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We prove large and moderate deviation principles for the distribution of an empirical mean conditioned by the value of the sum of discrete i.i.d. random variables. Some applications for combinatoric problems are discussed.

Introduction

In many random combinatorial problems, the distribution of the interesting statistic is the law of an empirical mean built on an independent and identically distributed (i.i.d.) sample conditioned by some exogenous integer random variable (r.v.). In general, this exogenous r.v. is also itself a sample mean built on integer r.vs. Hence, a general frame for this kind of problem may be formalized as follows. Let (q n ) be a positive integer sequence. Further, let X = (X (n) j ) n∈N * ,j=1,...,nqn and Y = (Y (n) j ) n∈N * ,j=1,...,nqn be two triangular arrays of random variables. Both arrays are such that on their lines the r.vs are i.i.d.. Moreover, it is assumed that the elements of the array X are integer. The interesting distribution is then the law of (nq n ) -1 T n := (nq n ) -1 nqn j=1 Y

(n) j conditioned on a specific value of S n := nqn j=1 X

(n) j . That is the conditional distribution

L n := L((nq n ) -1 T n |S n = np n ),
where (p n ) is some given positive integer sequence. When the distribution of (X

(n) j , Y (n) 
j ) does not depends on n, the Gibbs conditioning principle ( [START_REF] Van Campenhout | Maximum entropy and conditional probability[END_REF][START_REF] Csiszár | Sanov Property, Generalized I-Projection and a Conditional Limit Theorem[END_REF][START_REF] Dembo | Large deviations techniques and applications[END_REF]) states that L n converges weakly to the degenerated distribution concentrated on a point χ depending on the conditioning value (see Corollary 2.6). Around the Gibbs conditioning principle, general limit theorems yielding the asymptotic behavior of the conditioned sum are given in [START_REF] Steck | Limit theorems for conditional distributions[END_REF][START_REF] Holst | Two conditional limit theorems with applications The annals of Statistics[END_REF][START_REF] Kudlaev | On conditional limit distributions of sums of random vectors[END_REF]. Asymptotic expansions for the distribution of the conditioned sum are proved in [START_REF] Hipp | Asymptotic expansions for conditional distributions: The lattice case Prob[END_REF][START_REF] Robinson | On approximating probabilities for small and large deviations in R d[END_REF]. In this paper our aim is to prove a large deviation principle for L n . Roughly speaking, this means that we will give an exponential equivalent for this conditional distribution. On a finer scale, we prove a large deviation principle for Ln := L( an nqn (T n -b n )|S n = np n ), where b n is a centering factor specified in Theorem 2.4 of Section 2.2.3 and a n is a decreasing positive sequence of real numbers with a n → 0, na n q n → +∞. We then say that Ln satisfies a moderate deviation principle [START_REF] Dembo | Large deviations techniques and applications[END_REF]Section 3.7]. Our work follows the nice ones of Janson [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF][START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF]. In these last papers, a central limit theorem with moment convergence is proved. The starting point in the proof is a simple representation of the conditional characteristic function as an inverse Fourier transform. This representation was first given by Bartlett [3,Equation (16)]. To establish large and moderate deviation principles we will make use of Gärtner-Ellis Theorem in which an asymptotic evaluation of the Laplace transform is needed. For this purpose, we first transcribe the Bartlett formula to get a simple integral representation for the conditional Laplace transform (see Lemma 3.1). The main result of [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF] is quite general as it only requires assumptions on the three first moments of (X, Y). Here we need further assumptions. However, contrarily to [15, Section 2], we do not restrict to the central case (conditioning on S n = E(S n )) nor on the "pseudo" central case (conditioning on

S n = E(S n ) + O √ nq n σ X (n) i
, with σ 2 X = Var(X)). In [START_REF] Robinson | On approximating probabilities for small and large deviations in R d[END_REF], the authors study general saddle point approximations for multidimensional discrete empirical means and obtain an approximation formula for conditional probabilities. We focus here on the exponential part of this formula, stating a full large deviation principle (see Theorem 2.3). Using some classical tools of convex analysis we give an explicit natural and elegant form for the rate function. Furthermore, we complement our study by stating a moderate deviation principle for the conditional law (see Theorem 2.4). As usual, the rate function is quadratic and the scaling factor is the asymptotic variance, which can be interpreted here as a residual variance in some linear regression model, generalizing the factor found in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]. The paper is organized as follows. In the next section, to be self contained, we first recall some classical results on large deviation principles. Then we state our main results: a large deviation principle and a moderate deviation principle for conditioned sums. Section 3 is devoted to the proofs. In Section 4 we apply our main results to some combinatorial examples. We also discuss possible extensions to more general models.

