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Finite dimensional comodules over the Hopf algebra of rooted trees

Let I n be the ideal of H R generated by the homogeneous elements of weight greater than or equal to n and J n the ideal of U(L 1 ) generated by the homogeneous elements of weight greater than or equal to n.

One defines an algebra structure on H R * g by dualising the coproduct on H R and a coalgebra structure on U(L 1 ) * g by dualising the product of U(L 1 ). Then we have the following result:

Introduction

In [START_REF] Broadhurst | Renormalization automated by Hopf algebra[END_REF][START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF][START_REF] Kreimer | On the Hopf algebra structure of pertubative quantum field theories[END_REF][START_REF]On Overlapping Divergences[END_REF], a Hopf algebra of rooted trees H R was introduced. It was shown that the antipode of this algebra was the key of a problem of renormalization ( [START_REF]Combinatorics of (pertubative) Quantum Field Theory[END_REF]). H R is related to the Hopf algebra H CM introduced in [START_REF] Connes | Hopf algebras, cyclic Cohomology and the transverse index Theorem[END_REF]. Moreover, the dual algebra of H R is the enveloping algebra of the Lie algebra of rooted trees L 1 . An important problem was to give an explicit construction of the primitive elements of H R . In [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF], a bigradation allowed to compute the dimensions of the graded parts of the space of primitive elements.

The aim of this paper is an algebraic study of H R . We first use the duality theorem of [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF] to prove a result about the subcomodules of a finite dimensional comodule over the Hopf algebra of rooted trees. Then we use this result to construct comodules from finite families of primitive elements. Furthermore, we classify these comodules by restricting the possible families of primitive elements, and taking the quotient by the action of certain groups. We also show how the study of the whole algebra as a left-comodule leads to the bigrading of [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF]. We then prove that L 1 is a free Lie algebra.

In the next section, we prove a formula about primitive elements of the Hopf algebra of ladders, which was already given in [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF], and construct a projection operator on the space of primitive elements. This operator produces the operator S 1 of [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF]. Moreover, it allows to obtain a basis of the primitive elements by an inductive process, which answers one of the questions of [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF].

The following sections give results about the endomorphisms of H R . First, we classify the Hopf algebra endomorphisms using the bilinear map related to the growth of trees. Then we study the coalgebra endomorphisms, using the graded Hopf algebra gr(H R ) associated to the filtration by deg p of [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF]. We finally prove that H R ≈ gr(H R ), and deduce a decomposition of the group of the Hopf algebra automorphisms of H R as a semi-direct product.

Preliminaries

We will use notations of [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF][START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF]. Call a rooted tree t a connected and simply-connected finite set of oriented edges and vertices such that there is one distinguished vertex with no incoming edge; this vertex is called the root of t. The weight of t is the number of its vertices. The fertility of a vertex v of a tree t is the number of edges outgoing from v. A ladder is a rooted tree such that every vertex has fertility less than or equal to 1. There is a unique ladder of weight i; we denote it by l i .

We define the algebra H R as the algebra of polynomials over Q in rooted trees. The monomials of H R will be called f orests. It is often useful to think of the unit 1 of H R as an empty forest. We are going to give a structure of Hopf algebra to H R . Before this, we define an elementary cut of a rooted tree t as a cut at a single chosen edge. An admissible cut C of a rooted tree t is an assignment of elementary cuts such that any path from any vertex of the tree has at most one elementary cut. A cut maps a tree t into a forest t 1 . . . t n . One of the t i contains the root of t: it will be denoted by R C (t). The product of the others will be denoted by P C (t). Then ∆ is the morphism of algebras from H R into H R ⊗ H R such that for any rooted tree t, ∆(t) = 1 ⊗ t + t ⊗ 1 + C admissible cut The counit is given by ε(1) = 1, ε(t) = 0 for any rooted tree t. Then H R is a Hopf algebra, with antipode given by :

P C (t) ⊗ R C (t).
S(t) = all cuts of t (-1) n C +1 P C (t)R C (t)
where n C is the number of elementary cuts in C.

Moreover, H R is graded as Hopf algebra by degree(t) = weight(t).

For example, for all n ∈ N * , So the subalgebra of H R generated by the ladders is a Hopf subalgebra; we will denote it by H ladder .

∆(l n ) = 1 ⊗ l n + l n ⊗ 1 + n-1 j=1 l j ⊗ l n-j .
We will use the Lie algebra of rooted trees L 1 . It is the linear span of the elements Z t indexed by rooted trees. For t 1 , t 2 , t rooted trees, one defines n(t 1 , t 2 ; t) as the number of elementary cuts of t such that P C (t) = t 1 and R C (t) = t 2 . Then the Lie bracket on L 1 is given by:

[Z t 1 , Z t 2 ] = t n(t 1 , t 2 ; t)Z t - t n(t 2 , t 1 ; t)Z t .
L 1 is graded as Lie algebra by degree(Z t ) = weight(t). The enveloping algebra U(L 1 ) is graded as Hopf algebra with the corresponding gradation (see [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF]). It is shown in [START_REF] Hoffman | Combinatorics of Rooted Trees and Hopf Algebras[END_REF][START_REF] Panaite | Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees[END_REF] that U(L 1 ) and the Grossman-Larson Hopf algebra on rooted trees are isomorphic (see [START_REF] Grossman | Hopf-algebraic Structure of Families of trees[END_REF][START_REF]Hopf-algebraic structure of combinatorial objects and differential operators[END_REF]).

