ω(ω)]. By Lemma 2.1, we now get some continuousu :X0→ωω

such thatA0⊆(uω)−1(Aω). Thenu[X0] will be a compact subset ofωω and hence contained in some
productk0×k1×...⊆ω

ω, where theki’s are finite. Notice however that(k0×k1×...)
ω ∩ Aω=∅, and

thusA0⊆(uω)−1[(k0×k1×...)
ω ∩ Aω]=∅, which is a contradiction. �

Assume temporarily that there is a Polish spaceX0 andA0 such that the end of the statement of
Theorem 4.1 holds. By Theorem 4.1,X0 cannot be compact. Note that we may assume thatX0 is
zero-dimensional, since there is a finer zero-dimensional Polish topology onX0 (see 13.5 in [K]).
This means that we can viewX0 as a closed subspace ofωω (see 7.8 in [K]). AsX0 is not compact,
the tree associated with this closed set (see 2.4 in [K]) is not finite splitting (see 4.11 in [K]). The
proof of Theorem 1.6 will have the same scheme as the proof of Theorem 1.4. We have to build
infinitely manyVs’s at some levels of the construction, since the tree associated withX0 is not finite
splitting. The only place where the proof of Theorem 1.4 doesnot work in infinite dimension is when
we write “C∈Σ

1
1 (X)”.

The main modifications to make are the following:

- As we have to build infinitely manyVs’s at some levels of the construction, it is not clear at all that
C remainsΣ 1

1 , sinceΣ
1
1 is not closed under infinite intersections. However,Σ

1
1 is closed under∀ω,

and this will be enough. We will have to build theVs’s uniformly in s at each level of the construction
to ensure thatC is Σ

1
1 , and it is possible. We will also ensure that there are only finitely manyUn,t’s

at each level of the construction, to ensure thatC is Σ
1
1 .

- The reason why Theorem 3 is true is that we cannot control allthe diameters inG at each level
of a construction that would give a mapu : ωω →G. We will only control finitely many diameters,
since we wantC to beΣ

1
1 . This is the reason why we will work inG instead ofωω. This gives the

possibility to control only one diameter at each level of theconstruction among theVs’s (and finitely
many among theUn,t’s). So the point in the proof of Theorem 1.6 is that we cannot build theΣ

1
1 sets

uniformly at each level of the construction and control all the diameters at the same time.
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Proof of Theorem 1.6.Note first that we cannot have (a) and (b) simultaneously, by Lemma 2.1.

• Note that there is a recursive maps̃ : ω → ω such that̃s(l) codessωl , i.e., s̃(l) = I(sωl ) (see the
notation in the introduction). Indeed, there is a recursivemapϕ̃ :ω→ω whose restriction to Seq is an
increasing bijection from Seq ontoω. Now (ϕ̃|Seq)

−1 defines a recursive map̃ψω :ω→ω. It remains

to note that̃s(l)= t is equivalent to

t∈Seq and lh(t)= l and ∀i<l [i< lh[ψ̃ω(l)] and(t)i=(ψ̃ω(l))i] or [i≥ lh[ψ̃ω(l)] and (t)i=0].

• We may assume that

- TheXωl

’s are recursively presented Polish spaces, forl∈ω.

- The projections are recursive.

- The mapsΠl :ω×X
ωl

→X defined by

Πl[t, (xs)s∈ωl ]=x ⇔ t∈Seq and lh(t)= l and x=xt

are partial recursive functions on{t∈ω | t∈Seq and lh(t)= l}×Xωl
, for l∈ω.

- The mapsΠ′
l :ω

2×Xωl
→Xω defined by

Π′
l[n, t, (xs)s∈ωl ]=(yi)i∈ω ⇔ t∈Seq andn+1+lh(t)= l and ∀i∈ω yi=xsω

nit

are partial recursive functions on{(n, t)∈ω2 | t∈Seq andn+1+lh(t)= l}×Xωl
, for l∈ω.

- A∈Σ
1
1 (Xω).

• We setΦ:={C⊆X | C isA-discrete}. As Φ is Π
1
1 onΣ

1
1 , the first reflection theorem ensures that

if C∈Σ
1
1 (X) isA-discrete, then there isD∈∆

1
1(X) which isA-discrete and containsC.