Main results

Large and moderate deviations

Some generalities

Let us first recall what is a large deviation principle (L.D.P.) (see for example [START_REF] Dembo | Large deviations techniques and applications[END_REF][START_REF] Hollander | Large deviation ISBN[END_REF]). In the whole paper, (a n ) is a decreasing positive sequence of real numbers with lim n→∞ a n = 0. Definition 2.1. We say that a sequence (R n ) of probability measures on a measurable Hausdorff space (U, B(U )) satisfies a LDP with rate function I and speed (a n ) if: i) I is lower semi continuous (lsc), with values in R + ∪ {+∞}.

ii) For any measurable set A of U :

-I(int A) ≤ lim inf n→∞ a n log R n (A) ≤ lim sup n→∞ a n log R n (A) ≤ -I(clo A),
where I(A) = inf ξ∈A I(ξ) and int A (resp. clo A) is the interior (resp. the closure) of A.

We say that the rate function I is good if its level set {x ∈ U : I(x) ≤ a} is compact for any a ≥ 0. More generally, a sequence of U -valued random variables is said to satisfy a LDP if their distributions satisfy a LDP.

To be self-contained, we also recall some definitions and results which will be used in the sequel. (we refer to [START_REF] Dembo | Large deviations techniques and applications[END_REF][START_REF] Hollander | Large deviation ISBN[END_REF] for more on large deviations).

Laplace and Fenchel-Legendre transforms To begin with, let Z be a non negative integer random variable and define the span of Z by m Z := sup{m ∈ N, ∃b ∈ N, Supp(Z) ⊂ mN+b}. Let ϕ Z denote the characteristic function of Z. When Z is square integrable, σ 2 Z denotes its variance. For τ lying in dom ψ Z := {τ ∈ R : E[exp(τ Z)] < +∞}, we define ψ Z (τ ) := log E[exp(τ Z)] as the cumulant generating function of Z. Obviously, dom ψ Z contains at least R -and ψ Z is analytic in the interior of dom ψ Z . We denote by R Z the interior of the range of ψ ′ Z . It is well known that R Z is a subset of the interior of the convex hull of the support of Z. These two subsets of R coincide whenever ψ Z is essentially smooth (see definition below). Further, let ψ * Z denote the Fenchel-Legendre transform of ψ Z [6, Definition 2.2.2 p. 26]. For any τ * ∈ R Z , there exists a unique τ τ * ∈ dom ψ Z such that ψ ′ Z (τ τ * ) = τ * and we may define Z * ,τ * as a r.v. on N having the following distribution

P(Z * ,τ * = k) = exp[kτ τ * -ψ Z (τ τ * )]P(Z = k), (k ∈ N). (1) 
It is well known that E Z * ,τ * = τ * . For more details on the relationships between ψ Z , ψ * Z , Z * ,τ * we refer to the book [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF]. Let now (Z, W ) be a random vector of R 2 . We naturally extend some of the previous notations to (Z, W ). For example, ψ Z,W is the cumulant generating function built on (Z, W ) defined on dom ψ Z,W ⊂ R 2 and ψ * Z,W denotes the Fenchel-Legendre transform of (Z, W ). 

Convex functions

θ ∈ R, a n Λ n (θ/a n ) → Λ(θ) ∈] -∞, +∞],
2. 0 lies in the interior of dom(Λ(θ)) and Λ(θ) is essentially smooth and lower semi continuous.

Then (Z n ) satisfies a LDP with good rate function Λ * and speed a n .

Main results

The model

For n ∈ N * , let (X (n) , Y (n) ) be a random vector with X (n) ∈ N. We assume that m X (n) = 1 and that (X (n) , Y (n) ) converges in law to (X, Y ) where X is a non essentially constant non negative integer valued r.v. having also span 1. Note that it implies that ψ X is strictly convex and that X (n) is not essentially constant and that ψ X (n) is strictly convex for n large enough. Further let (X

(n) i , Y (n) i ) 
1≤i≤n be an i.i.d. sample having the same distribution as (X (n) , Y (n) ).

Let, for n ∈ N * and

q n ∈ N * , S n = X (n) 1 + • • • + X (n) nqn and T n = Y (n) 1 + • • • + Y (n)
nqn . In the whole paper p n will be a sequence of positive integers such that P(S n = np n ) > 0.

Large deviations

Theorem 2.3. Let p, q, p n , q n ∈ N * such that p n /q n ∈ R X (n) → p/q ∈ R X . Assume that 1. the function ψ X,Y is essentially smooth, and let τ be the unique real such that ψ

′ X (τ ) = p/q, 2. domψ Y = domψ Y (n) = R, 3. there exists r > 0 such that I τ := [τ -r, τ + r] ⊂ (dom ψ X ) ∩ (∩ n≥1 dom ψ X (n) ) and ∀ u ∈ R , ∀ s ∈ I τ , sup t∈R E e (it+s)X (n) +uY (n) -e (it+s)X+uY → 0 . (2) 
Then the distribution of (T n /nq n ) conditioned by the event {S n = np n } satisfies a LDP with good rate function ψ * X,Y (p/q, •) -ψ * X (p/q) and speed (nq n ) -1 .