3 Duality between H R -comodules and U(L 1 )-modules

We shall use the following result of [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF]:

Theorem 3.1
There is a bilinear form on U(L 1 ) × H R defined in the following way: for every rooted tree t, for every forest F ,

< 1, F > = ε(F ), < Z t , F > = 0 if F = t, = 1 if F = t, and < Z 1 Z 2 , P > = < Z 1 ⊗ Z 2 , ∆(P ) > for any Z 1 , Z 2 ∈ U(L 1 ), P ∈ H R .
An easy induction on weight (P (t i )) proves the following property:

Lemma 3.2 If l ∈ U(L 1 ) and P (t i ) ∈ H R are homogeneous of different degrees, then < l, P (t i ) >= 0. Corollary 3.3 Let Φ : H R -→ U(L 1 ) * g P (t i ) -→ ., P (t i )
and let Ψ :

U(L 1 ) -→ H * g R l -→ l, . .
Then Φ is a coalgebra isomorphism and Ψ is an algebra isomorphism.

One can now dualise H R -comodules and U(L 1 )-modules. First, we have:

Proposition 3.4 Let C be a H R -comodule and ∆ C its structure map: C -→ H R ⊗ C. Then C * is a U(L 1 )-module with: ∀l ∈ U(L 1 ), ∀f ∈ C * , ∀x ∈ C, l.f (x) = (x)
l, x (1) f (x (2) )

where

∆ C (x) = (x)
x (1) ⊗ x (2) .

Proof: classical; see [START_REF] Sweedler | Hopf algebras[END_REF].

Proposition 3.5 Let M be a U(L 1 )-module. Let M * g = {f ∈ M * /∃n ∈ N, f (J n M) = (0)}. Then M * g is a H R -comodule with ∆ M : M * g -→ H R ⊗ M * g defined by: ∀f ∈ M * g , ∀l ∈ U(L 1 ), ∀x ∈ M, with ∆ M (f ) = (f ) f (1) ⊗ f (2) : ∆ M (f ).(l ⊗ m) = (f ) l, f (1) f (2) (m) = f (l.m).
Proof:

Let α :    U(L 1 ) * g ⊗ M * g -→ (U(L 1 ) ⊗ M) * f ⊗ g -→ U(L 1 ) ⊗ M -→ Q l ⊗ m -→ f (l)g(m);
α is injective. If µ is the structure map of M and µ * its transpose (µ : U(L 1 ) ⊗ M -→ M), we have to show that Imµ * ⊂ Imα. With the definition of M * g , one easily has:

Imα = {f ∈ (U(L 1 ) ⊗ M) * /∃n ∈ N, f (J n ⊗ M) = (0), f (A ⊗ J n M) = (0)}. Let f ∈ M * g , l ⊗ m ∈ U(L 1 ) ⊗ M. µ * (f )(l ⊗ m) = f (l.m). As f ∈ M * g , clearly µ * (f ) is in Imα. Proposition 3.6 Let M 1 , M 2 two U(L 1
)-modules, with M 1 ⊂ M 2 ; there exists an injection of comodules:

(M 2 /M 1 ) * g -→ M * g 2 .
Proof: let p : M 2 -→ M 2 /M 1 the canonical surjection; then it is easy to see that its transpose is an injective morphism of comodules from (M 2 /M 1 ) * g to M * g 2 .

Proposition 3.7 Let C a finite-dimensional H R -comodule. Then C * is a U(L 1 )-module, and (C * ) * g is the whole of (C * ) * . Moreover C and (C * ) * are isomorphic H R -comodules.

Proof: let l ∈ U(L 1 ), f ∈ C * , x ∈ C. Then (l.f )(x) = (x) l, x (1) , f (x (2) ).

Let k x = max (x) weight(x (1) ) + 1. If l is homogeneous of weight greater than k x , then (l.f )(x) = 0 (lemma 3.2). As C is finite-dimensional, there exists k ∈ N, k ≥ k x ∀x ∈ C, hence J k .C * = (0), and hence (C * ) * g = (C * ) * . It is then easy to show that the canonical isomorphism between C and (C * ) * is a comodule isomorphism.

We are now ready to prove the: Theorem 3.8 Let C be a finite-dimensional H R -comodule and n its dimension; then C has a complete flag of comodules, that is to say: ∀i ∈ {1 . . . n}, ∃ C (i) a subcomodule of C of dimension i, with

C (1) ⊂ . . . ⊂ C (n) = C.
Proof: it is enough to exhibit a subcomodule of dimension n -1. By proposition 3.4, C * is a U(L 1 )-module, and there exists k ∈ N, J k .C * = (0). Hence as a L 1 -module, l.C * = (0) for every l in L 1 , homogeneous of weight greater than n. So C * is in fact a module over the quotient of L 1 by the Lie ideal generated by these l, and it is clear that this quotient is a finite-dimensional nilpotent Lie algebra. Moreover, every l ∈ L 1 is a nilpotent endomorphism of C * . By Engel's theorem, C * has a submodule C' of dimension 1.

J k .(C * /C ′ ) = (0) because J k .C * = (0), so (C * /C ′ ) * g = (C * /C ′ ) *
, and the dimension of this comodule is n -1. By proposition 3.7, C is isomorphic to (C * ) * which has a subcomodule of dimension n -1 by proposition 3.6.

