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A dichotomy characterizing analytic digraphs of uncoutgab
Borel chromatic number in any dimension.

Dominique LECOMTE

Trans. Amer. Math. So861 (2009), 4181-4193

Abstract. We study the extension of the Kechris-Solecki-Todor€elichotomy on analytic graphs to
dimensions higher than 2. We prove that the extension idlgesa any dimension, finite or infinite.
The original proof works in the case of the finite dimensiore Wt prove that the natural extension
does not work in the case of the infinite dimension, for théamobf continuous homomorphism used
in the original theorem. Then we solve the problem in the addbe infinite dimension. Finally,
we prove that the natural extension works in the case of timt® dimension, but for the notion of
Baire-measurable homomaorphism.

1 Introduction.

The reader should see [K] for the standard descriptive seiréhic notation used in this paper.
We study a definable coloring problem, in any dimension. Wenged some more notation:

Notation. In this paper2 < d <w will be a cardinal, i.e., any dimension of an actual produeking
sense in the context of descriptive set theory. The lefXer¥” will refer to some sets. We set

ANX):={(2i)icac X |Vied zi=x0}.
Definition 1.1 Let AC X¢. We say thatd is adigraph if AN AY(X)=0.
Notation. Letu: X —Y be a map. We define amag: X?— Y by
u?[(z:)ied) := [u(@)]ica-
Definition 1.2 Let AC X% be a digraph.

(@) Acoloring of [ X, A] is amapc: X — Y such thatd N (¢4~ HAY(Y)]=0.
(b) Assume thak is a Polish space. ThBorel chromatic number of [ X, A] is

xB(A):=min{ Card(Y) | Y is a Polish space and there is a Borel coloringX — Y of [ X, 4] }.
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The goal of this paper is to characterize the analytic diggagf uncountable Borel chromatic
number. This has been done in [K-S-T] for graphs, i.e., fonsetric digraphs, whed=2. We will
give such a characterization in terms of the following notid comparison between relations.

Notation. Assume thatX, Y are Polish spaces, and ldt(resp.,B) be a subset ok “ (resp.,Y?).
We set

[X,A] <p [V, B] < Ju:X—Y Borel with AC (u?)"}(B).
In this case, we say thatis a Borelhomomorphism from [ X, A] into [Y, B]. This notion essentially
makes sense for digraphs (we can take be constant if3 is not a digraph). I is continuous (resp.,
Baire-measurable, arbitrary), then we write (resp.,< g, <) instead of<p. Note thatyp(A) <w
is equivalent tdX, A] <5 [w, ~A%(w)].

We also have to introduce minimum digraphs of uncountableeBihromatic number:
e Letvy,:w— d=* be the natural bijection, faf <w. More specifically,

- If d < w, theny,(0) := 0 is the sequence of length ¢4(1) := 0, ..., ¥4(d) :== d—1 are the
sequences of length and so on.

- If d = w, then let(p,)nc., be the sequence of prime numbers, dndv<* — w defined by

I(0) :=1, andI(s) ;:pg@)“...pfj"i';”“ if s # (. Note that! is one-to-one, so that there is an

increasing bijectiony: Seq=I[w<*] —w. If t € SeqC w, then we will denoté := I~ (¢) cw<¥. We
sety, :=(p o I)~t:w—w<¥. Note thaty,, is a bijection.

e Note also thatyg(n)| <n if nc€w. Indeed, this is clear f <w. If d=w, then
I (n)|0] <[t (n)[1] <. <Ifepo(n)],
so that(y o I)[1),(n)]0] < (¢ o I)[thy(n)|1] <...< (¢ o I)[th,(n)]=n. This implies thaty, (n)| <n.

e Letn € w. As|iy(n)| <n, we can defines? := 14(n)0~ (™)l The crucial properties of the
sequencés?), ., are the following:

- For eachs € d<“, there isn € w such thats C s¢ (we say tha{s?),,c,, is dense in d<%).
“Istl=n.

e We put
Ag:={(shi7)iea | n€w andyed} C (d*).

Note thatA, € 1 since the magn, v) — (s%iv);eq iS continuous.

The previous definitions were given, whég- 2, in [K-S-T], where the following is proved:

Theorem 1.3 (Kechris, Solecki, TodGevic) LetX be a Polish space, and € 1 (X?2). Then exactly
one of the following holds:

@) [X, 4] 2p [w, ~A%(w)].
(b) [2¢, As] =, [X, Al.

This result can be extended to any finite dimensipwith the same proof.



Theorem 1.4 Letd > 2 be an integer,X a Polish space, andl € =1 (X?). Then exactly one of the
following holds:

@) [X, 4] =p [w, ~A%w)].
(b) [d*, Ad) <. [X, A].