Moderate deviations

Let ξ lying in the interior of domψ X and consider the random vector ( Xξ , Yξ ) whose distribution is given, for any k ∈ N and real Borel set A, by

P( Xξ = k, Yξ ∈ A) = exp[-ψ X (ξ) + kξ]P(X = k, Y ∈ A). (3) 
We define in the same way the random vector (

X(n) ξ , Y (n) ξ ).
Obviously, Xξ has the same distribution as X * ,ξ * with ξ * = ψ ′ X (ξ). Further, let α 2 ξ be the variance of the residual εξ for the linear regression of Yξ on Xξ :

εξ := Yξ -E Yξ - cov( Xξ , Yξ ) var( Xξ ) Xξ -E Xξ . (4) 
Then we get the following result.

Theorem 2.4. Let p, q, p n , q n ∈ N * such that p/q (resp. p n /q n ) lies in R X (resp. R X (n) ) and p n /q n → p/q. Assume that 1. there exists r 0 > 0 such that

B 0 :=] -r 0 , r 0 [⊂ (domψ Y ) ∩ (∩ n≥1 domψ Y (n) ) ,
and let τ (resp. τ n ) be the unique real such that ψ ′ X (τ ) = p/q (resp.

ψ ′ X (n) (τ n ) = p n /q n ), 2. there exists r > 0 such that I τ := [τ -r, τ + r] ⊂ (dom ψ X ) ∩ (∩ n≥1 dom ψ X (n) ) and ∀ s ∈ I τ , sup t∈R E e (it+s)X (n) -e (it+s)X → 0 , (5) 
sup

n sup (s,v)∈Iτ ×B 0 E e sX (n) +v(Y (n) -E( Y (n) τn )) < ∞ , (6) 
3. (a n ) satisfies na n q n → +∞.

Then the distribution of

an nqn T n -nq n E( Y (n) τn ) conditioned by the event {S n = np n } satisfies a LDP with good rate function J(•) = (•) 2 2α 2 τ
and speed a n .

Remark 2.5. As (nq n ) -1 = o(a n ), we say that the distribution of

an nqn T n -nq n E( Y (n) τn ) conditioned by the event {S n = np n } satisfies a moderate deviation principle (MDP).
Corollary 2.6. Under the assumptions of one of the last theorems, L n converges in distribution toward's the degenerate distribution concentrated on E Yp/q .

Proofs

For p n ∈ N, such that P(S n = np n ) = 0, let

f n (u) := 1 nq n log E [exp(uT n ) |S n = np n ] ∈ R ∪ {+∞}.
In order to apply Gärtner-Ellis Corollary, we have to prove that f n (u) converges when n → ∞.

The next two subsections yield a simple representation of f n (u) using the Fourier Transform.

A simple representation using Fourier Transform

Recall that we set ϕ Z (t) := E e itZ . An obvious but useful lemma follows.

Lemma 3.1 (Bartlett's Formula, see Equation ( 16) in [START_REF] Bartlett | The characteristic function of a conditional statistic[END_REF]). Let Z be a non negative integer r.v. and W be an integrable r.v. Then, for any non negative integer k lying in the support of Z,

E [W |Z = k] = π -π E[W exp(itZ)] exp(-ikt)dt π -π ϕ Z (t) exp(-ikt)dt .

Laplace lemmas

We begin this section with a variation on a Lemma first due to Laplace, see [START_REF] Hald | A history of mathematical statistics from 1750 to 1930[END_REF] . To be self contained we give also the sketch of its proof.

Lemma 3.2. Let p n , q n , p, q ∈ N * . Let Z be a non constant square integrable non negative integer r.v. with span m Z = 1. Let (Z (n) ) be a sequence of non negative i.i.d. integer random variables also having span

1. Let Z (n) 1 , . . . , Z (n) 
n be an i.i.d. sample distributed as Z (n) . Assume that

1. ϕ Z (n) -ϕ Z ∞ -----→ n→+∞ 0,
2. the means of Z and Z (n) are rational, equal respectively to p/q and p n /q n with p n /q n -----→

n→+∞ p/q, 3. σ 2 Z (n) -----→ n→+∞ σ 2 Z , 4. E |Z (n) -p n /q n | 3 is uniformly bounded.
Then, when n tends to infinity

P   nqn j=1 Z (n) j = np n   = 1 √ 2πnq n σ Z (1 + o(1)). (7) 
Proof: The inversion of the Fourier Transform yields

P   nqn j=1 Z (n) j = np n   = π -π e -inpnt ϕ nqn Z (n) (t) dt 2π = π -π e -i pn qn t ϕ Z (n) (t) nqn dt 2π . ( 8 
)
On one hand, using a Taylor expansion of order 2 for e

-i pn qn t ϕ Z (n) (t) = ϕ Z (n) -pn qn (t), we get ϕ Z (n) -pn qn (t) = 1 - t 2 2 σ 2 n - t 3 6 E i(Z (n) -p n /q n ) 3 e it * Z (n) ,
where t * lies in [0, t] and σ 2 n states for σ 2 Z (n) . Now as E|(Z (n) -p n /q n )| 3 is bounded and as σ 2 n → σ 2