• By Lemma 2.3 we may assume thatU 6=X, so thatY :=X\U is a nonemptyΣ 1
1 subset ofX. The

previous point gives the following key property:

∀C∈Σ
1
1 (X) (∅ 6=C⊆Y ⇒ A ∩Cω 6=∅).

• We construct(xs)s∈ω<ω ⊆Y , (Vs)s∈ω<ω ⊆Σ
1
1 (X), and(Un,t)(n,t)∈ω×ω<ω ⊆Σ

1
1 (Xω) satisfying the

following conditions:

(1) xs∈Vs⊆Y ∩ ΩX and (xsω
nit

)i∈ω∈Un,t⊆A ∩ Y ω ∩ ΩXω ,

(2) Vsm⊆Vs and Un,tm⊆Un,t,

(3) diamdX
(Vsω

l
0)≤2−l and [sωn0t=sωl 0 ⇒ diamdXω (Un,t)≤2−l],

(4) For any fixed|s|, the relation “x∈Vs” is a Σ
1
1 condition on(x, s),

(5) For any fixedn and fixed|t|, the relation “(xi)i∈ω∈Un,t” is a Σ
1
1 condition on[(xi)i∈ω, t].
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• Assume that this is done. Fixα∈G. Then(Vα|p)p∈ω is a decreasing sequence of nonempty clopen
subsets of[ΩX ,ΣX ] whosedX -diameters tend to zero, so there isu(α) in their intersection. This
definesu : G→X. Note thatdX [xα|p, u(α)]≤ diamdX

(Vα|p), so thatu is continuous and(xα|p)p∈ω
tends tou(α) in [X,ΣX ].

If (sωniγ)i∈ω ∈Aω ∩ G
ω, then(Un,γ|p)p∈ω is a decreasing sequence of nonempty clopen subsets

of [ΩXω ,ΣXω ] whosedXω -diameters tend to zero, so there is(αi)i∈ω in their intersection. Note
that (αi)i∈ω ∈A. Moreover, the sequence([xsω

ni(γ|p)
]i∈ω)p∈ω tends to(αi)i∈ω in [Xω,ΣXω ], and in

[Xω ,Σω
X ] too. As(xsω

ni(γ|p)
)p∈ω tends tou(sωniγ) in [X,ΣX ], we getu(sωniγ) =αi, for eachi∈ ω.

Thus[u(sωniγ)]i∈ω∈A.

• So it is enough to see that the construction is possible. IfV∅ is anyΣ
1
1 set, then clearly (4) holds

for s of length0. Now suppose thatVs has been defined for alls∈ ω≤l and that (4) holds. Then in
order to defineVr for r∈ωl+1, while ensuring (4), we will letVsω

l
0 ⊆Vsω

l
be some chosenΣ 1

1 set of
diameter at most2−l (to be determined later on) andVsm :=Vs for all sm 6=sωl 0. Then forr∈ωl+1

x∈Vr ⇔ (r=sωl 0 and x∈Vsω
l
0) or (r=sm 6=sωl 0 and x∈Vs),

which isΣ
1
1 in (x, r) by the induction hypothesis.

Similarly, if Un,∅ is anyΣ 1
1 set, then clearly (5) holds fort of length0. Now suppose thatUn,t

has been defined for allt ∈ ω≤k and that (5) holds. Then in order to defineUn,r for r ∈ ωk+1,
while ensuring (5), we again split into two cases. Ifsωn0r = sωn0t0 = sωl 0, thenUn,r ⊆ Un,t will
be some chosenΣ 1

1 set of diameter at most2−l (to be determined later on). On the other hand, if
sωn0r=sωn0tm 6=sωl 0, then we setUn,r :=Un,t. Then forr∈ωk+1

(xi)i∈ω∈Un,r ⇔







(sωn0r=sωn0t0=sωl 0 and (xi)i∈ω∈Un,r)
or
(sωn0r=sωn0tm 6=sωl 0 and (xi)i∈ω∈Un,t),

which isΣ
1
1 in [(xi)i∈ω, r] by the induction hypothesis, sincesωn0r= sωl 0 can hold for only finitely

many(n, r)∈ω×ω<ω.

Notice that in this way (2) and (3) are also satisfied, so it remains to defineVsω
l
0, Un,∅ andUn,r

for sωn0r=sωl 0 of diameter small enough such that (1) also holds.