Remark: one can use the fact that L 1 acts by zero on C ′ (which is given by Engel's theorem), to show that the quotients

C (i+1) C (i) are trivial comodules, that is to say ∆(x) = 1 ⊗ x ∀x ∈ C (i+1) C (i) .

Natural growth

Let M, N be two forests of H R . We define:

M⊤N = 1 weight(N )
forests obtained by appending M to every node of

N if N = 1 M if N = 1.
We extend .⊤. to a bilinear map from In the following we use the notation ∆(x) = ∆(x) -1 ⊗ x -x ⊗ 1 for every x ∈ H R . We have P rim(H R ) = Ker( ∆). Lemma 4.1 Let x ∈ H R and y be a primitive element of H R . Then we have:

H R × H R into H R .
∆(x⊤y) = x ⊗ y + (x)
x (1) ⊗ (x (2) ⊤y)

where ∆(x) = (x) x (1) ⊗ x (2) . Proof: see [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF], section 5.4. Definition 4.2 Let i ∈ N * and p 1 , . . . , p i be primitive elements of H R . By induction on i we define p i ⊤ . . . ⊤p 1 by (p i ⊤ . . . ⊤p 2 )⊤p 1 . And we define:

F i : P rim(H R ) ⊗i -→ H R p i ⊗ . . . ⊗ p 1 -→ p i ⊤ . . . ⊤p 1 . Lemma 4.3 Let p 1 , . . . , p i be primitive elements of H R . ∆(p i ⊤ . . . ⊤p 1 ) = j=i-1 j=1 (p i ⊤ . . . ⊤p j+1 ) ⊗ (p j ⊤ . . . ⊤p 1 ).
Proof: by induction, using 4.1.

One remarks easily that ∆ is still coassociative. We define ∆0 = Id H R -η • ε, ∆1 = ∆, and by induction ∆k = ( ∆k-1 ⊗ Id) • ∆.

Lemma 4.4 Let i ∈ N * ; then ∆i-1 • F i = Id [P rim(H R )] ⊗i ; if k > i -1, ∆k • F i = 0.
Moreover, F i is injective, and the sum (1) + ∞ i=1 Im(F i ) is direct. Proof: one shows the first point by induction, using 4.3. The second point is an immediate corollary. For the last point, let

x 0 ∈ Q, x i ∈ Im(F i ) ∀i ∈ {1 . . . n}, with x 0 1 + x 1 + . . . + x n = 0. Then ε(0) = x 0 = 0. Moreover, ∆n-1 (x 1 + . . . + x n ) = ∆n-1 (x n ) = 0. As x n = F n (y n )
for a certain y n , we have y n = 0, so x n = 0. One concludes by an induction on n.

Construction and parametrization of finite-dimensional

H R -comodules Definition 5.1 Let (i, j) ∈ (N * ) 2 , i ≤ j. We denote I i,j := {i . . . j}. A decomposition of I i,j is a partition of I i,j in connected parts. We denote a decomposition in the following way:

I i 1 ,j 1 . . . I i k ,j k with i = i 1 ≤ j 1 < i 2 ≤ . . . < i k ≤ j k = j;
we have i l+1 = j l + 1. We denote by D i,j the set of all decompositions of I i,j . There are 2 j-i decompositions of I i,j .

Proposition 5.2 Let n ≥ 1, (p i,j ) 1≤i≤j≤n any family of n(n+1)

2
primitive elements of H R . Let C be a vector space of dimension n + 1, with basis (e 0 , . . . , e n ). We define:

∆ C (e 0 ) = 1 ⊗ e 0 ; ∆ C (e i ) =   j=i-1 j=0   I i 1 ,j 1 ...I i k ,j k ∈D j+1,i p i k ,j k ⊤ . . . ⊤p i 1 ,j 1   ⊗ e j   + 1 ⊗ e i .
Then (C, ∆ C ) is a (left) H R -comodule. We denote this comodule by C (p i,j ) .

Proof: the axiom of counity is trivial. Coassociativity: we have to show that ((∆ ⊗ Id)

• ∆ C )(e i ) = ((Id ⊗ ∆ C ) • ∆ C )(e i ) ∀i. It is trivial for i = 0. For i ≥ 1, we have: ((Id ⊗ ∆ C ) • ∆ C )(e i ) = j=i j=0 l=j l=0   D j+1,i p i k ,j k ⊤ . . . ⊤p i 1 ,j 1   ⊗   D l+1,j p i ′ r ,j ′ r ⊤ . . . ⊤p i ′ 1 ,j ′ 1   ⊗ e l = i l=0 D l+1,i ∆(p i ′′ s ,j ′′ s ⊤ . . . ⊤p i ′′ 1 ,j ′′ 1 ) ⊗ e l (by 4.3) = ((∆ ⊗ Id) • ∆ C )(e i ).
The following theorem gives a parametrization of the finite dimensional H R -comodules by certain finite families of primitive elements:

Theorem 5.3 Let (C, ∆ C ) be a finite-dimensional comodule. If the dimension of C is 1, then C is trivial, that is to say ∆ C (x) = 1 ⊗ x ∀x ∈ C. If the dimension of C is n, n ≥ 2, then there is a finite family (p i,j ) 1≤i≤j≤n of n(n+1) 2 primitive elements of H R such that C is isomorphic to C (p i,j ) .
We shall use the following lemma:

