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Abstract :

Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease causing

motor neuron degeneration, muscle atrophy, paralysis and death. Despite this degenerative

process, a stable hypermetabolic state has been observed in a large subset of patients. Mice

expressing a mutant form of Cu/Zn superoxide dismutase (mSOD1 mice) constitute an animal

model of ALS that, as patients, exhibits unexpectedly increased energy expenditure.

Counterbalancing for this increase with a high fat diet extends lifespan and prevents motor

neuron loss. Here we investigated whether lipid metabolism is defective in this animal model.

Hepatic lipid metabolism was roughly normal while gastro-instestinal absorption of lipids as

well as peripheral clearance of triglycerides-rich lipoproteins were markedly increased,

leading to decreased postprandial lipidemia. This defect was corrected by the high fat regimen

that typically induces neuroprotection in these animals. Altogether, our findings show that

energy metabolism in mSOD1 mice shifts towards an increase in the peripheral use of lipids.

This metabolic shift probably accounts for the protective effect of dietary lipids in this model.

Supplementary keywords:

Plasma lipoproteins, neurodegeneration, motor neuron, LDL, HDL, liver metabolism,

intestinal absorption, skeletal muscle
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Introduction

Neurodegenerative diseases have been long considered as the result of locally restricted

injury to specific neurons, the loss of which represents both the origin and the end of the

pathological process. However, this “cell-autonomous injury” hypothesis does not seem to

hold true for disorders in which neurodegeneration would be rather caused by the combined

action of a series of defects arising at the level of the whole organism and eventually leading

to a very selective cell death. Although still poorly understood, peripheral metabolic

abnormalities, as shown to occur in several neurodegenerative diseases (1-5), could

participate in the neurodegenerative process (6, 7).

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the

progressive loss of motor neurons in the spinal cord, brainstem and motor cortex. Although

tremendous efforts have been devoted to explain ALS pathogenesis, why motor neurons

selectively die in this condition is still unsolved (8, 9). Animal models of ALS displaying the

major features of the human disease are transgenic mice overexpressing mutant forms of

Cu/Zn-superoxide dismutase (SOD1) (10-12), a free radical scavenging enzyme that protects

cells against oxidative stress and is mutated in a subset of patients with autosomal dominantly

inherited ALS (13). Studies using these mice have postulated that mutant SOD1 (mSOD1)

triggers ALS by a non-cell-autonomous mechanism involving not only motor neurons

themselves but also other environing cells such as astrocytes and microglia (14, 15).

Beyond the neuromuscular system, we recently observed systemic abnormalities

occurring in animal models of ALS (6, 16). mSOD1 mice are leaner than wild-type

littermates and their fat pads gradually deplete as a result of a prominent hypermetabolic trait

mainly of muscular origin (6). In line with these findings, higher resting energy expenditure
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has also been observed in a large subset of ALS patients (17, 18). Moreover, a significant

percentage of patients present with glucose intolerance, and increased rates of muscle glucose

uptake, oxygen consumption and lactate output that indicate the presence of marked

abnormalities in carbohydrate metabolism in muscle tissue (19). These metabolic alterations

that, at least in mice, precede motor neuron death, are not only associated but also contribute

to the neurodegenerative process, since it has been shown in mSOD1 mice that increasing the

energy content of the diet prolongs lifespan and maintains motor neuron numbers (6, 20)

while restricting calorie intake hastens the disease (21).

The origin of the systemic defects in mSOD1 mice and their contribution to the

pathology in ALS patients needs to be elucidated. Given that a highly energetic fat regimen

protects against the disease in animal models, we hypothesize that compensation of as yet

unidentified disturbances in lipid metabolism could account for the benefits of such a

regimen. In the search for these lipid disturbances, we show here that mSOD1 mice present

with decreased post-prandial lipidemia characterized by increased peripheral clearance of

triglycerides-rich lipoproteins, probably caused by skeletal muscle hypermetabolism. This

hypolipidemia was reverted by the neuroprotective high fat regimen. Altogether, our findings

show that energy metabolism in mSOD1 mice shifts towards an increase in the peripheral use

of lipids. This metabolic shift probably accounts for the protective effect of dietary lipids in

this model.
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Materials and Methods

Animals

Transgenic female mice with the G86R murine SOD1 mutation were maintained in a FVB

background and maintained with their nontransgenic age-matched female littermates on a 12

hr light/dark cycle. They were fed with a chow diet (A04, UAR, Epinay sur Orge, France)

unless otherwise stated and had free access to water. High fat diet consisted of A04 diet

complemented with 20% butter fat. Transgenic mice expressing human G93A SOD1

mutations were kindly provided by Faust pharmaceuticals.