Z

we can find a positive number (independent of n) δ < π such that for |t| < δ and for n large enough

e -i pn qn t ϕ Z (n) (t) = ϕ Z (n) -pn qn (t) ≤ 1 - σ 2 Z t 2 4 . (9) 
On the other hand, as m

Z (n) = m Z = 1 one has both ξ := sup δ≤t≤π |ϕ Z (t)| < 1 and ξ n := sup δ≤t≤π |ϕ Z (n) (t)| < 1. Further, as ϕ Z (n) -ϕ Z ∞ → 0, we get ξ n → ξ. Let ǫ > 0 be such that ξ + ǫ < 1.
For n large enough ξ n ≤ ξ + ǫ. Now to conclude, one splits the integral in [START_REF] Feller | An Introduction to Probability Theory and its Applications 1 3rd ed[END_REF] in two integrals I 1 , I 2 integrating on |t| < δ and on |t| ≥ δ. |I 2 | is bounded by ξ + ǫ nqn /(2π), hence is exponentially small. To deal with I 1 , one performs the variable change u = √ nq n σ Z t, and use both [START_REF] Flajolet | On the Analysis of Linear Probing Hashing[END_REF] and inequality log(1 -θ) ≤ -θ, (θ ∈ [0, 1[) to conclude by using both central limit and Lebesgue Theorems.

Remark 3.3. Note that if m Z = 1, the theorem above is in general not valid. Take for example

m Z = 2 then in the interval [0, 2π[, ϕ Z (n) (t) = ϕ Z (t) = 1 if and only if t = 0 or t = π. Obviously, 1 2π π -π e -inpnt ϕ nqn Z (n) (t)dt = 1 2π 3π/2 -π/2 e -inpnt ϕ nqn Z (n) (t)dt. Hence P   nqn j=1 Z (n) j = np n   = 1 2π 3π/2 -π/2 e -inpnt ϕ nqn Z (n) (t)dt. ( 10 
)
Set f n (t) := e -inpnt ϕ nqn Z (n) (t)dt. Now, we split the integral in the right hand side of equation ( 10) in five parts

1 2π 3π/2 -π/2 f n (t)dt = 1 2π -δ -π/2 f n (t)dt + 1 2π δ -δ f n (t)dt + 1 2π π-δ δ f n (t)dt + 1 2π π+δ π-δ f n (t)dt + 1 2π 3π/2 π+δ f n (t)dt. = I 1 + I 2 + I 3 + I 4 + I 5 .
Using the same arguments as above, we can prove that I 1 , I 3 and I 5 are exponentially small. We also get that

1 2π δ -δ f n (t)dt = 1 √ 2πnqnσ Z (1 + o(1)
). Let us deal now with

I 4 = 1 2π π+δ π-δ f n (t)dt. There exist non negative integer valued random variables Y n such that Z (n) = 2Y n +b, set u = t-π I 4 = 1 2π (-1) npn+bnqn δ -δ
e -inpnu ϕ nqn Yn (2u)du.

Hence

I 4 = 1 √ 2πnqnσ Z (1 + o(1)).
We now give an extension of the previous lemma involving not only the probability for the sum to be equal to the mean of Z (n) but to any good rational number. Lemma 3.4. Let Z be a non negative and non degenerated integer r.v. with span m Z = 1. Let (Z (n) j ) j be a sequence of i.i.d. non negative integer random variables having also span 1. Let p n , q n , p, q ∈ N * such that p n /q n ∈ R Z (n) → p/q ∈ R Z . Let τ (resp. τ n ) be the unique real such that ψ ′ Z (τ ) = p/q (resp. ψ ′ Z (n) (τ n ) = p n /q n ). We make the following assumptions. 1. There exists r > 0 such that

I τ := [τ -r, τ + r] ⊂ (∩ n≥1 dom ψ Z (n) ) ∩ (dom ψ Z ).

2.

∀ s ∈ I τ , lim

n sup t∈R E e (it+s)Z (n) -e (it+s)Z = 0 . (11) 
Then, when n goes to infinity

P   nqn j=1 Z (n) j = np n   = e -nqnψ * Z (n) (pn/qn) 1 √ 2πnq n σ Z * ,p/q (1 + o(1)), (12) 
where σ 2 Z * ,p/q is the variance of Z * ,p/q defined in (1).

Proof: Using the multinomial formula, we may write

P   nqn j=1 Z (n), * ,pn/qn j = np n   = e nqn( pn qn τn-ψ Z (n) (τn)) P   nqn j=1 Z (n) j = np n   ,
where τ n is the unique real such that ψ ′ Z (τn) = p n /q n . Hence

P   nqn j=1 Z (n) j = np n   = e -nqnψ * Z (n) (pn/qn) P   nqn j=1 Z (n), * ,pn/qn j = np n   ,
where Z

(n), * ,pn/qn 1 , . . . , Z

(n), * ,p/q n are i.i.d. r.vs. having the distribution defined by

P Z (n), * ,pn/qn = k = exp kτ n -ψ Z (n) 1 (τ n ) P Z (n) 1 = k .
Further, the expectation of this last r.v. is p n /q n . Let us now check the assumptions of Lemma 3.2.

