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Gaussian Approximations of Multiple Integrals

Introduction

Let U (l) = (U 1 (l) , ..., U k (l)), l ≥ 1, be a sequence of centered random observations (not necessarily independent) with values in R k . Suppose that the application l → EU i (l) 2 is bounded for every i, and also that the sequence of covariances c l (i, j) = EU i (l) U j (l) does not converge as l → +∞ (that is, for some fixed i = j, the limit lim l→∞ c l (i, j) does not exist). Then, a natural question is the following: is it possible to establish criteria ensuring that, for large l, the law of U (l) is close (in the sense of some distance between probability measures) to the law of a Gaussian vector N (l) = (N 1 (l) , ..., N k (l)) such that EN i (l) N j (l) = EU i (l) U j (l) = c l (i, j)? Note that the question is not trivial, since the asymptotic irregularity of the covariance matrix c l (•, •) may in general prevent U (l) from converging in law toward a k-dimensional Gaussian distribution.

In this paper, we shall provide an exhaustive answer to the problem above in the special case where the sequence U (l) has the form

U (l) = I (l) = I d 1 f (1) l , ..., I d k f (k) l , l ≥ 1, (1) 
where the integers d 1 , ..., d k ≥ 1 do not depend on l, I d j indicates a multiple stochastic integral of order d j (with respect to some isonormal Gaussian process X over a Hilbert space H -see Section 2 below for definitions), and each f (j) l ∈ H ⊙d j , j = 1, ..., k, is a symmetric kernel. In particular, we shall prove that, whenever the elements of the vectors I (l) have bounded variances (and without any further requirements on the covariance matrix of I (l)), the following three conditions are equivalent as l → +∞:

(i) γ (L (I (l)) , L (N (l))) → 0, where L (•) indicates the law of a given random vector, N (l) is a Gaussian vector having the same covariance matrix as I (l), and γ is some appropriate metric on the space of probability measures on R k ;

(ii) For every j = 1, ..., k, E I d j f

(j) l 4 -3E I d j f (j) l 2 2
→ 0;

(iii) For every j = 1, ..., k and every p = 1, ..., d j -1, the sequence of contractions (to be formally defined in Section 2) f

(j) l ⊗ p f (j) l , l ≥ 1, is such that f (j) l ⊗ p f (j) l → 0 in H ⊙2(d j -p) . (2) 
Some other conditions, involving for instance Malliavin operators, are derived in the subsequent sections. As discussed in Section 5, our results are motivated by the derivation of high-frequency Gaussian approximations of stationary fields defined on homogeneous spaces -a problem tackled in [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF] and [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF].

Note that the results of this paper are a generalization of the following theorem, which combines results proved in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF], [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] and [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. Theorem 0. Suppose that the vector I (l) in ( 1) is such that, as l → +∞,

EI d i f (i) l I d j f (j) l → C (i, j) , 1 ≤ i, j ≤ k,
where C = {C (i, j)} is some positive definite matrix. Then, the following four conditions are equivalent, as l → +∞:

1. I (l) Law → N (0, C), where N (0, C) is a k-dimensional centered Gaussian vector with covari- ance matrix C;
2. Relation (2) takes place for every j = 1, ..., k and every p = 1, ..., d j -1;

For every

j = 1, ...k, E I d j f (j) l 4 → 3C (j, j) 2 ; 4. For every j = 1, ...k, D I d j f (j) l 2 H → d j in L 2 , where D I d j f (j) l denotes the Malliavin derivative of I d j f (j) l (see the next section).
The equivalence of Points 1.-3. in the case k = 1 has been first proved in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] by means of the Dambis-Dubins-Schwarz (DDS) Theorem (see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]Ch. V]), whereas the proof in the case k ≥ 2 has been achieved (by similar techniques) in [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]; the fact that Point 4. is also necessary and sufficient for the CLT at Point 1. has been recently proved in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF], by means of a Malliavin calculus approach. For some applications of Theorem 0 (in quite different frameworks), see e.g. [START_REF] Corcuera | Power variation of some integral long memory process[END_REF], [START_REF] Deheuvels | On quadratic functionals of the Brownian sheet and related processes[END_REF], [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF], [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF] or [START_REF] Neuenkirch | Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion[END_REF].

The techniques we use to achieve our main results are once again the DDS Theorem, combined with Burkholder-Davis-Gundy inequalities and some results (taken from [START_REF] Dudley | Real Analysis and Probability (2 nd Edition)[END_REF]Section 11.7]) concerning 'uniformities' over classes of probability measures.