Lipid measurements and Lipoprotein fractionation

Tail vein blood was collected in heparinized capillary tubes, placed on ice and centrifuged at

3000g, 4°C. Plasma levels of triglycerides (TG), cholesterol and total lipids were determined

with Randox  (Crumlin, UK) kits TR213, CH200 and TL100 respectively. The TG TR213 kit

is an enzymatic kit based upon the hydrolysis of TGs in glycerol and fatty acids, the glycerol

produced being oxidized to reach H2O2, which oxidizes 4-aminophenazone and 4-

chlorophenol to reach a colored quinoneimine compound. The cholesterol CH200 kit is based

upon the oxydation of cholesterol to cholestene 3-one and H2O2 by the cholesterol oxidase.

The H2O2 produced is then dosed upon the same principle than in TR213 kit. In the CH kit,

the enzymatic reagent also includes cholesterol esterase, thus allowing the dosage of not only

free but also esterified cholesterol. Both TR213 and CH200 kits yielded results in our hands

similar to those obtained in a certified clinical biochemistry laboratory (data not shown). The

TL100 kit is based upon the reaction of lipids with sulphuric acid, phosphoric acid and

vanillin to form a pink colored complex. This kit was able to accurately detect exogenous
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triglycerides added in serum (data not shown). Moreover, this kit yielded results consistent

with those obtained using gravimetric detection of lipids following Folch extraction (data not

shown). In all cases, a 5-point standard curve was performed using the standards provided in

the kits and results were analyzed only if the correlation coefficient of the standard curve was

above 0,995. Serum concentrations were calculated using the equation of the regression line

as calculated by Excel (Microsoft). In our hands, intradosage variability of these three kits

was below 5%. Serum lipoprotein profiling was performed by the clinical mouse institute,

(Strasbourg, France) by fast performance liquid chromatography on Dionex (Sunnyvale, CA,

USA) apparatus.

Lipid and glucose intestinal absorption

Lipid and glucose uptake rate into the small intestine was determined by using the in vivo

perfused intestinal segments technique (22). Normally fed mice were anaesthetized and

placed on a heated (37°C) surgical table. After performing a laparotomy, a 10 cm segment of

the small intestine was canulated and the luminal contents removed by gently flushing with

saline solution at 37°C. An intestinal loop was cannulated and a recirculating perfusion was

started at a flow rate of 2ml min-1 with Intralipid solution (4%) (Pharmacia, Strasbourg,

France) at 37°C for triglycerides uptake. TG and NEFAs concentrations were estimated in the

luminal content using Randox kits TR213 and FA115 respectively. For glucose uptake, a

saline solution at 37°C containing 5mM glucose was perfused. The absorption rate was

calculated as the difference between intial and final glucose concentrations using a

glucometer (Accu check, Roche, Basel, Switzerland) following manufacturer’s instructions.

Gastric emptying and intestinal transit
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Gastric emptying time and intestinal transit were determined using methylene blue as a tracer

dye. Briefly, after a four-hour fast, mice were gavaged with 0.1mL of methylene blue/10%

dextrose solution and sacrificed 30 minutes after gavage. The stomach was clamped above the

oesophageal sphincter and below the pylorus to prevent the leakage of the dye. Stomachs

were cut and immediately homogenized in 10 mL of NaOH 0.1 M. After clearing steps by

centrifugation, OD at 562nm of the supernatant was determined. Gastric emptying was

determined as the difference between the measured OD and those of a group of mice, gavaged

in parallel and sacrificed 1 min after gavage. Intestinal transit was determined as the most

distal point of migration of methylene blue in the intestine and expressed as a percentage of

the total length of the intestine.