• Assumption 2 of Lemma 3.2 is satisfied by construction of Z (n), * ,pn/qn .

• Let us prove that E Z (n), * ,pn/qn -p n /q n 3 is bounded. Using Hölder inequality we get that

E Z (n), * ,pn/qn -p n /q n 3 = ∞ k=0 k - p n q n 3 e kτn-ψ Z (n) (τn) P Z (n) 1 = k = e ψ * Z (n) (pn/qn) E Z (n) - p n q n 3 e τn(Z (n) -pn/qn) ≤ e ψ * Z (n) ( pn qn ) E (Z (n) - p n q n ) 4 e τn(Z (n) -pn qn ) 3/4 E e τn(Z (n) -pn qn ) 1/4
.

Using classical arguments on convex functions [START_REF] Rockafellar | Convex analysis[END_REF], we get that τ n -----→ n→+∞ τ . Hence, by Assumptions 1. and 2. of Lemma 3.4 we get that E Z (n), * ,p/q -p/q 3 is bounded.

• Similar arguments yield that

ϕ Z (n), * ,pn/qn 1 -ϕ Z * ,p/q → 0 ( 13 
)
and that σ 2

Z * n → σ 2 Z * .
Hence all the assumptions of Lemma 3.2 are satisfied and we may conclude using Lemma 3.2.

Some changes of probability

One of the main tool to prove large deviation results is the use of changes of probability. In this section, we review the different changes of probability used in this paper.

(a) Let p/q ∈ R Z . We define τ ∈ dom ψ Z by ψ ′ Z (τ ) = p/q. We then introduce Z * ,p/q as a random variable valued on N:

P(Z * ,p/q = k) = exp[kτ -ψ Z (τ )]P(Z = k), (k ∈ N). ( 14 
)
We have E(Z * ,p/q ) = p q . This change of probability is quite classical in large deviation theory. In order to prove Lemma 3.4, we also define Z (n), * ,pn/qn , replacing Z by Z (n) , p/q by p n /q n and τ by τ n . Then E Z (n), * ,pn/qn = p n /q n , as needed to apply Lemma 3.2.

(b) For u in domψ Y , define X u by

P X u = k = exp -ψ Y u E exp uY 1I {X=k} . (15) 
Similarly, replacing (X, Y ) by

X (n) , Y (n) , we define X (n)
u . The r.v. X u and X

(n) u appear naturally when applying the inversion of Fourier transform in the proof of Theorem 2.3.

(c) For the moderate deviations, the asymptotic is different (see Theorem 2.4). Therefore the r.v. Y (n) have to be centered. The centering factor and the rate function are closely related to the following change of probability. Let ξ lying in the interior of domψ X and consider the random vector ( Xξ , Yξ ) whose distribution is given, for any k ∈ N and real Borel set A, by

P( Xξ = k, Yξ ∈ A) = exp[-ψ X (ξ) + kξ]P(X = k, Y ∈ A). (16) 
We define in the same way the random vector (

X(n) ξ , Y (n) ξ ).
Obviously, Xξ has the same distribution as X * ,ξ * with ξ * = ψ ′ X (ξ). Further, let α 2 ξ be the variance of the residual εξ for the linear regression of Yξ on Xξ :

εξ := Yξ -E Yξ - cov( Xξ , Yξ ) var( Xξ ) Xξ -E Xξ . ( 17 
) Note that J(y) = y 2 α 2 τ
is the rate function in Theorem 2.4. Moreover, the centering factor is

E( Y (n) τn ).
Hence, the change of probability used in the proof of Theorem 2.3 (see change of probability [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF] above) has to be modified, according to this centering factor. This leads to the change of probability (18) below.

(d) Let τ (resp. τ n ) be such that ψ ′ X (τ ) = p/q (resp. ψ ′ X (n) (τ n ) = p n /q n ). Define the random variable X (n)
u distributed on N by:

P X (n) u = k = e -ψ Y (n) (un) E e u Y (n) √ nanqn 1I {X (n) =k} , (18) 
where

Y (n) = Y (n) -E( Y (n) τn ), u n = u/ √ na n q n .