The paper is organized as follows. In Section 2 we discuss some preliminary notions concerning Gaussian fields, multiple integrals and metrics on probabilities. Section 3 contains the statements of the main results of the paper. The proof of Theorem 1 (one of the crucial results of this note) is achieved in Section 4. Section 5 is devoted to applications.

Preliminairies

We present a brief review of the main notions and results that are needed in the subsequent sections. The reader is referred to [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] or [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]Ch. 1] for any unexplained definition.

Hilbert spaces.

In what follows, the symbol H indicates a real separable Hilbert space, with inner product •, • H and norm • H . For every d ≥ 2, we denote by H ⊗2 and H ⊙2 , respectively, the nth tensor product of H and the nth symmetric tensor product of H. We also write

H ⊗1 = H ⊙1 = H.
Isonormal Gaussian processes. We write X = {X (h) : h ∈ H} to indicate an isonormal Gaussian process over H. This means that X is a collection of real-valued, centered and (jointly) Gaussian random variables indexed by the elements of H, defined on a probability space (Ω, F, P) and such that, for every h, h ′ ∈ H,

E X (h) X h ′ = h, h ′ H .
We denote by L 2 (X) the (Hilbert) space of the real-valued and square-integrable functionals of X.

Isometry, chaoses and multiple integrals. For every d ≥ 1 we will denote by I d the isometry between H ⊙d equipped with the norm √ d! • H ⊗d and the dth Wiener chaos of X. In the particular case where H = L 2 (A, A, µ), (A, A) is a measurable space, and µ is a σ-finite and non-atomic measure, then H ⊙d = L 2 s A d , A ⊗d , µ ⊗d is the space of symmetric and square integrable functions on A d and for every f ∈ H ⊙d , I d (f ) is the multiple Wiener-Itô integral (of order d) of f with respect to X, as defined e.g. in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]Ch. 1]. It is well-known that a random variable of the type I d (f ), where d ≥ 2 and f = 0, cannot be Gaussian. Moreover, every F ∈ L 2 (X) admits a unique Wiener chaotic decomposition of the type

F = E (F ) + ∞ d=1 I d (f d ), where f d ∈ H ⊙d , d ≥ 1
, and the convergence of the series is in L 2 (X).

Malliavin derivatives. We will use Malliavin derivatives in Section 3, where we generalize some of the results proved in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF]. The class S of smooth random variables is defined as the collection of all functionals of the type

F = f (X (h 1 ) , ..., X (h m )) , (3) 
where h 1 , ..., h m ∈ H and f is bounded and has bounded derivatives of all order. The operator D, called the Malliavin derivative operator, is defined on S by the relation

DF = M i=1 ∂ ∂x i f (h 1 , ..., h m ) h i ,
where F has the form (3). Note that DF is an element of L 2 (Ω; H). As usual, we define the domain of D, noted D 1,2 , to be the closure of S with respect to the norm

F 1,2 E F 2 +E DF 2 H . When F ∈ D 1,2
, we may sometimes write DF = D [F ], depending on the notational convenience. Note that any finite sum of multiple Wiener-Itô integrals is an element of D 1,2 .

Contractions. Let {e k : k ≥ 1} be a complete orthonormal system of H. For any fixed f ∈ H ⊙n , g ∈ H ⊙m and p ∈ {0, ..., n ∧ m}, we define the pth contraction of f and g to be the element of H ⊗n+m-2p given by

f ⊗ p g = ∞ i 1 ,...,ip=1 f, e i 1 ⊗ • • • ⊗ e ip H ⊗p ⊗ g, e i 1 ⊗ • • • ⊗ e ip H ⊗p .
We stress that f ⊗ p g need not be an element of H ⊙n+m-2p . We denote by f ⊗ p g the symmetrization of f ⊗ p g. Note that f ⊗ 0 g is just the tensor product f ⊗ g of f and g.

If n = m, then f ⊗ n g = f, g H ⊗n .
Metrics on probabilities. For k ≥ 1 we define P R k to be the class of all probability measures on R k . Given a metric γ (•, •) on P R k , we say that γ metrizes the weak convergence on P R k whenever the following double implication holds for every Q ∈ P R k and every 

{Q l : l ≥ 1} ⊂ P R k (as l → +∞): γ (Q l , Q) → 0 if,
ρ (P, Q) = inf{ǫ > 0 : P (A) ≤ Q(A ǫ ) + ǫ, for every Borel set A ⊂ R k } (4) 
where A ǫ = {x : x -y < ε for some y ∈ A}, and • is the Euclidiean norm. Also,

β (P, Q) = sup f d (P -Q) : f BL ≤ 1 , (5) 
where where L (•) indicates the law of a given random vector, and • is the Euclidean norm.