We want to study the case of the infinite dimension.
Theorem 1.5 We cannot extend Theorem 1.4 to the case wilere.
Notation. In order to get a positive result in the case of the infiniteatision, we put
G:={acw” |VYmewIn>m s 0Ca}.
Note thatG is a dense=s subset ofu~.
The main result of this paper is the following:

Theorem 1.6 Let X be a Polish space, and € 1(X“). Then exactly one of the following holds:
@) [X, A] 2 [w, A% (w)].
(b) [G,A, NG¥] =, [X, A].

So we have a general characterization, in any dimengiohanalytic relationsd C X ¢ for which
[X, A] 4B [w, ~A%w)]. In particular, we have a characterization of analytic aiirs of uncountable
Borel chromatic number.

Theorem 1.5 says that we cannot extend Theorem 1.4 to themesed = w for the notion of
continuous homomorphism in (b). However, the extensionr@fofem 1.4 to the case whefe-w is
possible for the notion of Baire-measurable homomorphism:

Theorem 1.7 Let X be a Polish space, and € 1(X“). Then exactly one of the following holds:
@) [X, 4] =B [w, A% (w)].
(b) [w¥, A,] =Bm [X, A].

2 The proof in finite dimension.

Let us start with two general lemmas:
Lemma 2.1 LetG be a dens&; subset ofi”. Then[G, Ay N GY] £pm [w, ~A%(w)].

Proof. We argue by contradiction. This gives a Baire-measurabbetion « : G — w such that
AgNG? C () =AY w)]. As G = e, u ' ({i}), there is an integeiy such thatu='({io})
is not meager and has the Baire propertyGn This implies the existence of € d<“ such that
(G N Ny)\u~t({ig}) is meager. Lefl be a densé& s subset oG such thatd N N, Cu~'({ig}).
We choosen € w with s C s Note thatf), : Nyag — Nya,; defined by (si0v) := siivy is an
homeomorphism. This implies th@,., (f.)~'(H) is a denseG; subset ofNyao. We choose
s807 € MNjew (f1)7HH). We get(sliv)icqa € Ag N (H N No)4C [u=t({io})]?, which contradicts the
fact thatAy N G4 C (u?) ! [-A%(w)]. O



Definition 2.2 Let AC X?. We say tha' C X is A—discrete if AN C¢=.

Notation. The reader should see [M] for the basic notions of effectegcdptive set theory. Assume
that X and X are recursively presented Polish spaces, andAt®E] (X ?). We put

U:=| J{DeA{(X) | Dis A-discretd.
Note thatU € I1{} (X) if the projections are recursive.

Lemma 2.3 Assume thatX and X¢ are recursively presented Polish spacesc % (X?), and
U=X.Then[X, A] <p [w, ~A%w)].

Proof. As U = X, there is a partitior{ D,,),c., of X into A-discreteAl sets. We define a Borel map
u: X —wbyu(r)=n & x€D,. If (1;);cq € A, then we cannot havie:(z;)];cq € A%(w), since the
D,,’s are A-discrete. O

We will recall the proof of Theorem 1.4, to show the problerpegring in the case of the infinite
dimension. Itis essentially identical to the one in [K-S-@%cept that we do not use Choquet games.

Notation. Let Z be a recursively presented Polish space. &Fhedy— Harrington topology on Z
is generated by’ (Z) and denoted”y. It is finer than the initial topology of, so that[Z, X] is
Ty. As X1(Z) is countable (see 3F.6 in [M])Z, £7] is second countable. We set

Oy ={zeZ| wf:w?K}.

Recall that) is ¥ (Z) and dense ifZ, X7] (see 111.1.5 in [S]; the second assertion is Gandy’s basis
theorem). Recall also th&t’ N Q is a clopen subset df2, X7] for eachW € X} (Z). Indeed, it is
obviously open. Lef: Z —w* be Al such thatZ\(W N Qz) = f~1{(WO) (see 4A.3 in [M]). We get

2eQ\(WNQy) o 29, and 3 <wCK (F(2)eWO and |f(2)]<9).

This proves thatV N Q is closed (see 4A.2 in [M]). In particulaff2z, ¥'7] is zero-dimensional,
and regular. By Theorem 4.2 in [H-K-L] and 8.16.(iii) in [KK2z, X'7] is strong Choquet. By 8.18
in [K], [Qz, X7] is a Polish space. So we fix a complete compatible métfion [Q2z, X'7].