RT-PCR analysis

Each frozen sample (livers or intestinal mucosa) was placed into a tube containing a 5-mm

stainless steel bead (Qiagen, Courtaboeuf, France) and 1ml of Trizol reagent (Invitrogen,

Paisley, UK) and homogenised using a TissueLyser (Qiagen, Courtaboeuf, France) at 30 Hz

for 3 min. RNA was extracted by the chloroform/isopropyl alcohol/ethanol (Sigma, Lyon,

France) method and stored at –80°C until use. RNA reverse transcription and Sybrgreen

realtime PCR assays were performed using the Biorad (Marnes la Coquette, France) iCycler,

kits and protocols. Primer sequences are available in supplementary table 1. The relative

levels of each RNA were normalized to the corresponding 18S RNA levels.

Hepatic VLDL production

After a 4 hour fast, mice were injected intravenously into the tail vein with 20 mg of

Tyloxapol (Sigma, Lyon, France) as a 20% solution in PBS buffer. Blood samples were
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drawn at 0, 60, 120, and 240 min after the Tyloxapol injection, and TG concentrations were

determined in plasma as described above.

Intragastric fat load

After a 4 hour fast, mice were given intragastrically a 400 µl olive oil bolus. Blood samples

were drawn at 0, 1, 2, 3, 4, and 5 h after bolus administration, and TG concentrations were

determined in plasma as described above.

Histological analysis

Adult mice were intracardiacally perfused with paraformaldehyde 4% (Sigma, Lyon, France).

Liver were immediately post-fixed in paraformaldehyde 4% during 24h. Serial sections of 40

µm were obtained by vibratome. To visualize fat vesicles, slides were incubated in Oil Red O

solution (0.1% Oil Red O dissolved in isopropanol, Sigma, Lyon, France)) for 15 min at room

temperature, washed with 30% isopropanol (Sigma, Lyon, France) and distilled water.

Lipoprotein lipase activity

Lipoprotein lipase (LPL) activity was assessed after homogenization of the tissues in a buffer

composed of ammonia-HCl (25 mM) pH 8.2, containing EDTA (5 mM), Triton-X-100 (8 g/l),

sodium dodecyl sulfate (0.10 g/l), heparin (Sigma, Lyon, France) 5000 IU/l) and peptidase

inhibitors(Sigma, Lyon, France). Insoluble material was discarded by centrifugation at

20000g for 20 min at 4°C. As described by Hocquette and collaborators (23), rat serum was

used as activator, and Intralipid® (Pharmacia, Strasbourg, France), into which [3H] triolein

(Perkin Elmer, Jügesheim, Germany) has been incorporated, was used as the substrate.

Liberated [3H]-free fatty acids were quantified by liquid scintillation.
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Statistical analysis

Statistical comparisons of these data were performed either using unpaired Student’s t test or

One-way anova followed by post-hoc Newman-Keul’s test, using the GraphPad Prism

software (version 4). Significance was considered below p=0.05.
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Results 

mSOD1 mice display alterations in blood lipid levels

We had previously shown that mSOD1 mice lose progressively their adipose tissue stores and

that feeding them with a diet enriched in fat prolonged lifespan and rescued motor neurons

(6). Here we observed that mSOD1 mice displayed normal levels of plasma triglycerides (TG)

and cholesterol under fasting but decreased levels of plasma TG, cholesterol and total lipids

under normal feeding (figure 1A-C). To ascertain whether the observed decrease in lipid

levels in mice was due to decreased postprandial lipidemia, we gavaged mice with olive oil

and measured TG levels 3 hours later. In this experimental setting, we observed a roughly 2-

fold decrease in TG levels as compared to wild-type littermates (figure 1A, right panel), thus

showing that mSOD1 mice, although normolipidemic, present with decreased postprandial

lipidemia. In order to assess whether this defect could be corrected by a high-fat diet (HFD),

we fed a group of mice with 20% butter fat during four weeks and evaluated their lipid

metabolism. As previously described (6), HFD reverted the deficit in body mass and repleted

adipose tissue stores in  mSOD1 mice. In addition, consistent with the documented protective

role of this regimen, after one month of HFD feeding, only 1 of 10 mice displayed motor

troubles while 5 out of the 9 mice normally fed showed ALS symptoms (data not shown). The

high fat regimen also abolished the decrease in postprandial cholesterolemia (figure 1D).