• BL = • L + • ∞ ,

Main results

Fix integers k ≥ 1 and d 1 , ..., d k ≥ 1, and consider a sequence of k-dimensional random vectors of the type

I (l) = I d 1 f (1) l , ..., I d k f (k) l , l ≥ 1 , (7) 
where, for each l ≥ 1 and every j = 1, ..., k, f

(j) l
is an element of H ⊙d j . We will suppose the following:

• There exists η > 0 such that f

(j) l H ⊙d j
≥ η, for every j = 1, ..., k and every l ≥ 1.

• For every j = 1, ..., k, the sequence

E I d j f (j) l 2 = d j ! f (j) l 2 H ⊙d j , l ≥ 1, (8) 
is bounded.

Note that the integers d 1 , ..., d k do not depend on l. For every l ≥ 1, we denote by

N (l) = N (1) l , ..., N (k) l
a centered k-dimensional Gaussian vector with the same covariance matrix as

I (l), that is, E N (i) l N (j) l = E I d i f (i) l I d j f (j) l , (9) 
for every 1 ≤ i, j ≤ k. For every λ = (λ 1 , ..., λ k ) ∈ R k , we also use the compact notation:

λ, I (l) k = k j=1 λ j I d j f (j) l and λ, N (l) k = k j=1 λ j N (j)
l . The next result is one of the main contributions of this paper. Its proof is deferred to Section 4.

Theorem 1 Let the above notation and assumptions prevail, and suppose that, for every j = 1, ..., k, the following asymptotic condition holds: for every p = 1, ..., d j -1,

f (j) l ⊗ p f (j) l H ⊙2 ( d j -p ) → 0, as l → +∞. ( 10 
)
Then, as l → +∞ and for every compact set

M ⊂ R k , sup λ∈M |E [exp (i λ, I (l) k )] -E [exp (i λ, N (l) k )]| → 0. ( 11 
)
We now state two crucial consequences of Theorem 1. The first one (Proposition 2) provides a formal meaning to the intuitive fact that, since [START_REF] Neuenkirch | Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion[END_REF] holds and since the variances of I (l) do not explode, the laws of I (l) and N (l) are "asymptotically close". The second one (Theorem 3) combines Theorem 1 and Proposition 2 to obtain an exhaustive generalization "without covariance conditions" of Theorem 0 (see the Introduction). Note that in the statement of Theorem 3 also appear Malliavin operators, so that our results are a genuine extension of the main findings by Nualart and Ortiz-Latorre in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF]. We stress that multiple stochastic integrals of the type

I d (f ), d ≥ 1 and f ∈ H ⊙d , are always such that I d (f ) ∈ D 1,2 .
Proposition 2 Let the assumptions of Theorem 1 prevail (in particular, (10) holds), and denote by L (I (l)) and L (N (l)), respectively, the law of I (l) and N (l), l ≥ 1. Then, the two collections {L (N (l)) : l ≥ 1} and {L (I (l)) : l ≥ 1} are tight. Moreover, if γ (•, •) metrizes the weak convergence on P R k , then

lim l→+∞ γ (L (I (l)) , L (N (l))) = 0. ( 12 
)
Proof. The fact that {L (N (l)) : l ≥ 1} and {L (I (l)) : l ≥ 1} are tight is a consequence of the boundedness of the sequence ( 8) and of the relation

E[I d j (f (j) l ) 2 ] = E[(N (j) l ) 2 ]
. The rest of the proof is standard, and is provided for the sake of completeness. We shall prove ( 12) by contradiction. Suppose there exist ε > 0 and a subsequence {l n } such that γ (L (I (l n )) , L (N (l n ))) > ε for every n. Tightness implies that {l n } must contain a subsequence {l n ′ } such that L (I (l n ′ )) and L (N (l n ′ )) are both weakly convergent. Since (11) holds, we deduce that L (I (l n ′ )) and L (N (l n ′ )) must necessarily converge to the same weak limit, say Q. The fact that γ metrizes the weak convergence implies finally that

γ (L (I (l n ′ )) , L (N (l n ′ ))) ≤ γ (L (I (l n ′ )) , Q) + γ (L (N (l n ′ )) , Q) → n ′ →+∞ 0, (13) 
thus contradicting the former assumptions on {l n } (note that the inequality in ( 13) is just the triangle inequality). This shows that (12) must necessarily take place.

Remarks. (i) A result analogous to the arguments used in the proof of Corollary 2 is stated in [4, Exercise 3, p. 419]. Note also that, without tightness, a condition such as [START_REF] Neuenkirch | Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion[END_REF] does not allow to deduce the asymptotic relation [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. See for instance [START_REF] Dudley | Real Analysis and Probability (2 nd Edition)[END_REF]Proposition 11.7.6] for a counterexample involving the Prokhorov metric on P(R).