Lemma 5.4 If x ∈ H R is such that ∆(x) = x ⊗ x, then x = 0 or 1. Proof: suppose x = 0. As ∆ is homogeneous of degree 0, x is of weight 0. It is then trivial that x = 1.
Proof of the theorem: let C (0) ⊂ . . . ⊂ C (n) be a complete flag of subcomodules, which exists by 3.8, and let (e 0 , . . . , e n ) be an adapted basis to this flag. Then we have a family

(Q i,j ) 1≤j≤i≤n of elements of H R such that ∆(e i ) = j=i j=0 Q i,j ⊗ e j . (If n = 0, then (Q i,j ) 1≤j≤i≤n is empty). The axiom of counity implies that ε(Q i,i ) = 1, and ∆(Q i,j ) = l=i l=j Q i,l ⊗ Q l,j
by the axiom of coassociativity. So by the lemma, Q i,i = 1 ∀i, which proves the theorem for n = 0. Moreover,

Q i,i-1 is primitive. If n = 1, C ≈ C (p 1,1 ) with p 1,1 = Q 1,0 .
We end with an induction on n: by induction hypothesis on C ′ spanned by (e 0 , . . . , e n-1 ), we have

p i,j , 1 ≤ i ≤ j ≤ n -1. With p n,n = Q n,n-1 , we have Q n,n-1 = Dn,n p i k ,j k ⊤ . . . ⊤p i 1 ,j 1 . Suppose we have built p n,n , . . . , p i+1,n , such that Q n,i = D i+1,n p i k ,j k ⊤ . . . ⊤p i 1 ,j 1 . Then ∆(Q n,i-1 ) = l=n-1 l=i   D l+1,n p i k ,j k ⊤ . . . ⊤p i 1 ,j 1   ⊗   D i,l p i ′ r ,j ′ r ⊤ . . . ⊤p i ′ 1 ,j ′ 1   = D i,n -{I i,n } ∆(p i ′′ s ,j ′′ s ⊤ . . . ⊤p i ′′ 1 ,j ′′ 1 ).
As Ker( ∆) = P rim(H R ), we take

p i,n = Q n,i-1 - D i,n -{I i,n } (p i ′′ s ,j ′′ s ⊤ . . . ⊤p i ′′ 1 ,j ′′ 1 ).

Remarks:

1. The family (p i,j ) depends on the choice of the basis (e 0 , . . . , e n ), hence is not unique.

2. By the following, we shall identify (p i,j ) 1≤i≤j≤n with

     0 p 1,1 • • • p 1,n . . . . . . . . . . . . 0 • • • . . . p n,n 0 • • • • • • 0      = P ∈ M n+1 (P rim(H R ))
where M n+1 (P rim(H R )) is the space of square matrices of order n + 1 with entries in P rim(H R ). With the notation of the proof of 5.3, we will write

Q =      Q 0,0 0 • • • 0 . . . . . . . . . . . . Q n-1,0 • • • . . . 0 Q n,0 • • • • • • Q n,n      ∈ M n+1 (H R )
where M n+1 (H R ) is the space of square matrices of order n + 1 with entries in H R . Recall that F i was defined in 4.2. Let π 1 be the projection on

P rim(H R ) = Im(F 1 ) in (1) ⊕ ⊕ i=∞ i=1 Im(F i ). Then Q i,j ∈ (1) ⊕ ⊕ i=∞ i=1 Im(F i ), and π 1 (Q i,j ) = p j+1,i
, or in a matricial form: P = π 1 (Q T ) (here π 1 acts on each entry of the matrix).

6 Classification of the finite-dimensional H R -comodules Definition 6.1 Let (p i,j ) 1≤i≤j≤n be a family of n(n+1) 2 primitive elements of H R and P the associated matrix as in the remark 5.6. We say that (p i,j ) is reduced if there are c 0 , . . . , c k ∈ N * such that:

P =      0 P 1,1 • • • P 1,k . . . . . . . . . . . . 0 • • • . . . P k,k 0 • • • • • • 0     
where the diagonal zero blocs are in M c 0 (H R ), . . . , M c k (H R ) and the columns in each bloc P i,i , 1 ≤ i ≤ k, are linearly independent; (c 0 , . . . , c k ) is called the type of (p i,j ).

Example:

Let P =       0 a b x y 0 0 0 c e 0 0 0 d f 0 0 0 0 0 0 0 0 0 0       ∈ M 5 (P rim(H R )).
Suppose that a and b are linearly independent in the vector space H R , and c d and e f are linearly independent in the vector space H 2 R . Then (p i,j ) is a reduced family of type (1,2,2).

Definition 6.2 Let C be a H R -comodule. One defines C 0 = {x ∈ C/∆ C (x) = 1 ⊗ x} and, by induction, C i+1 the unique subcomodule of C such that i) C i ⊂ C i+1 ; ii) C i+1 C i = C C i 0 . If C is finite-dimensional, then by 5.3, C is isomorphic to a C (p i,j ) and so C 0 is a non-zero subcomodule of C. Moreover, if i ≥ 0, we have C i+1 C i = ( C C i ) 0 , so C i+1
C i is non-zero and we get in this way a flag of comodules: there is k ∈ N, such that C 0 . . . C k = C. Proposition 6.3 Let (p i,j ) 1≤i≤j≤n be a reduced family of primitive elements of type (c 0 , . . . , c k ) and (e 0 , . . . , e n ) the basis of C (p i,j ) as decribed in 5.2. Then for all l ∈ {0 . . . k}, (e 0 , . . . , e c 0 +...+c l -1 ) is a basis of (C (p i,j ) ) l .