Altogether, these findings indicate that correcting the decreased postprandial cholesterolemia

by feeding mSOD1 mice with a high fat regimen is associated with attenuation of ALS

symptoms.
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mSOD1 mice have a defect in triglycerides-rich lipoproteins

The main difference between fasting and feeding in terms of TG is the presence of

chylomicrons in the blood of fed animals. Therefore, the decrease in TG in fed but not fasted

mSOD1 mice suggested that the chylomicron system of lipoproteins was affected by the

presence of mSOD1. To determine whether other lipoprotein fractions were affected, we

performed fast performance liquid chromatography (FPLC) to separate the different

lipoproteins and quantified their cholesterol content. We noted a strong decrease (roughly

50%) in VLDL and LDL cholesterol fractions in 75-days old asymptomatic mSOD1 mice, but

only a slight decrease (less than 20%) in HDL cholesterol (figure 2A-B). Thus, the activity of

the two lipoprotein systems involved in the transport of lipids towards peripheral tissues,

namely chylomicrons, carrying dietary fats, and VLDL/LDL lipoproteins, transporting

endogenously synthesized lipids, appears decreased in fed asymptomatic mSOD1 mice. The

reverse transport of lipids by HDL lipoproteins is only relatively modestly affected.

Interestingly, FPLC profiles of wild-type and mSOD1 mice were indistinguishable after 4

hours of fasting (figure 2C), which suggests that normally fed mSOD1 mice behave as they

were abstained from nutriments, even though they ingest equal or higher amounts of food

than their wild-type littermates (6).

Intestinal absorption of lipids is increased in mSOD1 mice

The observed decrease in circulating lipids might be caused by different mechanisms. First,

mSOD1 mice might have a decreased food intake. We have already excluded this possibility

in asymptomatic mice (6). Second, it is possible that the gastrointestinal system is

malfunctioning. This hypothesis is further substantiated by clinical reports of gastrointestinal
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dysfunction in ALS patients (24). Indeed, mutant SOD1 was highly expressed in intestinal

mucosa with no age-dependent variations that could explain gastrointestinal dysfunction

(figure 3A). However, gastric emptying and intestinal transit after an oral gavage of

methylene blue under fasting conditions appeared unchanged between mSOD1 mice and

wild-type littermates (figure 3B-C), thus excluding gross gastrointestinal dysfunction. Third,

nutrients could be poorly absorbed in the gut. To directly evaluate the absorptive potential of

mSOD1 intestine, we used the in vivo perfused intestinal segment technique (figure 3D) and

perfused either diluted intralipids, a TG-rich solution (figure 3E-F) or glucose (figure 3G).

Glucose uptake by the intestine was identical between SOD1 and wild-type mice, and served

as control. In contrast, levels of TG in the perfusate after intralipid infusion were constantly

lower in mSOD1 intestines than in wild-type littermates analyzed in parallel (figure 3E). TG

are broken down in the intestine to yield non-esterified fatty acids (NEFA), which are the

molecular species absorbed by enterocytes (figure 3D). Our data then suggested that TG were

degraded more rapidly in mSOD1 mice than in wild-type littermates. To determine whether

NEFA generated from TG were efficiently absorbed and not accumulated in the gut, we

measured them in intestines perfused with a TG-rich solution. In these experiments, the

steady state levels of NEFA in intestinal perfusates were constantly lower in mSOD1 mice as

compared to wild-type animals (figure 3F), thus showing that the process of NEFA absorption

was not impaired but rather increased in mSOD1 mice. Together with the increased food

intake displayed by mSOD1 mice (6) and the absence of gross dysfunction in gastric

emptying and intestinal transit, the present data rule out the possibility that decreased

lipidemia in fed animals was due to diminished intestinal absorption.
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Liver lipid metabolism is normal in mSOD1 mice

A second mechanism that could account for decreased lipidemia in mSOD1 mice could be a

shift in hepatic lipid metabolism, triggered by the high expression of mSOD1 in liver (figure

4A). Less release of VLDL from liver, caused by decreased TG or cholesterol biosynthesis or

by impaired release itself, could in fact explain the decrease of VLDL fractions observed in

mSOD1 mice. We measured the mRNA levels of fatty acid synthase (FAS) and Serum

responsive element binding protein 1(SREBP1), involved in hepatic TG biosynthesis (25),

and found that they were unchanged in presymptomatic mice, when hypolipidemia was

already detectable (figure 4A). Contrastingly, expression of SREBP1 (and that of FAS at a

lesser extent) was downregulated in the liver of symptomatic mice, which is consistent with

the documented decrease in insulin levels and the general metabolic shutdown observed in

mSOD1 mice at disease onset (6). As far as cholesterol metabolism is concerned, we did not

detect any change in the expression of key genes that could compromise cholesterol

biosynthesis. Indeed, expression of HMG-CoA reductase, the rate limiting enzyme in

cholesterol biosynthesis, was rather increased in presymptomatic mice, whereas mRNA levels

of SREBP2, a key transcription factor in this pathway, were unchanged before motor

symptoms appeared and increased in end-stage mice (figure 4A). Altogether, these data thus

suggest that decreased post-prandial lipidemia in mSOD1 mice cannot be ascribed to a

deficiency in the expression of key enzymes or transcription factors controlling lipid

biosynthesis.