Proof of Theorem 2.3

Let, for t ∈ R and u ∈ R,

Φ X (n) ,Y (n) (t, u) := E exp[itX (n) + uY (n) ] .
On one hand, using Lemma 3.1, we may write, for u ∈ R and n large enough,

f n (u) = 1 nq n log π -π e -inpnt Φ nqn X (n) ,Y (n) (t, u)dt π -π e -inpnt Φ nqn X (n) ,Y (n) (t, 0)dt . ( 19 
)
Using twice equation ( 8) we may rewrite [START_REF] Rockafellar | Convex analysis[END_REF] as

f n (u) = 1 nq n   log P   nqn j=1 X (n) u,j = np n   -log P (S n = np n )   + ψ Y (n) (u), (20) 
where

X (n) u,1 , • • • , X (n) 
u,n are independent copies of X

u defined in Subsection 3.3 by equation [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]. In order to apply Lemma 3.4 to

X (n) u,i , let us prove that ∀ s ∈ I τ lim n sup t∈R E e (it+s) X (n) u -e (it+s) Xu = 0. (21) 
We have, for all

s ∈ I τ , E e (it+s) X (n) u -e (it+s) Xu ≤ Ce -ψ Y (u) E e uY (n) e (s+it)X (n) -e uY e (s+it)X .
The right hand side of this last inequality tends to 0 by assumption 3. of Theorem 2.3. It remains to prove that p n /q n (resp. p/q) belongs to R X(n) u (resp. R Xu ). Using the fact that ψ X,Y is essentially smooth and Assumption 3. of Theorem 2.3 it is easy to see that

R Xu = R X (resp. R X(n) u = R X (n) at least for n large enough). Applying Lemma 3.4 we obtain, for u ∈ R f (u) := lim n→∞ 1 nq n log E [exp(uT n ) |S n = np n ] = -[ψ * Xu (p/q) -ψ Y (u) -ψ * X (p/q)].
The convex dual function f * of f is given by

f * (y) := sup u∈R [uy -f (u)] = sup u∈R uy + ψ * Xu (p/q) -ψ Y (u) -ψ * X (p/q) = sup (u,ξ)∈domψ X,Y uy + ξ p q -ψ X,Y (ξ, u) -ψ * X (p/q) = ψ * X,Y p q , y -ψ * X (p/q). (22) 
As ψ X,Y is essentially smooth, using Theorem 26.3 in [START_REF] Rockafellar | Convex analysis[END_REF], we deduce that ψ * X,Y is essentially strictly convex. Hence, using once more Theorem 26.3 in [START_REF] Rockafellar | Convex analysis[END_REF], we may deduce that f is essentially smooth. Therefore we can apply Gärtner-Ellis Corollary 2.2 (see Theorem 2.3.6. (c) in [START_REF] Dembo | Large deviations techniques and applications[END_REF]) and conclude.

Proof of Theorem 2.4

Let Tn = T n -nq n E( Y (n) τn ) and

g n (u) = a n log E e Tnu/ √ nanqn |S n = np n .
Proceeding as in the proof of Theorem 2.3, we have

g n (u) = a n log π -π e -inpnt Φ nqn X (n) ,Y (n) -E( Y (n) τn ) (t, u/ √ na n q n ) π -π e -inpnt Φ nqn X (n) ,Y (n) -E( Y (n) τn ) (t, 0) = a n log P nqn j=1 X (n) u,j = np n -log P S n = np n + a n nq n ψ Y (n) -E( Y (n) τn ) (u/ √ na n q n ),
where X

u,j are i.i.d. r.v. on N with distribution defined in Subsection 3.3 by Equation [START_REF] Robinson | On approximating probabilities for small and large deviations in R d[END_REF]. In order to use Lemma 3.4 we first have to prove that

∀ s ∈ I τ , lim n sup t∈R E e (it+s) X (n) u -e (it+s) Xu = 0. ( 23 
)
We have

E e (it+s) X (n) u -e (it+s) Xu ≤ Ce -ψ Y -E( Yξ 0 ) (0) E e (s+it)X (n) -e (s+it)X ,
which tends to zero by assumption [START_REF] Csiszár | Sanov Property, Generalized I-Projection and a Conditional Limit Theorem[END_REF]. As in the proof of Theorem 2.3 it is easy to prove that R

Xu = R X and R X (n) u = R X (n) .
Using Lemma 3.4 we obtain, for u ∈ R

g n (u) n→+∞ ∼ -q n na n ψ * X (n) u (p n /q n ) -ψ Y (n) -E( Y (n) τn ) (u/ √ na n q n ) -ψ * X (n) (p n /q n ) . Define H n (h) = sup ξ∈R ξ p n q n -ψ X (n) ,Y (n) -E( Y (n) τn ) (ξ, h) . As ψ * X (n) u (p n /q n ) = sup x p n q n x -ψ X (n) u (x) , and 
ψ X (n) u (x) = ψ X (n) ,Y (n) -E( Y (n) τn ) (x, u/ √ na n q n ) -ψ Y (n) -E( Y (n) τn ) (u/ √ na n q n ) , we get g n (u) n→+∞ ∼ -q n na n H n (u/ √ na n q n ) -H n (0) . (24) 
We claim that if lim n h n = 0, then

lim n H n (h n ) -H n (0) h 2 n = - α 2 τn 2 + O(1). (25) 
Assuming that (25) is true, and as α 2 τn → α 2 τ , we get that

lim n g n (u) = -u 2 α 2 τ 2 .
We easily conclude, since

g * (y) = sup u uy + lim n g n (u) = y 2 2α 2 τ .
It remains to prove that (25) is true. Recall that