(ii) Since [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] holds in particular when γ is equal to the Prokhorov metric or the Fortet-Mounier metric (as defined in (4) and ( 5)), Proposition 2 implies that, on some auxiliary probability space (Ω * , F * , P * ), there exist sequences of random vectors {N * (l) : l ≥ 1} and {I * (l) : l ≥ 1} such that I * (l) law = I (l) and N * (l) law = N (l) for every l, and I * (l) -N * (l) → 0, a.s.-P * , [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] where • stands for the Euclidean norm (see [START_REF] Janson | Gaussian Hilbert Spaces[END_REF], as well as [4, Theorem 11.7.1]).

Theorem 3 Suppose that the sequence I (l), l ≥ 1, verifies the assumptions of this section (in particular, for every j = 1, ..., k, the sequence of variances appearing in ( 8) is bounded). Then, the following conditions are equivalent.

1. As l → +∞, relation ( 10) is satisfied for every j = 1, ..., k and every p = 1, ..., d j -1;

2. lim l→+∞ ρ (L (I (l)) , L (N (l))) = lim l→+∞ β (L (I (l)) , L (N (l))) = 0 ( 15 
)
where ρ and β are, respectively, the Prokhorov metric and the Fortet-Mounier metric, as defined in (4) and (5);

3. As l → +∞, for every j = 1, ..., k,

E I d j f (j) l 4 -3E I d j f (j) l 2 2 = E I d j f (j) l 4 -3(d j !) 2 f (j) l 4 
H ⊙d j → 0;
4. For every j = 1, ..., k,

lim l→+∞ ρ L I d j f (j) l , L N (j) l = lim l→+∞ β L I d j f (j) l , L N (j) l = 0, ( 16 
)
where ρ and β are the Prokhorov and Fortet-Mounier metric on R;

5. For every j = 1, ..., k,

D I d j f (j) l 2 H -d j (d j !) f (j) l 2 H ⊗d j → 0, in L 2 (X) , (17) 
as l → +∞, where D is the Malliavin derivative operator defined in Section 2.

Proof. The implication 1. =⇒ 2., is a consequence of Theorem 1 and Proposition 2. Now suppose ( 15) is in order. Then, according to [START_REF] Dudley | Real Analysis and Probability (2 nd Edition)[END_REF]Theorem 11.7.1], on a probability space (Ω * , F * , P * ), there exist sequences of random vectors N * (l) = (N * ,(1) l , ..., N * ,(j) l

), l ≥ 1, and

I * (l) = I * , (1) l 
, ..., I * ,(k) l

, l ≥ 1, such that (14) takes place. Now

3E I d j f (j) l 2 2 = 3E N (j) l 2 2 = E N (j) l 4 = E * N * ,(j) l 4 ,
for every j = 1, ..., k, so that

E I d j f (j) l 4 -3E I d j f (j) l 2 2 = E * I * ,(j) l 4 -N * ,(j) l 4 → l→+∞ 0. ( 18 
)
The convergence to zero in (18) is a consequence of the boundedness of the sequence (8), implying that the family A * l = I * ,(j) l

4

-N * ,(j) l

4

, l ≥ 1, is uniformly integrable. To see why {A * l } is uniformly integrable, one can use the fact that, since each I * ,(j) l has the same law as an element of the d j th chaos of X and each N * ,(j) l is Gaussian, then (see e.g. [6, Ch. VI]) for every p ≥ 2 there exists a universal positive constant C p,j (independent of l) such that

E [|A * l | p ] 1/p = E * I * ,(j) l 4 -N * ,(j) l 4 p 1/p ≤ E * I * ,(j) l 4p 4/4p + E N * ,(j) l 4p 4/4p ≤ C p,j E * I * ,(j) l 2 2 + C p,j E * N * ,(j) l 2 2 = 2C p,j × (d j !) 2 f (j) l 4 H ⊙d j ≤ 2C p,j M j ,
where

M j = sup l (d j !) 2 f (j) l 4
< +∞, due to [START_REF] Marinucci | A Central Limit Theorem and Higher Order Results for the Angular Bispectrum[END_REF]. This proves that 2. =⇒ 3.. The implication 3. =⇒ 1. can be deduced from the formula (proved in [14, p. 183])

E I d j f (j) l 4 -3E I d j f (j) l 2 2 = E I d j f (j) l 4 -3 (d j !) 2 f (j) l 4 H ⊗d j = d j -1 p=1 (d j !) 4 (p! (d j -p)!) 2 f (j) l ⊗ p f (j) l 2 H ⊗2 ( d j -p ) + 2 (d j -p) d j -p f (j) l ⊗ p f (j) l 2 H ⊗2 ( d j -p ) ,
The equivalence 1. ⇐⇒ 4. is an immediate consequence of the previous discussion.