An alternative mechanism leading to decreased post-prandial lipidemia could be an increase

in lipid catabolism in liver that would generate elevated concentrations of ketone bodies. This

does not seem to be the case since mRNA levels of carnitine palmitoyl transferase IA
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(CPT1A), the rate limiting enzyme in fatty acid oxidation, were unchanged in asymptomatic

animals (figure 4A). In contrast, the increased expression of CPT1A in diseased mice is

consistent with the high amounts of ketone bodies found in plasma at this stage (6). Another

explanation might be that cholesterol is excreted as bile acid thus leading to hypolipidemia.

However, the expression of cholesterol 7 alpha hydroxylase (CYP7A1), which is correlated to

bile acid biosynthesis (26), was unchanged in presymptomatic mice (figure 4A), making

therefore unlikely that an increase in bile acid excretion could be the cause of the early

installed decreased post prandial lipidemia. It should be also noted that treating mSOD1 mice

with cholestyramine, a drug known to stimulate bile acid secretion, was able to trigger an

increase in CYP7A1 expression, thus showing that transcription could be still induced in

these mice in response to an appropriate stimulus (data not shown). Finally, the expression of

genes involved in lipoprotein assembly, such as ApoE or the transcriptional coactivator

PGC1-β, appeared unchanged in presymptomatic mice and increased in diseased animals

(figure 4A), which further reinforces the notion that lipoprotein assembly is not deficient at

the transcriptional level in mSOD1 mice. Interestingly, mRNA levels of the LDL receptor

(LDLR) were increased at presymptomatic stage, suggesting that the turnover of LDL might

be increased in mSOD1 mice.

Hepatic VLDL assembly and secretion could be also impaired post-transcriptionnally thus

leading to hypolipidemia, as occur, for instance, when nascent VLDL are retained in liver. To

test whether fats accumulate in the liver of mSOD1 mice, we visualized lipidic droplets by

Oil Red O staining. As illustrated in figure 4B, accumulations of lipids were clearly

distinguishable and comparable between wild-type and mSOD1 mice, although an overall

fainter stain could be observed in end-stage mice. In all, indirect evidences all pointed out to a
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normal hepatic lipid metabolism in mSOD1 mice

TG clearance by  peripheral tissues is increased in mSOD1 mice

To directly test whether mSOD1 mouse liver releases VLDL efficiently, we measured hepatic

VLDL production under fasting conditions using tyloxapol (Triton WR 1339), a detergent

that coats lipoprotein complexes and thus impairs their peripheral clearance. In tyloxapol-

injected mice, the rate of increase in plasma TG is therefore correlated to the biosynthesis of

VLDL in liver. The increasing concentrations of TG in plasma were almost identical in

mSOD1 and wild-type mice (figure 5A), thus showing that VLDL production was not

impaired in the transgenic animals. Altogether, these data show that decreased post-prandial

lipidemia in presymptomatic mSOD1 mice cannot be explained by the altered capacity of

liver to synthesize TG and release them in the form of VLDL into the circulation.

To examine whether the drop in plasma TG-rich lipoproteins was due to increased peripheral

uptake of lipids, we performed a fat-loading test by administrating TG intragastrically in the

form of olive oil after a 4-hour fast. Initial TG levels were similar in mSOD1 and wild-type

mice, consistent with previous results (figure 5B). TG levels increased gradually and

comparably between the two groups during the first two hours after gavage, which further

confirmes that intestinal absorption of fat as well as chylomicron production by the intestine

are roughly normal in the transgenic animals (figure 3). Later, the clearance of TG,

represented by the decreasing segments of the curves in figure 5B, was faster in mSOD1 mice

than in wild-type littermates. These data reflect the increased ability of mSOD1 mice to