Proof of Theorem 1.4.Note first that we cannot have (a) and (b) simultaneously,dmina 2.1.

e We may assume thaX is a recursively presented Polish space and that £} (X9). We set
®:={C C X | Cis A-discretg. As ® is II! on X}, the first reflection theorem ensures that if
C € X}(X) is A-discrete, then there B € A}(X) which is A-discrete and contain§ (see 35.C in

[KD.

e By Lemma 2.3 we may assume thfat£ X, so thatY := X \ U is a nonemptyX; subset ofX. The
previous point gives the following key property:

VCeSH(X) (0£ACCY = ANCI£D).



e We construc(z,)scqg<e €Y, (Va)sca<e € ZH(X) and (U ¢) (n.ewxd<e C L1 (X?) satisfying the
following conditions:

(1) 2, €VoCY NQx and (240;4)ica €Unt CANY TN Qxa,
(2) ‘/sm g ‘/s and Un,tm g Un,tv
(3) diamy, (Vi) <27l and diamy_, (U, ) <2717l

e Assume that this is done. Fixe d. Then(V,,)pec. is @ decreasing sequence of nonempty clopen
subsets ofQ2x, X'x| whosedx-diameters tend to zero, so thereuigy) in their intersection. This
definesu : d¥ — X. Note thatdx [z, u(a)] < diamy, (V,,) < 277, so thatu is continuous and
(Talp)pew teNds tou(a) in [X, Xx].

If (sdiv)ica € Ag, then (Un,yp)pew is @ decreasing sequence of nonempty clopen subsets of
[Qxa, X'xa] Whosed yq-diameters tend to zero, so there(is);cq in their intersection. Note that
(ai)iea € A. Moreover, the sequenc@z (|, licd)pew t€NdS t0(a;)icq in [X?, Lxa], and in
(X9, 2] t00. AS (Z4( 1) )pew t€NS tou(slivy), we getu(siiy) = «;, for eachi € d. Thus
[u(sqiv)liea € A.

e So it is enough to see that the construction is possibley” Asa nonemptyZ} subset ofX, we can
choosery €Y Ny, andVy e X} (X) such thatrg € Vy CY N Qx and diam,, (V) < 1. Assume that
(zs)s1<tr (Vs)|s)<t @nd(Un ) n+1+1¢|<; Satisfying (1)-(3) have been constructed, which is the taise
{=0. LetC' be the following set:

{2€X | (Ys)seq € X yg== and Vse d' y,€V, and Vn<l Vt€d™" " (Y )icd € Uny}-

ThenC € X} (X) sinced is an integer, T € C CY by induction assumption. So there(issiii)ied
in AN CYNQya, by the key property. A$8fm eC,we get(msm)sedl\{sii}. It remains to choose

- Vem € XH(X) with 2, € Vi, C Vs and diamy,, (Vyy,) <2717L, for se d' andmed.
-Upe 211 (Xd) with ($s;ii)i€d celUpCAN Yen Qa4 and diangxd (Uip) < 2~ -1,

- Up,tm € 21 (X?) With (24,4, )ied € Un,tm C Un, @nd diamy_, (Un, i) <2771, for (n,t) in
wxd<¥ with n4+1+|t|=1 andm €d. O

3 The natural extension in infinite dimension does not work.
Theorem 1.5 is a consequence of Lemma 2.1 and of the followisigit:

Theorem 3[w*, A,] A¢ [G, A, NG¥].



Proof. We argue by contradiction. This gives a continuous map” — G with A, C (u¥)~1(A,).

e Let us prove that there is€ w® and (s, )new € (w<*)* such that

u[3(0)0%® 5(1)0%M ] =506(0)s13(1)...

for eachf € w¥. We construciy(n) ands,, by induction onn. Assume thaty|n and (s,),<, are
constructed satisfying

% [ragy S0°° and [#(0)0%)t(p)0°P) Ty = s0t(0)...5pt(p) Cu(7)]

for eachp <n andt € wP™!. We will constructa(n) ands,, satisfying

% [raGy S0 and [£(0)0*©).4(n)0*™ Cy = 50t(0)...snt(n) Cu(y)]
for eacht € w"*!, which will be enough. Note first that there ane ¢ w andé € w* with
[“(3§j<n[1+a(j)]i0°°)]i€w =(s%10)icw- ASu is continuous, there is€ w such that

5%, caliva() @ €7 = SR0CU(),

58 cnltra@n10 €7 = sl Culy).

Note thats§_< 0P C vy = sYi C u(y), for eachi € w. Indeed, lets € w*. Then
J

n[l“l‘a(j)]

[“(S§j<n[1+a(j)]iop_g)]iew €A, N [Ngw oX Ngw 1 x (w”)?] CIlie,, Ngw . In particular, this implies that
500...5,—10C 5%, sinces0...s,_10C u(s“z’j@[Ha(j)}iOPg).