To conclude the proof, we shall now show the double implication 1. ⇐⇒ 5.. To do this, we first observe that, by performing the same caclulations as in [13, Proof of Lemma 2] (which are based on an application of the multiplication formulae for multiple integrals, see [12, Proposition 1.1.3]), one obtains that

D I d j f (j) l 2 H = d j (d j !) f (j) l 2 H ⊗d j +d 2 j d j -1 p=1 (p -1)! n -1 p -1 2 I 2(d j -p) f (j) l ⊗ p f (j) l . Since f (j) l ⊗ p f (j) l 2 H ⊗2 ( d j -p ) ≥ f (j) l ⊗ p f (j) l 2 H ⊗2 ( d j -p
) , the last relation implies immediately that 1. ⇒ 5.. To prove the opposite implication, first observe that, due to the boundedness of ( 8) and the Cauchy-Schwarz inequality, there exists a finite constant M (independent of j and l) such that f

(j) l ⊗ p f (j) l 2 H ⊗2 ( d j -p ) ≤ f (j) l 4 H ⊗d j ≤ M .
This implies that, for every sequence {l n }, there exists a subsequence {l n ′ } such that the sequences f (j)

l n ′ ⊗ p f (j) l n ′ 2 H ⊗2 ( d j -p ) and d j ! f (j) l n ′ 2 H ⊗d j
are convergent for every j = 1, ..., k and every p = 1, ..., d j -1 (recall that, by assumption, there exists a constant η > 0, such that f

(j) l n ′ H ⊗d j
≥ η, for every j and l). We shall now prove that, whenever ( 17) is verified, then necessarily

f (j) l n ′ ⊗ p f (j) l n ′ 2 H
⊗2 ( d j -p ) → 0. Indeed, Theorem 4 in [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF] implies that, if [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] takes place and

d j ! f (j) l n ′ 2 H ⊗d j
→ c > 0, then necessarily

I d j f (j) l n ′ Law → N (0, c) , ( 19 
)
where N (0, c) stands for a centered Gaussian random variable with variance c. But Theorem 1 in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] implies that, if (19) is verified, then f (j)

l n ′ ⊗ p f (j) l n ′ 2 H
⊗2 ( d j -p ) → 0, thus proving our claim. This shows that 5. ⇒ 1.. The next result says that, under the additional assumption that the variances of the elements of I (l) converge to one, the asymptotic approximation ( 15) is equivalent to the fact that each component of I (l) verifies a CLT. The proof is elementary, and therefore omitted.

Corollary 4 Fix k ≥ 2, and suppose that the sequence I (l), l ≥ 1, is such that, for every j = 1, ..., k, the sequence of variances appearing in (8) converges to 1, as l → +∞. Then, each one of Conditions 1.-5. in the statement of Theorem 3 is equivalent to the following: for every j = 1, ..., k,

I d j f (j) l Law → l→+∞ N (0, 1) , ( 20 
)
where N (0, 1) is a centered Gaussian random variable with unitary variance.

Remark. The results of this section can be suitably extended to deal with the Gaussian approximations of random vectors of the type (F (1) l (X) , ..., F (k) l (X)), where F (j) l (X), j = 1, ..., k, is a general square integrable functional of the isonormal process X, not necessarily having the form of a multiple integral. See [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF]Th. 6] for a statement containing an extension of this type.

Proof of Theorem 1

We provide the proof in the case where

H = L 2 ([0, 1] , B ([0, 1]) , dx) = L 2 ([0, 1]), ( 21 
)
where dx stands for Lebesgue measure. The extension to a general H is obtained by using the same arguments outlined in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]Section 2.2]. If H is as in ( 21), then for every d ≥ 2 one has that

H ⊙d = L 2 s ([0, 1] d ),
where the symbol L 2 s ([0, 1] d ) indicates the class of symmetric, real-valued and square-integrable functions (with respect to the Lebesgue measure) on [0, 1] d . Also, the isonormal process X coincides with the Gaussian space generated by the standard Brownian motion

t → W t X 1 [0,t] , t ∈ [0, 1] .
This implies in particular that, for every d ≥ 2, the Wiener-Itô integral

I d (f ), f ∈ L 2 s [0, 1] d
, can be rewritten in terms of an iterated stochastic integral with respect to W , that is:

I d (f ) = d! 1 0 t 1 0 • • • t d-1 0 f (t 1 , ..., t d ) dW t d • • • dW t 2 dW t 1 . (22) 
We also have that