Proof: as P = π 1 (Q T ), we can write:

Q =      Id 0 • • • 0 Q 1,0 . . . . . . 0 . . . • • • . . . . . . Q k,0 • • • Q k,k-1 Id     
where the diagonal blocs are in

M c 0 (H R ), . . . , M c k (H R ).
Because of coassociativity, the elements in the blocs Q i,i-1 are primitive, so Q i,i-1 = P T i,i and the rows of the blocs Q i,i-1 are linearly independent. We easily deduce that (e 0 , . . . , e c 0 -1 ) is a basis of C 0 . We conclude by induction on n, with the remark that C C 0 is isomorphic to C (p ′ i,j ) , with:

P ′ =      0 P 2,2 • • • P 2,k . . . . . . . . . . . . 0 • • • . . . P k,k 0 • • • • • • 0      so (p ′ i,j
) is a reduced family of type (c 1 , . . . , c k ). Proposition 6.4 Let C be a comodule of finite dimension with a basis (e 0 , . . . , e n ) such that (e 0 , . . . , e dim(C i )-1 ) is a basis of C i for 0 ≤ i ≤ k. Let (p i,j ) be the family of primitive elements built as in the proof of 5.3. Then (p i,j ) is a reduced family of type (c 0 , . . . , c k ),

with c 0 = dim(C 0 ), c i = dim(C i ) -dim(C i-1 ) for 1 ≤ i ≤ k. Proof: as C i C i-1
is trivial, we have:

Q =      Id 0 • • • 0 Q 1,0 . . . . . . 0 . . . • • • . . . . . . Q k,0 • • • Q k,k-1 Id     
where the diagonal blocs are in M c 0 (H R ), . . . , M c k (H R ), and the blocs Q i,i-1 are formed of primitive elements. Suppose the rows of the bloc Q i,i-1 are not linearly independent.

Then we can build an element

x ∈ C i+1 -C i , with ∆ C (x) ≡ 1 ⊗ x [H R ⊗ C i-1 ], hence x is a trivial element of C C i-1
, which contradicts the definition of C i . We conclude using the equality P = π 1 (Q T ). Corollary 6.5 For any finite-dimensional comodule C, there exists a reduced family (p i,j ) such that C is isomorphic to C (p i,j ) . If (p i,j ) and (p ′ i,j ) are reduced families with C (p i,j ) and C (p ′ i,j ) isomorphic, then (p i,j ) and (p ′ i,j ) have the same type. In the following, we call "type of a comodule C" the type of any reduced family (p i,j ) such that C is isomorphic to C (p i,j ) . Given (c 0 , . . . , c k ), we call

G (c 0 ,...,c k ) =               g 0,0 g 0,1 • • • g 0,k . . . . . . . . . . . . 0 • • • . . . g k-1,k 0 • • • • • • g k,k      , g i,i ∈ GL c i (Q)          ⊂ GL c 0 +...+c k (Q).
G (c 0 ,...,c k ) is a parabolic subgroup of GL c 0 +...+c k (Q), and it acts on the set of reduced families of type (c 0 , . . . , c k ) by g.P = gPg -1 , where g ∈ G (c 0 ,...,c k ) , and P is the matrix of a reduced family (p i,j ).

Theorem 6.6 Let (p i,j ) and (p ′ i,j ) be two reduced families of primitive elements of H R , and (c 0 , . . . , c k ) be the type of (p i,j ). Then C (p i,j ) ≈ C (p ′ i,j ) if and only if (p i,j ), (p ′ i,j ) have the same type and there exists g ∈ G (c 0 ,...,c k ) , such that P ′ = g.P.

Proof:

we put C = C (p i,j ) , C ′ = C (p ′ i,j ) . ⇐: we have P ′ = g.P, so Q = (g T ) -1 Q ′ g T . Let (g T ) -1 = (a i,j ) 0≤i,j≤n , g T = (b i,j ) 0≤i,j≤n
and let (f 0 , . . . f n ) be the basis of C defined by f i = j b i,j e j . An easy direct computation shows that ∆

C (f i ) = j,k (b i,j Q j,k a k,l ) ⊗ f l = i Q ′ i,l ⊗ f l . So C ≈ C ′ . ⇒: then there exists A ∈ GL n+1 (Q), with inverse B such that if f i = j b i,j e j , then ∆ C (f i ) = l Q ′ i,l ⊗ f l .
Then the same computation shows that Q ′ i,l = j,k b i,j Q j,k a k,l or equivalently: Q ′ = A -1 QA. Hence, P = A T P ′ A T -1 . As (p ′ i,j ) is reduced, C i = (f 0 , . . . , f c 0 +...+c i -1 ) = (e 0 , . . . , e c 0 +...+c i -1 ) so A T ∈ G (c 0 ,...,c k ) .

We have now entirely proved the following theorem: Theorem 6.7 Let P (c 0 ...c k ) be the set of the reduced families of primitive elements of H R of type (c 0 , . . . , c k ), and O (c 0 ,...,c k ) the orbit space under the action of the parabolic subgroup G (c 0 ,...,c k ) of GL c 0 +...+c k (Q). Then there is a bijection from O (c 0 ...c k ) into the set of H Rcomodules of type (c 0 , . . . , c k ). Moreover there is a bijection from the disjoint union of the O (c 0 ...c k ) 's into the set of finite-dimensional comodules.