- If n=0, then we choose(0) >p such thap'+©) )+ We setsg:= i, and we are done.

:sLiJ—i—a(O
- If n>0, then we set,, :=s% —(s00...s,—10). We will prove, by induction ori <n, that
View" T 0" Ct = [£0)0°O) .t (n—1)02""Di(n)0P Cy = sot(0)...5,t(n) Cu(y)].

We already proved it fot = 0. Assume that it is true fot < n, lett € w™+! with 0"~'~1 C ¢, and
assume that(0)0*?) . .t(n—1)0*"=Dt(n)0P C . We sete :=y—[t(0)0O) ...t (n—1)0*"=D¢(n)0P].
Then by induction assumption énve get

500...8p—1-108,_1t(n—1)...spt(n) C u[s%j@il[Ha(j)}t(n—l)oo‘("_l) . t(n—1)0" "V t(n)0Pe].
But by induction assumption amwe get, for eache w,

500...8p—1-208,_;1_11C u[8§j<n7l71 [1+a(j)]ioa("_l_1)t(n—l)OO‘("_l) tn— 1)00‘("_1)t(n)0p€].

BUE (ufs€ | i1ha@ 0" T H (=100t (n—1)0°D(n)0Pe])ie., € As,. This implies,
j<n—l—

for eachi cw, thatu[s“z’j@ilil[Ha(mz‘Oa(”‘l‘l)t(n—l)Oa(”‘l) ..t(n—1)0"=D¢(n)0Pe] begins with

500...85—1—208,_1_1i8p_it(n—1)...spt(n). In particular, this holds fof =¢(n—[1—1), and we are

done.

It remains to choose(n) > p such thap>i<»[1+a()] = % [taG)]"



o If s € w=¥, then we setN|[s] := Card{n € w | s¥0 C s}. Note thatN[a] = w if « € G. By
induction onp, we can construct(p) € w such thatN[so3(0)...s,5(p)sp+1] = N[so]. This implies
that Ns03(0)s13(1)...] = N[so] < w, andu[3(0)0*®) 5(1)0*(1) ..] ¢ G by the previous point, which
is absurd. O

4 The proof in infinite dimension.
Before proving Theorem 1.6, note first the following result:

Theorem 4.1 There is no(Xo, Ag), where X, is a metrizable compact space aag € X1(XY),
such that for any Polish spac¥, and for anyA € X1 (X“), exactly one of the following holds:

@) [X, A] 2p [w, ~A¥(w)].
(b) [Xo, Ao] <. [X, Al.

Proof. Suppose towards a contradiction that s&h, A() exists. Note thaf\; £ (), since otherwise
we would havg Xy, Ag] <p [w, A% (w)]. By Lemma 2.1, we now get some continuausXy — w®
such thatdy C (u~)~1(A,,). Thenu[X,] will be a compact subset af* and hence contained in some
productkg x k1 x ... Cw®, where thek;’s are finite. Notice however thak, x &k x...)Y N A, =0, and
thusAg C (u®) (ko x k1 x...)* N A,] =0, which is a contradiction. O

Assume temporarily that there is a Polish spageand A, such that the end of the statement of
Theorem 4.1 holds. By Theorem 4.X, cannot be compact. Note that we may assume Xhais
zero-dimensional, since there is a finer zero-dimensionéstP topology onX, (see 13.5 in [K]).
This means that we can view, as a closed subspacewf (see 7.8 in [K]). AsX, is not compact,
the tree associated with this closed set (see 2.4 in [K]) idinde splitting (see 4.11 in [K]). The
proof of Theorem 1.6 will have the same scheme as the proohebiem 1.4. We have to build
infinitely manyV,'s at some levels of the construction, since the tree ageakigith X is not finite
splitting. The only place where the proof of Theorem 1.4 duetsvork in infinite dimension is when
we write “C € X1 (X)".

The main modifications to make are the following:

- As we have to build infinitely many’'s at some levels of the construction, it is not clear at alkth
C remainsX}, since X} is not closed under infinite intersections. Howewg}, is closed undey~,
and this will be enough. We will have to build th&’s uniformly in s at each level of the construction
to ensure tha€' is X'}, and it is possible. We will also ensure that there are onljefinmanyU,, ;s
at each level of the construction, to ensure thas .