- As Y is a nonemptyΣ 1
1 subset ofX, we can choosex∅∈Y ∩ ΩX , and setV∅ :=Y ∩ ΩX .

- The key property applied toV∅ gives(xi)i∈ω ∈A ∩ V ω
∅ ∩ ΩXω . We chooseU0,∅ ∈Σ

1
1 (Xω) such

that(xi)i∈ω∈U0,∅⊆A ∩ V ω
∅ ∩ ΩXω and diamdXω (U0,∅)≤1. Then we chooseV0∈Σ

1
1 (X) such that

x0 ∈ V0 ⊆ V∅ and diamdX
(V0) ≤ 1. Assume that(xs)|s|≤l, (Vs)|s|≤l, and(Un,t)n+1+|t|≤l satisfying

(1)-(5) have been constructed, which is the case forl≤1.

- We put

C :=
{

x∈X | ∃(ys)s∈ωl ∈Xωl
ysω

l
=x and ∀s∈ωl ys∈Vs and ∀n<l ∀t∈ωl−n−1

(ysω
nit

)i∈ω∈Un,t
}

.
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Thenxsω
l
∈C, by induction assumption. Moreover,C ∈Σ

1
1 , by conditions (4) and (5) sinceΣ 1

1

is closed under∀ω. The key property applied toC gives(xsω
l
i)i∈ω ∈A ∩ Cω ∩ ΩXω . As xsω

l
m∈C,

there is(xsm)s∈ωl\{sω
l
}⊆X such thatxsm∈Vs for eachs∈ωl and(xsω

nitm)i∈ω ∈Un,t for eachn<l

and eacht∈ωl−n−1. This defines(xs)s∈ωl+1.

We chooseUl,∅∈Σ
1
1 (Xω) such that(xsω

l
i)i∈ω∈Ul,∅ ⊆A∩ V ω

sω
l
∩ΩXω and diamdXω (Ul,∅)≤2−l,

andVsω
l
0∈Σ

1
1 (X) such thatxsω

l
0∈Vsω

l
0⊆Vsω

l
and diamdX

(Vsω
l
0)≤2−l. If sωn0r=sωn0t0=sωl 0, then

we chooseUn,r∈Σ
1
1 (Xω) such that diamdXω (Un,r)≤2−l and(xsω

nir)i∈ω∈Un,r⊆Un,t. �

5 The Baire-measurable natural extension in infinite dimension works.

Theorem 1.7 is a consequence of Theorem 1.6, Lemma 2.1 and of the following result:

Theorem 5.1 [ωω,Aω] �Bm [G,Aω ∩ G
ω].

Notation. We define the following equivalence relation on the Baire spaceωω, which is the analogous
version of the usual equivalence relationE0 on the Cantor space2ω (see [H-K-L]):

α E
ωω

0 β ⇔ ∃m∈ω ∀n≥m α(n)=β(n).

Lemma 5.2 There is a dense andEω
ω

0 -invariantGδ subsetG of ωω such that

∀α∈G ∀l,m∈ω ∃n≥m sωnl⊆α

(in particular,G⊆G).

Proof. We setG0 := {α∈ωω | ∀l,m∈ω ∃n≥m sωnl⊆α}. Note thatG0 is a denseGδ subset of
ωω. We also define, forn, p∈ω, fpn :ωω→{α∈ωω | α(n)=p} by

fpn(α)(m) :=







α(m) if m 6=n,

p if m=n.

Note thatfpn is onto, continuous, open, and has a clopen range. Then we set

D :={H⊆ωω | H is a denseGδ}

and we defineΦ :D→D by Φ(H) :=H ∩
⋂

n,p∈ω (fpn)−1(H). This allows us to define, forq ∈ω,
Gq+1 :=Φ(Gq), and we setG :=

⋂

q∈ω Gq. Note thatG∈D. Moreover, ifα∈G andn, p∈ω, then
fpn(α)∈G. Indeed, letq ∈ω. Thenα∈Gq+1 ⊆ (fpn)−1(Gq). Now if β E

ωω

0 α, then there iss∈ω<ω

such thatβ = s(α−α||s|) (which means thats⊆ β andα, β agree from the coordinate|s| on). We

set, fori≤ |s|, βi := (s|i)(α−α|i), so thatβ0 =α andβ|s| = β. Note thatβi+1 = f
s(i)
i (βi) for each

i < |s|, by induction oni. This proves thatβi ∈G for eachi≤ |s|, by induction oni. In particular,
β∈G which isE

ωω

0 -invariant. This finishes the proof sinceG⊆G0. �
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Notation. For eachl∈ω, we define an oriented graphG→
l+1 onωl+1 as follows:

s G→
l+1 s

′ ⇔ ∃n∈ω ∃i 6=0 ∃t∈ω<ω (s, s′)=(sωn0t, sωnit).