Example: let C be a comodule of dimension 2. Then its type can be (2) or (1, 1). We have: if and only if ∃λ ∈ Q * , p ′ = λp. Hence, O (1,1) is in bijection with the projective space associated to P rim(H R ), and O (2) is reduced to a single point, which corresponds to the trivial comodule of dimension 2.

P (2) = 0 0 0 0 , P (1,1) = 0 p 0 0 /p = 0 .
We now give a characterization of comodules of type (n + 1) and type (1, . . . , 1).

Proposition 6.8 Let C be a comodule of dimension n + 1.

1. C is of type (n + 1) ⇐⇒ C is trivial. 2.
C is of type (1, . . . , 1) ⇐⇒ ∀i ∈ {1 . . . n + 1}, C has a unique subcomodule of dimension i. In particular, if C is of type (1, . . . , 1), C admits a unique complete flag of subcomodules.

Proof: 1. is obvious. 2. ⇐: let C (i) be the unique subcomodule of dimension i + 1 of C. Let x ∈ C 0 , x = 0. Then (x) is a subcomodule of dimension 1 of C, so (x) = C (0) and we get

C 0 = C (0) . Suppose that C i-1 = C (i-1) . Let x ∈ C i -C i-1 , then C i-1 ⊕ (x) is a subcomodule of dimension i + 1 of C, so it is equal to C (i) and we get C i = C (i) . Hence, the type of C is (1, . . . , 1). ⇒: let C ′ be a subcomodule of dimension 1 of C. Then C ′ is trivial, so C ′ ⊂ C 0 . As dim(C 0 ) = 1, C ′ = C 0 . Suppose that C has a unique subcomodule of dimension i. Then it is C i-1 . Let C ′′ be a subcomodule of dimension i + 1. It has a subcomodule of dimension i, so C i-1 ⊂ C ′′ . Moreover, C ′′ C i-1 is trivial, so C ′′ ⊂ C i .
As they have the same dimension, C ′′ = C i .

To conclude this section, we indicate how finite-dimensional comodules can help in renormalization. Recall the Toy model of [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF]. For a rooted tree t with n vertices, enumerated such that the root has number one, we associate the integral

x t (c) = ∞ 0 1 y 1 + c n i=2 1 y i + y j(i) y -ε n dy n . . . y -ε 1 dy 1 , ∀c > 0,
where j(i) is the number of the vertex to which the i-th vertex is connected via its incomming edge. Let {t 1 , . . . , t m = t} = {R C (t)/C cut of t}. We take the comodule C with basis (x t 1 , . . . x tm ), and structure map defined by

∆ C (x t i ) = 1 ⊗ x t i + admissible cuts C of t i P C (t i ) ⊗ x R C (t i ) .
With [M] = x M (0) for M a non-empty forest, and [1] = 1, we consider the integral:

x t (c) = (([.] ⊗ Id) • (S ⊗ Id) • (∆ C )) (x t )
Then the renormalized function is:

x R t (c) = lim ε -→ 0 (x t (c) -[x t (c)]).
We don't have to worry anymore about non commutativity within the forests.

Example:

x l 1 (c) = ∞ 0 1 y 1 + c y -ε 1 dy 1 , x l 2 (c) = ∞ 0 1 y 1 + c 1 y 2 + y 1 y -ε 2 dy 2 y -ε 1 dy 1 , x l 3 (c) = ∞ 0 1 y 1 + c 1 y 2 + y 1 1 y 3 + y 2 y -ε 3 dy 3 y -ε 2 dy 2 y -ε 1 dy 1 .
We take the comodule C with basis (x l 1 , x l 2 , x l 3 ). We then get:

∆ C (x l 3 ) = 1 ⊗ x l 3 + l 1 ⊗ x l 2 + l 2 ⊗ x l 1 . So x l 3 (c) = x l 3 (c) -[x l 1 (c)]x l 2 (c) -[x l 2 (c)]x l 1 (c) + [x l 1 (c)x l 1 (c)]x l 1 (c), and x R l 3 (c) = lim ε→0 x l 3 (c) -[x l 1 (c)]x l 2 (c) -[x l 2 (c)]x l 1 (c) + [x l 1 (c)x l 1 (c)]x l 1 (c) -[x l 3 (c)] + [[x l 1 (c)]x l 2 (c)] + [[x l 2 (c)]x l 1 (c)] -[[x l 1 (c)x l 1 (c)]x l 1 (c)] .
7 H R as a comodule. Bigrading H R Here, we consider the (left-)comodule C = (H R , ∆). Of course it is not finitedimensional, but it is the union of finite-dimensional comodules (for example, the comodules linearly spanned by the forests of weight less than n, n ∈ N).