metabolize TG. We propose that this is likely to be the cause of the decreased post prandial

lipidemia observed in these animals.
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Gene expression changes point to muscle as the origin of increased lipid peripheral

uptake

Since we had previously shown that skeletal muscle is characterized by an hypermetabolic

trait in mSOD1 mice (6), and is one of the most important tissues that captures lipids, we

tested whether muscle could be the site of increased lipid uptake. Surprisingly, the expression

levels of lipoprotein lipase (LPL) were unchanged in asymptomatic mSOD1 mice while

increased in symptomatic animals (figure 6A, left panel). This late increase does not seem to

be the result of denervation, since LPL mRNA levels did not increase but rather decrease

following sciatic nerve axotomy (figure 6A, right panel). In order to test whether muscle lipid

uptake could be promoted by increased LPL activity, we measured total LPL enzymatic

activity but did not find any difference between mSOD1 and wild-type mice (figure 6B).

However, mRNA levels of other several genes involved in lipoprotein clearance, such as LDL

receptor, VLDL receptor and the fatty acid transporter FAT/CD36, were augmented in the

muscle of both presymptomatic and diseased mice (figure 6C), which supports the hypothesis

that muscle tissue is a primary site of increased lipid consumption in mSOD1 mice. To

exclude the possibility that our observations could result from a transgenic artifact, we also

measured the expression of LPL, vLDLR, LDLR and FAT/CD36 in muscles of G93A mice,

another transgenic line overexpressing a human mutant SOD1 (11). We found in these mice

not only the previously observed upregulation of vLDLR and FAT/CD36 but also increased

levels of LPL mRNA in presymptomatic mice (figure 6D). Altogether, these data suggest that

decreased post prandial lipidemia in mSOD1 mice is driven by the increased clearance of TG

in peripheral tissues, particularly skeletal muscle.
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Discussion

We show here that energy metabolism of mSOD1 mice, an animal model of ALS, is

shifted towards an increased peripheral use of lipids. This metabolic shift probably accounts

for the protective effect of dietary lipids in this model.

We had previously shown that mSOD1 mice are afflicted by prominent unbalanced

energy homeostasis. In particular, two different mSOD1 mouse lines display increased resting

energy expenditure as determined by indirect calorimetry (6). Importantly, 30 to 60% of ALS

patients also present with hypermetabolism as determined by the same methodology (17, 18,

27). We then suggested that the origin of this hypermetabolic trait was an increased demand

for nutrients in muscle tissue. This hypothesis was supported by increased glucose uptake and

altered gene expression of enzymes involved in glucose and lipid use that we observed in

muscles of presymptomatic mSOD1 mice (6). Our present data now show that the lipids

supplied by normal feeding rapidly disappear from plasma, pointing to muscle

hypermetabolism as triggering increased peripheral clearance of TG-rich lipoproteins. This

phenomenon, associated with unchanged levels of VLDL secretion by the liver, is likely to

account for the postprandial hypolipidemia observed in the transgenic mice.

 The results reported herein, along with our previous studies (6, 16), support the

dysfunction of skeletal muscle metabolism as the cause of the impairment of energy

homeostasis in mSOD1 mice. We and others had previously shown mitochondrial

dysfunction accompanied by ATP depletion and UCP3 upregulation in skeletal muscle of

mSOD1 mice (16) and ALS patients (28-31). It is thus probable that this mitochondrial

impairment could underlie the increased energy needs of skeletal muscle as reflected by the

increased rates of glucose uptake (6) and TG clearance shown here.
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The mechanisms recruited by mSOD1 muscles to increase lipid uptake are not

completely understood. We observed the elevated expression of enzymes and transporters

involved in lipid metabolism, including VLDLR, LDLR and FAT/CD36, but failed to

demonstrate an increase in LPL activity in mSOD1 muscles. In contrast, muscle LPL mRNA

levels, while unchanged in presymptomatic G86R mice, appeared increased at disease onset

as well as in both presymptomatic and diseased G93A mice, suggesting that LPL might be

involved in promoting a higher lipid uptake. These results contrasted with the transcriptional

downregulation of LPL in denervated muscles, which suggests that other mechanisms distinct

from pure denervation are influencing muscle pathology in the transgenic mice.