We denote byGl+1 the symmetrization ofG→
l+1.

Lemma 5.3 The graph(ωl+1, Gl+1) is connected and acyclic.

Proof. We argue by induction onl. For l=0, we have

i G1 i
′ ⇔ (i=0 andi′ 6=0) or (i′=0 andi 6=0).

If i < i′, then(i, 0, i′) is aG1-walk from i to i′ if i 6= 0, and(i, i′) is aG1-walk from i to i′ if i= 0.
Thus(ω,G1) is connected. Now if(ij)j≤L is aG1-cycle, then eitheri0 6= 0 andi1 = iL−1 = 0, or
i0 = 0 and i2 = 0. In both cases, this contradicts the fact that(ij)j≤L is a cycle. Thus(ω,G1) is
acyclic.

Assume that the result is true forl. Note that

si Gl+2 s
′i′ ⇔ (s=s′=sωl+1 and i G1 i

′) or (s Gl+1 s
′ and i= i′).

We set, fori ∈ ω, Ei := {ti | t ∈ ωl+1}. Note thatωl+2 is the disjoint union of theEi’s, that the
mapti 7→ t is an isomorphism from(Ei, Gl+2) onto (ωl+1, Gl+1), and that the mapsωl+1i 7→ i is an
isomorphism from({sωl+1i | i ∈ ω}, Gl+2) onto (ω,G1). In particular,(Ei, Gl+2) is connected and
acyclic, and(ωl+2, Gl+2) is connected.

Now if (tj)j≤L is aGl+2-cycle, then the sequence[tj(l+1)]j≤L is not constant. There arej0≤L
minimal with tj0(l+1) 6= t0(l+1), and j1 > j0 minimal with tj1(l+1) = t0(l+1). Note that
tj0−1 = tj1 = sωl+1t0(l+1). Thusj0 = 1 andj1 = L. If t0(l+1) 6= 0, thent1 = tL−1 = sωl+10. If
t0(l+1) = 0, then the sequence[tj(l+1)]0<j<L is constant andt1 = tL−1 = sωl+1t1(l+1). In both
cases, this contradicts the fact that(tj)j≤L is a cycle. Thus(ωl+2, Gl+2) is acyclic. �

Notation. Lemma 5.3 and Theorem I.2.5 in [B] imply the existence, for each pair{s, s′} of distinct
vertices inωl+1, of a uniques−s′ path in(ωl+1, Gl+1). We will call it pl+1

s,s′ . If s= s′, then we set

pl+1
s,s′ :=< s >. The proof of Lemma 5.3 shows that

pl+2
si,s′i′ =















































< pl+1
s,s′ (0)i, ..., p

l+1
s,s′ (|p

l+1
s,s′ |−1)i > if i= i′,

< pl+1
s,sω

l+1
(0)i, ..., pl+1

s,sω
l+1

(|pl+1
s,sω

l+1
|−1)i, sωl+10, p

l+1
sω
l+1,s

′(0)i′, ..., p
l+1
sω
l+1,s

′(|p
l+1
sω
l+1,s

′ |−1)i′ >

if 0 6= i 6= i′ 6=0,

< pl+1
s,sω

l+1
(0)i, ..., pl+1

s,sω
l+1

(|pl+1
s,sω

l+1
|−1)i, pl+1

sω
l+1,s

′(0)i′, ..., p
l+1
sω
l+1,s

′(|p
l+1
sω
l+1,s

′ |−1)i′ >

otherwise.

Lemma 5.4 Letβ∈ωω. Then[[β]
E

ωω

0
,Aω ∩ ([β]

E
ωω

0
)ω] � [G,Aω ∩Gω].
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Proof. We have seen that ifα E
ωω

0 β, then there iss∈ω<ω such thatα=s(β−β||s|). We will construct
u(α)∈G by induction on|s|.