Proposition 7.1 C 0 = (1); if i ≥ 1 then C i = (1) ⊕ ⊕ j=i j=1 Im(F j ). Proof: C 0 : let x ∈ C, ∆(x) = 1 ⊗ x. Then x = (Id ⊗ ε)(∆(x)) = ε(x)1: x is constant. i ≥ 1: induction on i. Let x ∈ C i+1 , ∆(x) = 1 ⊗ x + x ⊗ 1 + j x (1) j ⊗ x (2) j . By hypothesis, the x (2) j 's are in C i = (1) ⊕ ⊕ j=i j=1 Im(F j ). Suppose that x (2) 1 . . . x (2) l are in Im(F i ), the others in C i-1 . By coassociativity of ∆, x (1) 1 . . . x (1) l are primitive. Then ∆ x -F i+1 j=l j=1 x (1) j ⊗ F -1 i (x (2) 
j ) ≡ 1 ⊗ x [H R ⊗ C i-1 ] , so x-F i+1 j=l j=1 x (1) 
j ⊗ F -1 i (x (2) 
j ) ∈ C i . Hence, C i+1 = C i +Im(F i+1
). The result is then trivial.

Proposition 7.2 C = (1) ⊕ ⊕ j=∞ j=1 Im(F j ). Proof: let H n be the subspace of H R generated by the homogeneous elements of weight n. Then ⊕ n i=0 H i is a subcomodule of C. By 6.2, we have (⊕ n i=0 H i ) k ⊂ C k . For a k large enough, we have:

⊕ n i=0 H i = (⊕ n i=0 H i ) k ⊂ C k . So as H R = ⊕ ∞ i=0 H i , we have the result.
It is now easy to see that C i = Ker( ∆i ) ⊕ (1). We recognize then the second grading of [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF], that is to say

C i = {x ∈ H R /deg p (x) ≤ i}, which defines deg p . Following [3], we put H n,k = H n ∩ C k , h n,k = dim(H n,k ), and r n = dim(H n ). One has h 0,0 = 1 and h n,0 = 0 if n = 0. Note that h n,1 = dim(H n ∩ P rim(H R )). Proposition 7.3 Let Θ n = b 1 +2b 2 +...+nbn=n (-1) b 1 +...+bn+1 (b 1 + . . . + b n )! b 1 ! . . . b n ! X b 1 1 . . . X bn n ∈ Q[X 1 . . . X n ] and ϕ n,k = b 1 +2b 2 +...+nbn=n b 1 +b 2 +...+bn=k k! b 1 ! . . . b n ! X b 1 1 . . . X bn n ∈ Q[X 1 . . . X n ].
Then h n,1 = Θ n (r 1 , . . . , r n ) ∀n ∈ N, and h n,k = ϕ n,k (h 1,1 , . . . , h n,1 ) ∀n, k ∈ N * .

Proof:

We also need

Φ n = b 1 +2b 2 +...+nbn=n (b 1 + . . . + b n )! b 1 ! . . . b n ! X b 1 1 . . . X bn n ∈ Q[X 1 . . . X n ].
As the F i are homogeneous, we have

H n = ⊕ n i=1 ⊕ b 1 +...+b i =n F i (⊗ n j=1 H b j ,1
). As the F i are injective, we find: r n = Φ n (h 1,1 , . . . , h n,1 ). Let's work in the algebra of formal power series Q[[X 1 , . . . , X n , . . .]]. In this algebra,we have:

(b 1 ,...,bn) =(0,...,0) (b 1 + . . . + b n )! b 1 ! . . . b n ! X b 1 1 . . . X bn n = k =0 b 1 +...+kb k =k (b 1 + . . . + b k )! b 1 ! . . . b k ! X b 1 1 . . . X b k k = k =0 Φ k (X 1 , . . . , X k ) = l =0 b 1 +...+b k =l l! b 1 ! . . . b k ! X b 1 1 . . . X b k k = l =0 i =0 X i l = i =0 X i 1 -i =0 X i .
We then get:

k =0 Φ k (-Φ 1 , . . . , -Φ k ) = -i =0 Φ i 1 + i =0 Φ i = -X i 1-X i 1 + X i 1-X i = - i =0 X i .
Hence, by putting X i in weight i and by comparing the homogeneous parts of each member, we find Φ

k (-Φ 1 , . . . , -Φ k ) = -X k , or equivalently Θ k (Φ 1 , . . . , Φ k ) = X k . So Θ k (Φ 1 (h 1,1 ), . . . , Φ k (h 1,1 , . . . , h k,1 )) = Θ k (r 1 , . . . , r k ) = h k,1 . If k > 1, then H n,k = ⊕ c 1 +...+c k =n F k (H c 1 ,1 , . . . , H c k ,1
). As F k is injective, we find the announced result.

We denote

H(X, Y ) = n,k h n,k X n Y k , H j (x) = n h n,j X n , R(X) = n r n X n . The second formula of 7.3 implies that H j (X) = H 1 (X) j , ∀j ∈ N. The first formula implies that 1 -H 1 (X) = 1 R(X) . We have then H(X, Y ) = ∞ j=0 H j (X)Y j = ∞ j=0 [H 1 (X)Y ] j = 1 1-H 1 (X)Y = R(X) Y +(1-Y )R(X)
, which is a reformulation of the main theorem of [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF] (with a small difference because of the different definitions of R(X)). We give the first values of r n and h n,1 in the appendix (see also [START_REF] Sloane | On-line Encyclopedia of Integer Sequences[END_REF]).