I 1 (f ) = 1 0 f (s) dW s for every f ∈ L 2 s ([0, 1] 1 ) ≡ L 2 ([0, 1]
). Note that the RHS of ( 22) is just an iterated adapted stochastic integral of the Itô type. Finally, for every

f ∈ L 2 s ([0, 1] d ), every g ∈ L 2 s ([0, 1] d ′ )
and every p = 0, ..., d ∧ d ′ , we observe that the contraction f ⊗ p g is the (not necessarily symmetric) element of L 2 ([0, 1] d+d ′ -2p ) given by:

f ⊗ p g y 1 , ..., y d+d ′ -2p = [0,1] p f (y 1 , ..., y d-p , a 1 , ..., a p ) × (23) 
× g y d-p+1 , ..., y d+d ′ -2p , a 1 , ..., a p da 1 ...da p .

In the framework of (21), the proof of Theorem 1 relies on some computations contained in [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF], as well as on an appropriate use of the Burkholder-Davis-Gundy inequalities (see for instance [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]Ch. IV §4]). Fix λ = (λ 1 , ..., λ k ) ∈ R k , and consider the random variable

λ, I (l) k = k j=1 λ j d j ! 1 0 • • • u d j -1 0 f (j) l u 1 , ..., u d j dW u d j • • • dW u 1 k j=1 λ j d j !J 1 d j f (j) l = 1 0   k j=1 λ j d j !J u d j -1 f (j) l (u, •)   dW u = 1 0   k j=1 λ j d j I d j -1 f (j) l (u, •) 1 [0,u] d j -1   dW u ,
where, for every d ≥ 1, every t ∈ [0, 1] and every

f ∈ L 2 s [0, 1] d , we define J t d (f ) = I d f 1 [0,t] d /d! (for
every c ∈ R, we also use the conventional notation J t 0 (c) = c). We start by recalling some preliminary results involving Brownian martingales. Start by setting, for every u

∈ [0, 1], φ λ,l (u) = k j=1 λ j d j I d j -1 f (j) l (u, •) 1 [0,u] d j -1
, and observe that the random application

t → k j=1 λ j d j !J t d j f (j) l = t 0 φ λ,l (u) dW u , t ∈ [0, 1] ,
defines a (continuous) square-integrable martingale started from zero, with respect to the canonical filtration of W , noted

F W t : t ∈ [0, 1] .
The quadratic variation of this martingale is classically given by t → t 0 φ λ,l (u) 2 du, and a standard application of the Dambis, Dubins and Schwarz Theorem (see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]Ch. V §1]) yields that, for every l ≥ 1, there exists a standard Brownian motion (initialized at zero)

W (λ,l) = W (λ,l) t : t ≥ 0 such that λ, I (l) k = 1 0 φ λ,l (u) dW u = W (λ,l) 1 0 φ λ,l (u) 2 du .
Note that, in general, the definition of W (λ,l) strongly depends on λ and l, and that W (λ,l) is not a F W t -Brownian motion. However, the following relation links the two Brownian motions W (λ,l) and W : there exists a (continuous) filtration G (λ,l) t : t ≥ 0 such that (i) W 

E [exp (i λ, I (l) k )] -E exp iW (λ,l) q(λ,l) = E exp iW (λ,l) 1 0 φ λ,l (u) 2 du -E exp iW (λ,l) q(λ,l) ≤ E W (λ,l) 1 0 φ λ,l (u) 2 du -W (λ,l) q(λ,l) ≤ E W (λ,l) 1 0 φ λ,l (u) 2 du -W (λ,l) q(λ,l) 4 1 4 ≤ CE 1 0 φ λ,l (u) 2 du -q (λ, l) 2 1 4 , ( 24 
)
where C is some universal constant independent of λ and l. To see how to obtain the inequality (24), introduce first the shorthand notation T (λ, l) -predictable process given by H (u) = 1 {u ≥ T (λ, l) ∧ q (λ, l)}, so that

1 0 φ λ,l (u) 2 du (recall that T (λ, l) is a G (λ,l) t
T (λ,l)∨q(λ,l) 0 H (u) 2 du = |T (λ, l) ∧ q (λ, l) -T (λ, l) ∨ q (λ, l)| = |T (λ, l) -q (λ, l)| = 1 0 φ λ,l (u) 2 du -q (λ, l) .
In particular, relation (24) yields that the proof of Theorem 1 is concluded, once the following two facts are proved: (A) W (λ,l) q(λ,l) = λ, N (l) k , for every λ ∈ R k and every l ≥ 1; (B) the sequence