• If |s|=0, then we simply chooseu(β)∈G.

• If |s|=1, then we choosen0∈ω such thatsωn0
β(0)⊆u(β), and we set

u[i(β−β|1)] :=sωn0
i[u(β)−u(β)|(n0+1)]

if i 6= β(0). Note thatu[i(β−β|1)] E
ωω

0 u(β) ∈ G, so thatu[i(β−β|1)] ∈ G. Moreover, we have
(u[i(β−β|1)])i∈ω ∈Aω.

• Assume thatu(α)∈G is constructed for|s|≤ l+1, which is the case forl=0. Letϕ :ωl+1→ω be
a bijection withϕ(sωl+1)=0.

• We construct(Eq)q∈ω∈ [P(ω)]ω ⊆-increasing such that[{ϕ−1(p) | p∈Eq}, Gl+1] is connected for
eachq∈ω (see Lemma 5.3). We proceed by induction onq. We first setE0 :={0}. Assume thatEq
is constructed.

- If Eq=ω, then we setEq+1 :=ω.

- If Eq 6=ω, then we use the pathspl+1
s,s′ defined after Lemma 5.3. We chooser∈ω\Eq minimal for

which there isp∈Eq such that|pl+1
ϕ−1(p),ϕ−1(r)

|=2. Such anr exists since ifm∈ω\Eq, then there is

i< |pl+1
sω
l+1,ϕ

−1(m)
| minimal such thatϕ[pl+1

sω
l+1,ϕ

−1(m)
(i)] /∈Eq, and|pl+1

pl+1

sω
l+1

,ϕ−1(m)
(i−1),pl+1

sω
l+1

,ϕ−1(m)
(i)
|=2

since i > 0. As [{ϕ−1(p) | p ∈ Eq}, Gl+1] is connected, and acyclic by Lemma 5.3, there is a
uniquep ∈ Eq such thatϕ−1(p) Gl+1 ϕ

−1(r). There aren ≤ l, i0 6= 0 and t ∈ ωl−n such that
{ϕ−1(p), ϕ−1(r)}={sωn0t, sωni0t}. We setEq+1 :=Eq ∪ {ϕ(sωnit) | i∈ω}.

Claim 1
⋃

q∈ω Eq=ω.

Indeed, letr∈ω\{0}. By induction onk∈ω we see thatϕ[pl+1
sω
l+1,ϕ

−1(r)
(1 + k)]∈

⋃

q∈ω Eq. Thus

r is in
⋃

q∈ω Eq.

This allows us to defineq(s) :=min{q∈ω | ϕ(s)∈Eq}, for s∈ωl+1.

Claim 2 Let n ≤ l, and t ∈ ωl−n. Then there isi ∈ ω such thatq(sωnit) < q(sωnjt) for eachj 6= i.
Moreover,q(sωnjt)=q(s

ω
nj

′t) if j, j′ 6= i.

Indeed, we argue by contradiction. Choosei 6= j such thatq := qn,ti = qn,tj is minimal among the

qn,tk ’s. By definition ofE0 we haveq 6=0. Asϕ(sωnit)∈Eq\Eq−1, we haveEq−1 6=ω. This implies
the existence ofn′ ≤ l andt′ ∈ωl−n

′

such thatEq \Eq−1 ⊆{ϕ(sωn′it′) | i∈ω}. Thussωnit andsωnjt
differ at the coordinaten′, which implies thatn=n′ andt= t′. By construction ofEq there isk∈ω
such thatsωnkt∈Eq−1, which contradicts the minimality ofq. This proves Claim 2.
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• We have to constructu(sk[β−β|(l+2)]) ∈G for |s| = l+1 andk 6= β(l+1). We will construct
u(sk[β−β|(l+2)]) by induction onq(s).

- If q(s)= 0, thens= sωl+1 and we choosen1 ∈ω such thatsωn1
β(l+1)⊆u(sωl+1[β−β|(l+1)]), and

we set

u(sωl+1k[β−β|(l+2)]) :=sωn1
k[u(sωl+1[β−β|(l+1)])−u(sωl+1[β−β|(l+1)])|(n1+1)]

if k 6=β(l+1). As before,u(sωl+1k[β−β|(l+2)])∈G. Moreover,[u(sωl+1i[β−β|(l+2)])]i∈ω ∈Aω.