- The reason why Theorem 3 is true is that we cannot contrdhalldiameters iz at each level
of a construction that would give a map w* — G. We will only control finitely many diameters,
since we wantC' to be Y. This is the reason why we will work i instead ofv~. This gives the
possibility to control only one diameter at each level of thastruction among thg;’s (and finitely
many among thé/,, ;'s). So the point in the proof of Theorem 1.6 is that we canniitithe | sets
uniformly at each level of the construction and control ladl tiameters at the same time.



Proof of Theorem 1.6.Note first that we cannot have (a) and (b) simultaneously,dmina 2.1.

e Note that there is a recursive map w — w such thats(l) codessy, i.e., 5(1) = I(s’) (see the
notation in the introduction). Indeed, there is a recursna® : w — w whose restriction to Seq is an
increasing bijection from Seq onia Now(cﬁ\Seq)‘1 defines a recursive maf, :w —w. It remains

to note thats(/) =t is equivalent to

teSeq and Ikt)=1 and Vi< [i <lh[¢,(1)] and(t);= (v (1))s] or [i>Ih[4, ()] and (t);=0].
¢ \We may assume that
-The X“"'s are recursively presented Polish spaces| éav.
- The projections are recursive.
- The mapdl;:w x X+ — X defined by
IL[t, (xs)sentl =2 < teSeq and lk¢)=! and z=ux;

are partial recursive functions dncw | t€ Seq and Ik¢) =1} x X' forlew.
- The mapdl}:w? x X' — X* defined by

I [n,t, (2s) sewt] = (i)icw < t€Seq andn+1+lh(t)=1 and View Yi =Tt
are partial recursive functions difn, t) ew? | t € Seq andn+1-+Ih(t) =1} x X*', for [ €w.
- Ae ZH(XY).

e We setd:={C C X | Cis A-discreté. As ® is I1} on X}, the first reflection theorem ensures that
if C e X}(X) is A-discrete, then there B € A}(X) which is A-discrete and contains.

e By Lemma 2.3 we may assume thfat£ X, so thatY := X \ U is a nonemptyX; subset ofX. The
previous point gives the following key property:

VCeXH(X) (D£ACCY = ANCY#D).

e We construc(z;) sep<e €Y, (Vi) sew<w € 2H(X), and(Up,¢) (n,1)ewxw<e C X1 (X*) satisfying the
following conditions:

(1) 2, €V, CY NQx and (zswit)icw €Ut CANYY N Qxo,

(2) Vam €V @and Un,pm S Un g,

(3) diamy, (Vieo) <27" and [s£0t =570 = diamy,, (Un,) <27,

(4) For any fixeds|, the relation % € V;” is a X condition on(z, s),

(5) For any fixedn and fixed|t|, the relation {z;);c, €U, ,” is a X condition on[(z;);cw, t]-

8



e Assume that this is done. Fixe G. Then(V,;,),c. is a decreasing sequence of nonempty clopen
subsets ofQ2x, X'x] whosedx-diameters tend to zero, so thereuiy) in their intersection. This
definesu: G — X. Note thatdx [z,,, u(a)] < diamy, (Vy,), SO thatu is continuous andz ;) pew
tends tou(«) in [X, Xx].

If (s57i7)icw € Aw N G¥, then(U,, ,p)pew is @ decreasing sequence of nonempty clopen subsets
of [Qxw, Xxwv] whosed y.-diameters tend to zero, so there(is;);c., in their intersection. Note
that (i) e, € A. Moreover, the SeqUeNGer . (|p)licw)pew t€NAS t0(;)ic, in [X¥, Lx], and in
(X, X% t00. AS(Zswi(y|p) )pew teNs tou(syiy) in [X, Xx]|, we getu(s})iv) = a;, for eachi € w.
Thus[u(s¥iv)]icw € A.

e So it is enough to see that the construction is possiblé} i any X} set, then clearly (4) holds
for s of length0. Now suppose thal, has been defined for alle w<! and that (4) holds. Then in
order to defind/,. for € w!*1, while ensuring (4), we will leVwo C Vi be some chosef} set of

diameter at mos2~* (to be determined later on) and,, := V; for all sm#s70. Then forr € w!t!
r€V, & (r=s70 and z€ Vi) or (r=sm#s;’0 and z€Vj),
which is X}t in (z,7) by the induction hypothesis.

Similarly, if U,, g is any X! set, then clearly (5) holds farof length0. Now suppose that/,, ;
has been defined for all € w<F and that (5) holds. Then in order to defitig , for r € wF*!,
while ensuring (5), we again split into two cases.s}0r = s20t0 = s°0, thenU,, , C U, ; will

be some chose} set of diameter at mo&! (to be determined later on). On the other hand, if
s20r = s%0tm # 570, then we set/,, ,.:=U,, ;. Then forr € w1

(s50r=s20t0=s70 and (z;)icw € Un,r)
(wi)iEw S Un,r -~ or
(s50r=s¥0tm#sY0 and (z;)icw € Unyt),

which is X! in [(z;)icw, 7] by the induction hypothesis, sine&0r = s+’0 can hold for only finitely
many(n,r) €wXxXw<.