There are several potential explanations for the lack of an increase in LPL activity in

mSOD1 muscles. First, we assayed total LPL activity, while only a fraction of it, i.e. the

heparin-releasable fraction, is biologically active. Thus, measurement of total activity could

have masked the action of the active LPL. Second, LPL activity in vivo is regulated by

numerous factors, in particular plasma proteins, such as apoCII (activator) or apoCIII

(inhibitor), that are are lost in our assay. Third, genes known to increase TG-rich lipoprotein

clearance through LPL, such as VLDLR (32-34) or FAT/CD36 (35, 36), were upregulated in

presymptomatic mSOD1 mice muscles. The increased expression of these genes is per se

sufficient to infer increased lipid uptake in muscle and, notably, FAT/CD36 deficiency was

recently reported to decrease TG-rich lipoprotein clearance without affecting post-heparin

LPL activity (35), consistent with a role of CD36 in increasing local LPL activity without

increasing either expression or assayable activity of LPL. Altogether, our data suggest that

LPL activity could actually be increased in mutant SOD1 mouse muscles through yet

unknown local factors, which may include CD36. In all, skeletal muscle hypermetabolism is
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likely to trigger the observed aberrant decreased postprandial lipidemia in mSOD1 mice. In

this scenario, the protective potential of high fat diet might be interpreted as an increased

supply of high energy nutrients to the muscle, thus compensating its dysfunction.

A recent report claimed the lack of involvement of skeletal muscle in mSOD1

triggered pathology (37). These authors used floxed mSOD1 mice (15) and ablated mSOD1

expression in skeletal muscles using targeted CRE expression. However, recombination

occurred significantly only in one of the two muscles tested. Most importantly, the efficiency

of recombination in respiratory muscles was not provided, although it is thought that their

failure trigger the death of the mice. Last, neither motor neuron counting nor neuromuscular

junction morphology were provided, thus weaknessing the conclusions drawn from these

experiments. In all, the question of the contribution of skeletal muscle mSOD1 expression

remains open. It is however clear that skeletal muscle hypermetabolism might also be

triggered by mutant SOD1 expression in other cells. Further research is needed to elucidate

this point.

Our report gives clues for a nutritional management of ALS patients, suggesting that

increasing calorie intake might increase survival and that hypolipidemic drugs such as

fibrates, cholestyramine or statins should be avoided in these patients, since decreasing

lipidemia is likely to exacerbate the ALS condition. Contrary to animal models of Parkinson’s

disease (38) or Huntington’s disease (39), where caloric restriction has been shown to

alleviate symptoms, caloric restriction shortens disease duration in mSOD1 mice (21). Our

studies on mSOD1 mice suggest that maintaining body mass index should slow disease

progression.
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Figure legends :

Figure 1 : Decreased postprandial lipidemia in mSOD1 mice

A-C : Plasma TG (A), cholesterol (B) and total lipids (C) in fed, fasted or olive oil-gavaged

wild-type (empty columns) and mSOD1 (black columns) mice. n = 10-15 mice for panels A

and B ; n = 6 mice for panel C. *, p < 0.05 versus wild-type.

D: Plasma cholesterol in wild-type and mSOD1 mice fed with either chow diet or high fat

diet (HFD). n = 10 mice *, p < 0.05 versus corresponding wild-type.

Figure 2: FPLC fractionation of lipoproteins in mSOD1 mice

A : Representative FPLC profiles of fed wild-type (grey line) and mSOD1 (black line)

mice. Note the depletion of VLDL and LDL cholesterol fractions in mSOD1 mice.

B: Quantification of the experiments presented in D. n = 6 mice *, p< 0.05 versus wild-

type. Column legends as in figure 1.

C: Quantification of FPLC profiles of 4h-fasted wild-type (grey line) and mSOD1 (black line)

mice. n = 3 pools of 3 mice. Column legends as in figure 1.

Figure 3: Increased intestinal absorption in mSOD1 mice

A : Real-time RT-PCR analysis of SOD1 expression in wild-type (Wt, empty columns),

non-symptomatic mSOD1 (NS, black columns) and symptomatic mSOD1 (onset, OS, black

columns). n= 5 mice. *, p < 0.05 versus wild-type. mRNA levels are expressed in arbitrary

units (A.U.) and are normalized to 18S rRNA.
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B: Gastric emptying of methylene blue in non-symptomatic mSOD1 (black columns) and

wild-type (empty columns) mice. Animals were sacrificed 30 minutes after gavage, and the

remaining methylene blue in the stomach was assayed spectrophotometrically and compared

to reference mice sacrificed 1 minute after gavage. n = 9 mice. No difference is observed

between the two groups.