H n (h) = sup ξ∈R ξ p n q n -ψ X (n) ,Y (n) -E( Y (n) τn ) (ξ, h) .
In the sequel ψ ′ x (resp. ψ ′ y ) will denote the partial derivative of ψ

X (n) ,Y (n) -E( Y (n) τn ) (ξ, h
) with respect to the first (resp. second) variable. On one hand, by assumption ( 6), we can define on I τ × B 0 the function F n by: F n (ξ, h) = ψ ′ x (ξ, h) -p n /q n . We then deduce from the implicit function Theorem that there exists a neighborhood of (τ n , 0) on which:

H n (h) = ξ n (h) p n q n -ψ X (n) ,Y (n) -E( Y (n) τn ) (ξ n (h), h) , with ξ ′ n (h) = - ψ ′′ xy (ξ n (h), h) ψ ′′ xx (ξ n (h), h)
.

We can then calculate the derivatives of H n (in the sequel we omit the argument (ξ n (h), h) in the derivatives). We have (with obvious notations)

H ′ n (h) = -ψ ′ y , H ′′ n (h) = ψ ′′ x,y 2 ψ ′′ x,x -ψ ′′ y,y , H (3) n (h) = ψ ′′ x,y ψ ′′ x,x 3 
ψ (3) x,x,x -3 ψ ′′ x,y ψ ′′ x,x 2 
ψ (3)
x,x,y + 3

ψ ′′ x,y ψ ′′ x,x ψ (3) 
x,y,y -ψ (3) y,y,y .

Replacing the partial derivative of ψ by its expression, we get

H ′ n (0) = 0 and H ′′ n (0) = -α 2 τn .
On the other hand, using a Taylor expansion, we get

H n (h n ) -H n (0) = h n H ′ n (0) + h 2 n 2 H ′′ n (0) + h 3 n 6 H (3) n (z n ), z n ∈ [0, h n ]. ( 26 
)
Hence α 2 τ = e -λ exp(τ ) 1-e -λ exp(τ ) +λe τ e -λ exp(τ ) . Now, as τ = log( p qλ ), we get J(.) = (.) 2 e λ 1-e -λ +λe -λ in the particular case where λ = p/q. Note that functional L.D.P. is given in [START_REF] Boucheron | Bins and Balls: Large Deviations of the Empirical Occupancy Process[END_REF].

Remark 4.1. Theorem 2.3 allows us to deal with other statistics than n i=1 1 l {X i =0} . For example, statistics of the form n i=1 f (X i , Z i ) where Z 1 , . . . , Z n are i.i.d. and independent from X 1 , . . . , X n . Let us describe the particular case of bootstrap see [START_REF] Efron | An introduction to the bootstrap[END_REF]. Let Z 1 , . . . , Z n be i.i.d. real valued random variables, independent of X 1 , . . . , X n . We choose at random with replacement a sample Z

* 1 , . . . , Z * n . Then n i=1 f (Z * i ) is distributed as n i=1 X i f (Z i ) conditioned on n i=1 X i = m
, where X i ∼ P(λ) , i = 1, . . . , n for any λ > 0. Hence we get the same kind of conditioning as for the occupancy problem.

Branching processes

Consider a Galton-Watson process, beginning with one individual, where the number of children of an individual is given by a random variable X having finite moments. Assume further that E(X) = 1. We number the individuals as they appear. Let X i be the number of children of the i-th individual. It is well known (see example 3.4 in [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF] and the references therein) that the total progeny is n ≥ 1 if and only if

S k := k i=1 X i ≥ k for 0 ≤ k < n but S n = n -1 . (28) 
This type of conditioning is different from the one studied in the present paper, but Janson proves [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF]Example 3.4] that if we ignore the order of X 1 , . . . , X n , conditioning on ( 28) is equivalent to conditioning on S n = n -1. Hence we can study variables of the kind Y i = f (X i ). Considering the case where Y i = 1 l {X i =3} , the n i=1 Y i is the number of families with three children. Now choosing X i ∼ P(λ), we compute the rate function as in Example 4.0.1.

Hashing

The model Hashing with linear probing can be regarded as throwing n balls sequentially into m urns at random; the urns are arranged in a circle and a ball that lands in an occupied urn is moved to the next empty urn, always moving in a fixed direction. The length of the move is called the displacement of the ball, and we are interested in the sum of all displacements which is a random variable noted d m,n . We assume n < m. After throwing all balls, there are N = m -n empty urns. These divide the occupied urns into blocks of consecutive urns. For convenience, we consider the empty urn following a block as belonging to this block. Janson [START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF] proved that the length of the blocks (counting the empty urn) and the sum of displacements inside each block are distributed as (X

1 , Y 1 ), . . . , (X N , Y N ) (N = m -n) conditioned on N i=1 X i = m
, where (X i , Y i ) are i.i.d. copies of a pair (X, Y ) of random variables. X has the Borel distribution