Notice that in this way (2) and (3) are also satisfied, so ita@sito definé/s«o, U, g andUp
for s&20r =s°0 of diameter small enough such that (1) also holds.

-AsY isa nonemptyZl1 subset ofX, we can choose;cY N Qx, and sel: =Y N Qx.

- The key property applied tbp gives (v;)ic € AN V" N Qxw. We choosdy € YH(X*) such
that (z;)ic € Upg CAN V" N Qxw and diamy,., (Uy g) < 1. Then we choos&) € X} (X) such that
xo € Vo € Vj and diamy, (Vo) < 1. Assume thatzs ) si<i, (Vs)jsj<ir @nd(Un ¢)n4141¢<; Satisfying
(2)-(5) have been constructed, which is the casé {ot.

- We put
C::{ TEX | I(Ys)sew €X'y =2 and Vsew! y,eV, and Vn<l Vtew !
(Yswit )icw € Unt }



Thenzse € C, by induction assumption. Moreoveft, € XL, by conditions (4) and (5) sincE}
is closed undeY“. The key property applied t©' gives(scsfz-),-ew €EANCY NQxw. Aszsem €C,
there iS(éﬁsm)sewl\{s;v} C X such thates,, € V; for eachs € w! and(zswitm)icw € Un, for eachn <1
and eacht € w!~"~1. This defineqz;) ¢, i+1-

We choosdJ, y € X} (X*) such that(zsei)icw €Urg CAN Vi NQxe and diany,., (U 9) <27,
anstlwo € X{(X) such thatzcslwo € Vw0 C Ve and diam, (V;fo) <270 If s90r =520t0= 570, then
we choosdJ,, , € X1 (X*) such that diam,.., (Un,») <27 and (zswir )icw € Un,r C Un s O
5 The Baire-measurable natural extension in infinite dimen®n works.

Theorem 1.7 is a consequence of Theorem 1.6, Lemma 2.1 ahd fafllowing result:
Theorem 5.1 [w*, A,] <Bm [G, A, N G¥].

Notation. We define the following equivalence relation on the Bairecep#’, which is the analogous
version of the usual equivalence relatiBip on the Cantor spac® (see [H-K-L]):

aBY' B < Imew Yn>m aln)=p5(n).
Lemma 5.2 There is a dense ariily” -invariant G5 subsetG of w* such that
VaeG Vi,mew In>m s lCa
(in particular, G CG).

Proof. We setGy:={acw® |VI,mew In>m s¥1Ca}. Note thatGy is a dense&7s subset of
w*. We also define, fon,pew, fh:w* —{acw® | a(n)=p} by

a(m) if m#n,

frle)(m) 1{

p if m=n.
Note thatfZ is onto, continuous, open, and has a clopen range. Then we set
D:={H Cw" | His adens&s;}

and we defineb: D — D by ®(H) := H N[, pe, (f5)~Y(H). This allows us to define, fof € w,
Ggy1:=P(Gy), and we setG: = ., G,. Note thatG € D. Moreover, ifa € G andn, p € w, then
fR(a) € G. Indeed, lelg €w. Thena € Gy41 C (f7)~H(G,). Now if 8 E4” «, then there is € w<¥
such thats = s(a—«a||s|) (which means that C 5 anda, (5 agree from the coordinate| on). We
set, fori <|s|, f; := (s]i)(a—ali), so thatfy = e and 3| = 5. Note that3;; = ff(i)(ﬁi) for each
i < |s|, by induction oni. This proves that;; € G for eachi < |s|, by induction oni. In particular,
B € G which isE4” -invariant. This finishes the proof sin€eC Gy. O
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Notation. For eachl € w, we define an oriented gragy; , onw!** as follows:
sG71 s & Tnew FiA0 FHew™™ (s,s)=(sL0t, svit).
We denote by, the symmetrization ofs; ;.
Lemma 5.3 The graph(w/*!, G;1) is connected and acyclic.
Proof. We argue by induction oh For!=0, we have
iG1i & (i=0andi #£0) or (i'=0andi#0).