E 1 0 φ λ,l (u) 2 du -q (λ, l) 2 , l ≥ 1,
converges to zero, uniformly in λ, on every compact set of the type M = [-T, T ] k , where T ∈ (0, +∞). The proof of (A) is immediate: indeed, W (λ,l) is a standard Brownian motion and, by using the isometric properties of stochastic integrals and the fact that the covariance structures of N (l) and I (l) coincide,

q (λ, l) = 1 0 E(φ λ,l (u) 2 )du = E 1 0 φ λ,l (u) dW u 2 = E λ, I (l) 2 k = E λ, N (l) 2 k .
To prove (B), use a standard version of the multiplication formula between multiple stochastic integrals (see for instance [12, Proposition 1.5.1])

1 0 φ λ,l (u) 2 du = 1 0   k j=1 λ j d j I d j -1 f (j) l (u, •) 1 [0,u] d j -1   2 du = 1 0 k j,i=1 λ j λ i d j d i I d i -1 f (i) l (u, •) 1 [0,u] d i -1 I d j -1 f (j) l (u, •) 1 [0,u] d j -1 du = q (λ, l) + k j,i=1 λ j λ i d j d i 1 0 D(i,j) p=0 d i -1 p d j -1 p (25) × I d i +d j -2-2p (f (i) l (u, •) 1 [0,u] d i -1 ) ⊗ p (f (j) l (u, •) 1 [0,u] d j -1 ) ,
where the index D (i, j) is defined as

D (i, j) = d i -2 if d i = d j min (d i , d j ) -1 if d i = d j .
Formula (25) implies that, for every λ ∈ [-T, T ] k (T > 0),

E 1 0 φ λ,l (u) 2 du -q (λ, l) 2 1 2 ≤ (T max i d i ) 2 k i,j=1 D(i,j) p=0 d i -1 p d j -1 p (26) ×E 1 0 I d i +d j -2-2p (f (i) l (u, •) 1 [0,u] d i -1 ) ⊗ p (f (j) l (u, •) 1 [0,u] d j -1 ) du 2 1 2
(note that the RHS of (26) does not depend on λ). Finally, a direct application of the calculations contained in [15, p. 253-255] yields that, for every i, j = 1, ..., k and every p = 0, ..., D (i, j),

E 1 0 I d i +d j -2-2p (f (i) l (u, •) 1 [0,u] d i -1 ) ⊗ p (f (j) l (u, •) 1 [0,u] d j -1 ) du 2 1 2 → 0, (27) 
as l → +∞. This concludes the proof of Theorem 1.

Remark. By inspection of the calculations contained in [15, p. 253-255], it is easily seen that, to deduce (27) from [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF], it is necessary that the sequence of variances ( 8) is bounded.

Concluding remarks on applications

Theorem 1 and Theorem 3 are used in [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF] to deduce high-frequency asymptotic results for subordinated spherical random fields. This study is strongly motivated by the probabilistic modelling and statistical analysis of the Cosmic Microwave Background radiation (see [START_REF] Marinucci | High-resolution asymptotics for the angular bispectrum of spherical random fields[END_REF], [START_REF] Marinucci | A Central Limit Theorem and Higher Order Results for the Angular Bispectrum[END_REF], [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF] and [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF] for a detailed discussion of these applications). In what follows, we provide a brief presentation of some of the results obtained in [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF].

Let S 2 = x ∈ R 3 : x = 1 be the unit sphere, and let T = {T (x) : x ∈ S 2 } be a realvalued (centered) Gaussian field which is also isotropic, in the sense that T (x) Law = T (Rx) (in the sense of stochastic processes) for every rotation R ∈ SO (3). The following facts are well known:

(1) The trajectories of T admit the harmonic expansion T (x) = ∞ l=0 l m=-l a lm Y lm (x), where {Y lm : l ≥ 0, m = -l, ..., l} is the class of spherical harmonics (defined e.g. in [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Ch. 5]);

(2) The complex-valued array of harmonic coefficients {a lm : l ≥ 0, l ≥ 0, m = -l, ..., l} is composed of centered Gaussian random variables such that the variances E |a lm | 2 C l depend exclusively on l (see for instance [START_REF] Baldi | Some characterizations of the spherical harmonics coefficients for isotropic random fields[END_REF]);

(3) The law of T is completely determined by the power spectrum {C l : l ≥ 0} defined at the previous point. Now fix q ≥ 2, and consider the subordinated field T (q) (x) H q (T (x)) , x ∈ S 2 , where H q is the qth Hermite polynomial. Plainly, the field T (q) is isotropic and admits the harmonic expansion

T (q) (x) = ∞ l=0 l m=-l a lm;q Y lm (x) ∞ l=0 T (q) l (x) ,
where a lm;q S 2 T (q) (z) Y lm (z)dz. For every l ≥ 0, the field T (q) l = l m=-l a lm;q Y lm is realvalued and isotropic, and it is called the lth frequency component of T (q) (see [START_REF] Marinucci | High-resolution asymptotics for the angular bispectrum of spherical random fields[END_REF] or [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF] for a physical interpretation of frequency components). In [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF], the following problem is studied.