P X = l = 1 T (λ) l l-1 l! λ l , l ∈ N * , z ∈ [0, e -1 [ , (29) 
where

T (λ) = ∞ l=1 l l-1
l! λ l is the well-known tree function and λ is an arbitrary number with 0 < λ ≤ e -1 . The conditional distribution of Y given X = l is the same as the distribution of d l,l-1 . Using Janson's results [START_REF] Flajolet | On the Analysis of Linear Probing Hashing[END_REF][START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF][START_REF] Janson | Moment convergence in conditional limit theorems[END_REF], unfortunately we can prove that the joint Laplace transform of (X 1 , Y 1 ) is defined only on (-∞, a) × (-∞, 0) for some positive a. Hence our results can not be applied. Nevertheless, in a forthcoming work, we will study conditioned L.D.P for self-normalized sums in the spirit of [START_REF] Ying | Self-normalized Cramer type large deviations for independent random variables[END_REF]. In that case the Laplace will be defined.

Bose-Einstein statistics

This example is borrowed from [START_REF] Holst | Two conditional limit theorems with applications The annals of Statistics[END_REF]. Consider N urns. Put n indistinguishable balls in the urns in such a way that each distinguishable outcome has the same probability i.e.,

1/

n + N -1 n , see for example [START_REF] Feller | An Introduction to Probability Theory and its Applications 1 3rd ed[END_REF]. Let Z k be the number of balls in the kth urn. It is well known that (Z 1 , . . . , Z N ) is distributed as X 1 , • • • , X N conditioned on N i=1 X i = n, where X 1 , • • • , X N are i.i.d. with a geometric distribution. As for Example 4.0.1, we can get a L.D.P for variables of the form i h(X i ) if domψ h(X i ) = R.

Possible extensions

Among possible extensions, let us mention the case where the variables Y i are independent but do not have the same distribution. This case occurs in [START_REF] Holst | Two conditional limit theorems with applications The annals of Statistics[END_REF]Examples 2 and 3], where the quantity of interest is the law of N i=1 h i (X i ) conditioned on the event N i=1 X i = n. Another way to extend our work is to deal with the case where the variables X i are independent but not i.i.d.. This case occurs when counting from a random permutation the number of cycles of a fixed size see for example [START_REF] Arratia | Logarithmic combinatorial structures: a probabilistic approach[END_REF]Chapter 1] In the present paper we assume that p n , q n , p and q are positive. The other cases will be considered in a forthcoming work.

Appendix

Here we give the shape of the large deviation rate function in the example of the Occupancy problem when λ = 1 and p/q = 1, p/q = 0.4 or p/q = 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 Rate function for λ = 1, p/q = 0.4

  Let f be a proper convex function on R k . That is f is convex and valued in R ∪ {+∞}. We say that f is essentially smooth whenever it is differentiable on the non empty interior of domf and it is steep. That is, for any vector c lying on the boundary of domf

	lim x→c,x∈int domf	∇f (x) = +∞,
	where ∇f (x) denotes the gradient of f at point x.
	Gärtner-Ellis Corollary.	
	Corollary 2.2. [Gärtner-Ellis, [6, Theorem 2.3.6 c) p.44]] Let (Z n ) be a sequence of random
	variables valued in R, (a n ) n a decreasing positive sequence of real numbers with lim n→∞ a n = 0. Define Λ n (θ) = ln Ee θZn . Assume that
	1. for all	

Hence (26) becomes

Now the expression of H

n is a rational fraction of some partial derivatives of

. The denominator of this rational fraction is bounded away from 0 as it converges to a variance and numerator is bounded by [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Hence H

n is bounded and the claim is proved.

Examples

In this section we give two examples of applications and one counter example. These examples are borrowed from [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF].

Occupancy problem

In the classical occupancy problem (see [START_REF] Janson | Moment convergence in conditional limit theorems[END_REF] and the references therein for more details), m balls are distributed at random into N urns. The resulting numbers of balls Z 1 , • • • , Z N have a multinomial distribution, and it is well-known that this equals the distribution of

, for an arbitrary λ > 0. The classical occupancy problem studies the number W of empty urns; this is thus N i=1 1 l {X i =0} conditioned on N i=1 X i = m. Now suppose that m = np n → ∞ and N = nq n → ∞ with pn qn → p q . Take X (n) i ∼ P(λ n ). Note that we do not assume that λ n = p n /q n and λ = p/q which is the case in Janson's work. It is easy to see that Assumption 3. of Theorem 2.3 is fulfilled and that ψ X,Y is essentially smooth. Moreover, for (x, y) ∈ R 2 and (p, q) ∈ (R * ) 2 , we have

ψ X,Y (x, y) = -λ + log e λ exp(x) -1 + e y .

Hence we can apply Theorem 2.3. Here the function ψ * X,Y does not have any explicit form. We give in Appendix the graph of the rate function for some particular values of p/q and λ. Assumptions of Theorem 2.4 are obviously fulfilled. We have

Hence Xτ is Poisson with parameter λe τ . An easy calculation gives cov Xτ , Yτ = -λe τ e -λ exp(τ ) , Var( Yτ ) = e -λ exp(τ ) (1 -e -λ exp(τ ) ).