If i <4/, then(s,0,4) is aG-walk fromi to ¢’ if i £0, and(i,i") is aGy-walk fromi to i if i =0.
Thus (w, G1) is connected. Now ifi;); <z, is aG-cycle, then eitheip # 0 andi; =i, =0, or
ip = 0 andiy = 0. In both cases, this contradicts the fact thg);<; is a cycle. Thugw,G1) is
acyclic.

Assume that the result is true frNote that
siGipo st & (s=s'=sf,; andi Gy i) or (s Gy s' and i=1').

We set, fori € w, E; := {ti | t € w'T'}. Note thatw'*? is the disjoint union of the?;'s, that the
mapti— t is an isomorphism froniE;, Gy, ») onto (w'*!, G741), and that the mag;’ i+ i is an
isomorphism from({sy", ;i | i € w}, Gi42) onto (w, G1). In particular,(E;, Gi42) is connected and
acyclic, andw!*2, G, ») is connected.

Now if (t;);<r, Is aGjyo-cycle, then the sequengg (1+1)];<, is not constant. There afig< L
minimal with ¢, (I +1) # to(l+1), andj; > jo minimal with ¢; (I4+1) = to(l+1). Note that
tjo 1= t = Sl+1t0(l+1) ThUSjQ =1 andjl =L.If t()(l-l-l) 75 0, thenty =t;,_1 = Sﬁ_lo. If
to(l+1) = 0 then the sequende; (I +1)]o<;j<z is constant and; =t 1 = s, t1(I+1). In both
cases, this contradicts the fact tiigf) ;<. is a cycle. Thugw!*2, G; ) is acyclic. O

Notation. Lemma 5.3 and Theorem 1.2.5 in [B] imply the existence, farhepair {s, s’} of distinct
vertices inw'*!, of a uniques — s’ path in(w!'*!, Gy11). We will call it pL*]. If s = s/, then we set

plj‘; :=< s >. The proof of Lemma 5.3 shows that

(< P 0)i, o pb (I~ )i > if i=,
<P, ()Pl (|plsj;}” | = 1), s, 0,50 () pET (Ilerl |=1)i" >
[+2 e B i+1 141’ 1+1°8 y
psi,g’i/ = |f 0# #Z #0,
i1 I+1 I+1 eS| - I+1 41 .
ps—zl+1 (O) 2 7ps'i;l+1 (’ps—;;il ’ - 1)2,])8;,;1’8,(0)1/’ ,.,7p8}_+17 (‘p + ‘ 1)1/ >
otherwise.

Lemma 5.4 Let3ew®. Then[[Blgew, Au N ([Blgs )] X G, Au N G¥].
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Proof. We have seen thatif E¢” 3, then there is € w<“ such thatv=s(3—03]|s|). We will construct
u(a) € G by induction on/s|.

o If |s|=0, then we simply choose(3) € G.
o If [s|=1, then we choose, € w such thats;; 3(0) Cu(3), and we set

uli(B—pBI1)]:= s, i[u(B) —u(B)|(no+1)]

if i # 3(0). Note thatu[i(3— 3[1)] E& u(B3) € G, so thatu[i(3— 3|1)] € G. Moreover, we have
(U[Z(ﬁ—ml)])zew GAw-

e Assume thai.(a) € G is constructed fofs| <11, which is the case far=0. Let p:w!T! —w be
a bijection withy (s ;) =0.

e We construc{ £, ) cw € [P(w)]* C-increasing such thdf =1 (p) | p€ E,}, Gi+1] is connected for
eachg € w (see Lemma 5.3). We proceed by inductiongoWe first setF; := {0}. Assume that,
is constructed.

-If E,=w, thenwe sef, | :=w.

- If B, #w, then we use the pathé;rl defined after Lemma 5.3. We choose w\ £, minimal for

which there i € E, such thaqpltll(p 1(T)|:2 Such anr exists since itn € w\ E,, then there is
Z<|pl+1 (my| Minimal such thaqp[pgtl (0 )]¢Eq,and|pll++11 - =2
14+1°¥ Hl,wl(m)( 1)’p“’ %1 =10 @

sincei > 0. As [{¢~!(p) | p € E;},Gi41] is connected, and acyclic by Lemma 5.3, there is a
uniquep € E, such thatp~(p) Gi11 ¢~ (r). There aren <1, ig # 0 andt € w'~" such that
{71 (p), 7L (r)} ={s%0t, s¥ipt}. We setF,1:=E, U {p(s¥it) | i cw}.

Clam1(J

gew q_w'

Indeed, let- € w\{0}. By induction onk € w we see thaqo[plsjl S0,1(71)(1 + k) €Uye Eg- Thus
I+1°

risinU,e, Eq-

This allows us to define(s):=min{gcw | ¢(s) € E,}, for sew!*L.