- Assume thatu(sk[β−β|(l+2)]) ∈ G is constructed forq(s) ≤ q, which is the case forq = 0. If
q(s)=q+1, thenϕ(s)∈Eq+1\Eq. This implies the existence ofn≤ l, t∈ωl−n, i0 6=0 and of a unique
p∈Eq such that{ϕ−1(p), s}={sωn0t, sωni0t}.

Note thatq[ϕ−1(p)]≤ q, so thatβp :=u(ϕ−1(p)k[β−β|(l+2)]) is defined and inG. We choose
nq+1∈ω such thatsωnq+1

[ϕ−1(p)(n)]⊆βp, and we set

u(sωnitk[β−β|(l+2)]) :=sωnq+1
i[βp−βp|(nq+1+1)]

if i 6=ϕ−1(p)(n). This is licit by Claim 2, since onlyβp is defined among theu(sωnitk[β−β|(l+2)])’s.
As before,u(sωnitk[β−β|(l+2)])∈G. Moreover,[u(sωnitk[β−β|(l+2)])]i∈ω ∈Aω.

• Now u : [β]
E

ωω

0
→ G is constructed. Assume that(sωniγ)i∈ω ∈ Aω ∩ ([β]

E
ωω

0
)ω. We can write

γ = t̃δ, where t̃ ∈ ω<ω, δ = β−β|(n+1+ |t̃|), and t̃(|t̃|− 1) 6= β(n+ |t̃|) if t̃ 6= ∅. We have
to check that[u(sωniγ)]i∈ω ∈ Aω. We may assume that̃t 6= ∅. We setk := t̃(|t̃| − 1) and also
t := t̃|(|t̃|−1). Then(sωniγ)i∈ω = (sωnitkδ)i∈ω , and Claim 2 providesi. Now the construction ofu
shows that[u(sωniγ)]i∈ω∈Aω (considerl :=n+|t|). �

Proof of Theorem 5.1.Using the axiom of choice, fix a selectorS : ωω → ωω for E
ωω

0 , i.e., a map
satisfyingα E

ωω

0 β ⇒ S(α)=S(β) E
ωω

0 α for eachα, β∈ωω (see 12.15 in [K]). We can write

ωω=G ∪
⋃

β∈S[ωω]\G

[β]
E

ωω

0
,

and this union is disjoint. By Lemma 5.4 there isuβ : [β]
E

ωω

0
→G such that

Aω ∩ ([β]
E

ωω

0
)ω⊆(uωβ)−1(Aω ∩Gω),

for eachβ∈ωω. We defineu :ωω→G by

u(α) :=







α if α∈G,

uβ(α) if α∈ [β]
E

ωω

0
and β∈S[ωω]\G.

Now letU be an open subset ofG. Thenu−1(U)=(G∩U)∪
⋃

β∈S[ωω ]\G u−1
β (U). The setG∩U is a

Gδ subset ofωω, and
⋃

β∈S[ωω]\G u−1
β (U)⊆ωω\G is meager. This proves thatu is Baire-measurable.
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Now let (sωniγ)i∈ω∈Aω. Note thatsωniγ E
ωω

0 sωnjγ if i, j∈ω. If sωn0γ∈G, then

[u(sωniγ)]i∈ω=(sωniγ)i∈ω∈Aω ∩Gω⊆Aω ∩ G
ω

sinceG is E
ωω

0 -invariant. If sωn0γ /∈ G, then there isβ ∈ S[ωω]\G such thatsωn0γ ∈ [β]
E

ωω

0
. In

this case we have(sωniγ)i∈ω ∈ Aω ∩ ([β]
E

ωω

0
)ω. Thus [uβ(s

ω
niγ)]i∈ω ∈ Aω ∩ Gω ⊆ Aω ∩ G

ω and
[u(sωniγ)]i∈ω∈Aω ∩ G

ω. This finishes the proof. �

Question. Is it true that[ωω,Aω] �B [G,Aω ∩ G
ω]? This would imply that we can replace “Baire

measurable” with “Borel” in Theorem 1.7.
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