C: Intestinal transit of methylen blue in the same mice presented in A. No difference is

observed between the two groups.

D: Scheme depicting the experimental paradigm used in E and F. Triglycerides (TG) are

perfused into the intestinal segment, hydrolyzed by intestinal enzymes into non-esterified

fatty acids (NEFA), absorbed in enterocytes and re-converted in TG before chylomicron

secretion.

E-F: Levels of TG and NEFA in the intestinal lumen as a function of time of perfusion. Note

that TG decrease faster in mSOD1 mice (black line) than in wild-type mice (grey line) (panel

E), whereas steady state levels of NEFA remained constantly lower in mSOD1 mice but

increased gradually in wild-type mice (panel F). n = 6-8 mice. *, p < 0.05 versus

corresponding perfusion time in wild-type mice.

G : Glucose absorption rate in wild-type (empty column) and non-symptomatic mSOD1 mice

(black column). No significant difference is noted between the groups. n = 3-4 mice.

Figure 4 : Hepatic metabolism in mSOD1 mice

A : Real-time RT-PCR analysis of the indicated genes in the liver of wild-type (Wt, empty

columns), non-symptomatic (NS) or symptomatic at onset (OS) mSOD1 mice (black

columns). n = 7 mice. *, p < 0.05 versus wild-type mice. mRNA levels are expressed in

arbitrary units (A.U.) and are normalized to 18S rRNA.
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B : Representative Oil red O stainings of liver sections from wild-type (Wt), non-

symptomatic (NS mSOD1) and symptomatic at onset (OS mSOD1) mSOD1  mice. n = 3-5

mice.

Figure 5: lipoprotein production and clearance in mSOD1 mice

A: Determination of vLDL-TG production rates in wild-type (Wt, grey line) and non-

symptomatic mSOD1  mice (mSOD1, black line) After a 4-hour fast, tyloxapol was injected

iv and plasma samples were assayed for TG content at the indicated time points. Note that TG

increases are indistinguishable between the two groups of animals, thus showing that vLDL

secretion is normal in mSOD1 animals. n = 6 mice.

A : Plasma TG content during a fat-loading test in wild-type (Wt, grey line) and non-

symptomatic mSOD1 mice (mSOD1, black line) (n = 6 mice). After a 4-hour fast, mice were

gavaged with 400 µl olive oil. Before and after fat loading, blood was collected serially, and

plasma TG levels were measured. The experiments was repeated three times with independent

cohorts of mice and yielded similar results. *P < 0.05 versus control littermates.

Figure 6 : expression of genes involved in lipid uptake in skeletal muscles of mSOD1

mice

A : Real-time RT-PCR analysis of LPL expression in the hindlimb skeletal muscles  of

wild-type (Wt, empty columns), non-symptomatic (NS) or symptomatic at onset (OS)

mSOD1mice (black columns). mRNA levels of LPL were also measured in axotomized mice

(Axo) at the ipsilateral (I) and contralateral (C) side of the lesion. Sham-operated mice served

as control. *, p < 0.05 versus corresponding wild-type mice at the same time point. mRNA



Fergani et al. 31/37/

levels are expressed in arbitrary units (A.U.) and are normalized to 18S rRNA.

B : Total LPL activity in hindlimb muscles of wild-type (Wt, empty column) and non-

symptomatic mSOD1 mice (black column).  n = 8 mice. No significant difference was noted

between the two groups.

C : Real-time RT-PCR analysis of the indicated genes in the hindlimb skeletal muscles  of

wild-type (Wt, empty columns), non-symptomatic (NS) or symptomatic at onset (OS)

mSOD1mice (black columns). *, p < 0.05 versus corresponding wild-type mice. mRNA

levels are expressed in arbitrary units (A.U.) and are normalized to 18S rRNA.

D: Real-time RT-PCR analysis of the indicated genes in the hindlimb skeletal muscles  of

wild-type (Wt, empty columns), non-symptomatic (NS) and symptomatic at onset (OS) G93A

mice (black columns). n = 6 mice. *, p < 0.05 versus corresponding wild-type mice. mRNA

levels are expressed in arbitrary units (A.U.) and are normalized to 18S rRNA.
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