Claim 2 Letn <, andt € w!'=". Then there ig € w such thatg(s¥it) < q(s¥;t) for eachj # i.
Moreover,q(sjt) =q(si't) if j, j' #i.

Indeed, we argue by contradiction. Choésé; such thaty := ql’"t = q;"t is minimal among the

"t‘s By definition of £y we haveq;éo As p(swit) € Eq\ Eq4—1, we haveE,_; #w. This implies
the existence of’ <1 andt’ € w!~" such thatFs,\ E,—1 C {¢(s%it') | i € w}. Thuss¥it ands¥ it
differ at the coordinate’, which implies that: =n’ andt =t'. By construction ofE, there isk € w
such thats kt € E/,_1, which contradicts the minimality af. This proves Claim 2.
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e We have to construat(sk[3—5|(I+2)]) € G for |s| =1+1 andk # 5(I+1). We will construct
u(sk[B—0B|(1+2)]) by induction ong(s).

- If g(s) =0, thens = s}, ; and we choose € w such thats;, (I+1) Cu(sy,[6—pF|(1+1)]), and
we set

u(spk[B—B1(1+2)]) =5, klu(sPia [6—BI(+1)]) —ulsii [8—B](+1)])](n1 +1)]
if k#B(1+1). As beforeu(sy | k[3—B|(1+2)]) € G. Moreover,[u(sf, i[3—B](1+2)])]icw € Aw.

- Assume thau(sk[3— 3|(1+2)]) € G is constructed for(s) < ¢, which is the case fog = 0. If
q(s)=q+1, theny(s) € E,41\E,. This implies the existence af<[, t cw'™", iy #0 and of a unique
p€ E, such tha{p~1(p), s} = {s20¢t, s¥ipt}.

Note thatg[¢~1(p)] < g, so that3, := u(¢x 1 (p)k[3— 3|(1+2)]) is defined and irz. We choose
ng+1 €w such thaty  [o~1(p)(n)] C B,, and we set

u(sSitk]3—BI(I+2))) =55, il8,— Byl (ngs1 +1)]

if i~ 1(p)(n). This s licit by Claim 2, since only, is defined among the(s*itk[5—03|(1+2)])’s.
As beforeu(s¥itk[5—3|(142)]) € G. Moreover,[u(s¥itk[5—F|(14+2)])]icw € Aw.

e Now u : WLEB”“ — @ is constructed. Assume thét’iy)ic, € A, N ([B]ng)“. We can write
v = 15, wheret € w<¥, § = B—B|(n+1+t]), and#(|t| — 1) # B(n+|t]) if £ # 0. We have
to check thatfu(s¥iy)];c € A,. We may assume that# (. We setk := #(|t| — 1) and also
t:=t|(Jt|—1). Then(s¥iv);c,, = (s¥itkd);c.,, and Claim 2 provides. Now the construction of;
shows thafu(s¥iv)]icw € A, (considerl :=n+|t|). O

Proof of Theorem 5.1.Using the axiom of choice, fix a selectsr: w* — w® for E&”, i.e., a map
satisfyinga Eg“ 3 = S(a)=95(8) E§” a for eacha, 3€w® (see 12.15 in [K]). We can write

w’=GU U [Blgs-

BeSw\G

and this union is disjoint. By Lemma 5.4 thereuig: Wh«:g“’ — @G such that
A,n ([ﬁ]ng)“’ - (UE)_I(Aw nNG*),

for eachg e w”. We defineu:w* — G by

a if aeq,
u(a):=
{UB(()() if aE[ﬁ]ng and g e S[w*]\G.

Now letU be an open subset 6f. Thenu=!(U)=(GnN U)UUgesie)\a ugl(U). TheseGNU isa
G's subset ofv”, and ¢ g %1((]) Cw*\G is meager. This proves thatis Baire-measurable.

13



Now let (s%i7)ew, € A,,. Note thats@iy E&” s<jv if i, j €w. If s20y€ G, then
[u(szi’}/)]i@u = (SL;LJZ"Y)iEw € Aw nGg* c Aw nG*

sinceG is EY -invariant. If s*0y ¢ G, then there is3 € S[w*]\ G such thats“0y € [5]1%”“' In
this case we havés¥iv);c, € A, N ([ﬁ]Ea,w)“. Thus [ug(s%iy)]icw € Au N G¥ C A, N G¥ and
[u(s%77)]icw € Aw N G¥. This finishes the proof. O

Question. Is it true thatjw®, A, ] <5 [G, A, N G*]? This would imply that we can replace “Baire
measurable” with “Borel” in Theorem 1.7.
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