Problem A. Fix q ≥ 2. Find conditions on the power spectrum {C l : l ≥ 0} to have that the finite dimensional distributions (f.d.d.'s) of the normalized frequency field

T (q) l (x) T (q) l (x) Var T (q) l (x) 1/2 , x ∈ S 2 ,
are 'asymptotically close to Gaussian', as l → +∞.

The main difficulty when dealing with Problem A is that (due to isotropy) one has always that E T (q) l (x) T (q) l (y) = P l (cos x, y ) ,

where P l is the lth Legendre polynomial, and x, y is the angle between x and y. Indeed, since in general the quantity P l (cos x, y ) does not converge (as l → +∞), one cannot prove that the f.d.d.'s of T (q) l converge to those of a Gaussian field (even if T (q) l (x) converges in law to a Gaussian random variable for every fixed x). However, as an application of Theorem 1 and Proposition 2, one can prove the following approximation result. (29)

Then, for any k ≥ 1, any x 1 , ..., x k ∈ S 2 and any γ metrizing the weak convergence on P R k , γ L T (q) l (x 1 ) , ..., T

l (x k ) , N (l)

→ l→+∞ 0, (30) 
where, for every l, N (l) = N = P l (cos x i , x j ) .

  and • L is the usual Lipschitz seminorm (see[4, p. 394] for further details). The fact that we focus on the Prokhorov and the Fortet-Mounier metric is due to the following fact, proved in[START_REF] Dudley | Real Analysis and Probability (2 nd Edition)[END_REF] Th. 11.7.1]. For any two sequences {P l } , {Q l } ⊂ P R k , the following three conditions (A)-(C) are equivalent: (A) lim l→+∞ β (P l , Q l ) = 0; (B) lim l→+∞ ρ (P l , Q l ) = 0; (C) on some auxiliary probability space (Ω * , F * , P * ), there exist sequences of random vectors {N * (l) : l ≥ 1} and {I * (l) : l ≥ 1} such that L (I * (l)) = P l and L (N * (l)) = Q l for every l, and I * (l) -N * (l) → 0, a.s.-P * ,[START_REF] Janson | Gaussian Hilbert Spaces[END_REF] 

  and (ii) for every fixed s ∈ [0, 1] the positive random variables 0 φ λ,l (u) 2 du is a G (λ,l) t-stopping time. Now define the positive constant (which is trivially a G λ,l (u) 2 )du, and observe that the usual properties of complex exponentials and a standard application of the Burkholder-Davis-Gundy inequality (in the version stated in [16, Corollary 4.2, Ch. IV ]) yield the following estimates:

-

  stopping time), and then writeW (λ,l) 1 0 φ λ,l (u) 2 du -W (λ,l) q(λ,l) = T (λ,l)∨q(λ,l) T (λ,l)∧q(λ,l) dW (λ,l) u = T (λ,l)∨q(λ,l) 0 H (u) dW (λ,l) u ,where H (u) is the G (λ,l) u

Proposition 5

 5 Under the above notation and assumptions, suppose that, for any fixed x ∈ S 2 ,
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Proof. Since T (q) l (x) is a linear functional involving uniquely Hermite polynomials of order q (written on the Gaussian field T ) one deduces that there exists a real Hilbert space H such that (in the sense of stochastic processes)

where the class of symmetric kernels

is a subset of H ⊙q , and I q f (q,l,x) stands for the qth Wiener-Itô integral of f (q,l,x) with respect to an isonormal Gaussian process over H, as defined in Section 2. Since the variances of the components of the vector (T (q) l (x 1 ) , ..., T (q) l (x k )) are all equal to 1 by construction, we can apply Theorem 3 and Proposition 2. Indeed, by Theorem 3 we know that (29) implies that, for every p = 1, ..., q -1 and every j = 1, ..., k, f (q,l,x j ) ⊗ p f (q,l,x j ) → 0 in H ⊙2(q-p) .

Finally, Proposition 2 and (28) imply immediately the desired conclusion.

The derivation of sufficient conditions to have (29) is the main object of [START_REF] Marinucci | Group representation and high-frequency central limit theorems for subordinated spherical random fields[END_REF]. In particular, it is proved that sufficient (and sometimes also necessary) conditions for (29) can be neatly expressed in terms of the so-called Clebsch-Gordan coefficients (see again [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]), that are elements of unitary matrices connecting reducible representations of SO (3).