8 The Lie algebra L 1 Proposition 8.1

1. U(L 1 ) is a free algebra;

2. ∀l 1 , l 2 ∈ U(L 1 ), weight(l 1 l 2 ) = weight(l 1 ) + weight(l 2 ).

proof: let (p i ) i≥1 be a basis of P rim(H R ) such that the p i 's are homogeneous for the weight. By proposition 7.2 and lemma 4.4, (p i 1 ⊤ . . . ⊤p i k ) k≥0,i 1 ,...,i k ≥1 is a basis of H R . We define f j 1 ,...,j l ∈ H * R by :

f j 1 ,...,j l (p i 1 ⊤ . . . ⊤p i k ) = 1 if (j 1 , . . . , j l ) = (i 1 , . . . , i k ) 0 if (j 1 , . . . , j l ) = (i 1 , . . . , i k ).
l 1 , l 2 ∈< G >, and l ∈< G >.

We denote by F (G) the free associative algebra generated by the space G. The gradation of G induces a gradation of the algebra F (G). By the last lemma, we have a surjective algebra morphism:

Υ : F (G) -→ U(L 1 ) g ∈ G -→ g.
Moreover, Υ is homogeneous of degree 0. We now calculate the dimension f n of the homogeneous part of weight n of F (G) :

f n = a 1 +...+a k =n a i ≥1 ∀i h a 1 ,1 . . . h a k ,1 = b 1 +2b 2 +...+nbn=n b 1 + . . . + b n b 1 ! . . . b n ! h b 1 1,1 . . . h bn n,1 = r n .
(For the second equality, b i is the number of the a j 's equal to i; the third equality was shown in the proof of proposition 7.3).

As the homogeneous parts of U(L 1 ) and F (G) have the same finite dimension, and as Υ is surjective and homogeneous of degree 0, it is in fact an isomorphism.

We now put a Hopf algebra structure on F (G) by putting ∆(g) = g ⊗1 + 1 ⊗g ∀g ∈ G. As G ⊂ L 1 , the elements of G are primitive in both U(L 1 ) and F (G), so Υ is a Hopf algebra isomorphism. Hence, it induces a Lie isomorphism between P rim(F (G)) and P rim(U(L 1 )) = L 1 . But P rim(F (G)) is isomorphic to the free Lie algebra generated by G (see for example [START_REF] Bourbaki | Groupes et algèbres de lie[END_REF]), so we have the following result: Theorem 8.4 L 1 is a free Lie algebra. 9 Primitive elements 9.1 Primitive elements of the Hopf Algebra H ladder First, we construct a family of primitive elements of H ladder . For that, we introduce the Hopf algebra Q[X 1 , . . . , X n , . . .] with coproduct defined by ∆(

X i ) = X i ⊗ 1 + 1 ⊗ X i . In this algebra let Ψ n = a 1 +2a 2 ...+nan=n X a 1 1 . . . X an n a 1 ! . . . a n ! . Lemma 9.1 ∆(Ψ n ) = j=n j=0 Ψ j ⊗ Ψ n-j .
Proof: one easily shows that:

∆(X a 1 1 . . . X an n ) = n i=0 k i =a i k i =0 a 1 k 1 . . . a n k n X k 1 1 . . . X kn n ⊗ X a 1 -k 1 1 . . . X an-kn n . So ln 1 + k =0 Ψ k (X 1 , . . . , X k ) = ln 1 + (exp -1) i =0 X i = i =0 X i .
By putting X i in weight i, and comparing the homogeneous parts, we find:

a 1 +...+ia i =i (-1) a 1 +...+a i +1 (a 1 + . . . + a i -1)! a 1 ! . . . a i ! Ψ a 1 1 . . . Ψ a i i = X i .
As Ψ i (P 1 , . . . , P i ) = l i , we deduce: Proposition 9.3

P i = a 1 +...+ia i =i (-1) a 1 +...+a i +1 (a 1 + . . . + a i -1)! a 1 ! . . . a i ! l a 1 1 . . . l a i i .
In H R , consider the projection π c on the space spanned by rooted trees, which vanishes on the space spanned by non connected forests. We have: Lemma 9.4 let p ∈ H R be a primitive element such that π c (p) = 0. Then p = 0.

Proof: suppose p = 0, and let write p = α=(α 1 ,...,α k ) a α t α 1 1 . . . t α k k , where the t i 's are rooted trees, with ∂p ∂t i = 0. One can suppose that weight

(t k ) ≥ weight(t i ) ∀i. Let t α 1 1 . . . t α k k such that α k = 0 and a α = 0.
Let F a forest such that in the basis (

F 1 ⊗ F 2 ) F 1 and F 2 f orests of H R ⊗ H R , the coeffi- cient of t α 1 1 . . . t α k-1 k 1 ⊗ t k in ∆(F ) is = 0. Then F = t α 1 1 . . . t α k k ,
and then this coefficient is α k , or there exists t ′ a rooted tree with weight(t ′ ) > weight(t), such that ∂F ∂t ′ = 0. So the coefficient of t α 1 1 . . . t

α k-1 k 1 ⊗ t k in ∆(p) is α k a α = 0. As p is primitive, t k = 1 or t α 1 1 . . . t α k-1 k 1 = 1. If t k = 1, then p is constant: this is a contradiction, because then p would not be primitive. So t α 1 1 . . . t α k-1 k 1
= 1, and then π c (p) = 0.

Theorem 9.5 (P i ) i∈N * is a basis of the space of primitive elements in H ladder .

Proof: let p be a primitive element in H ladder . Then π c (p) is a linear combination of ladders, so there is a linear combination p ′ of P i such that π c (p) = π c (p ′ ). By the lemma, p = p ′ .

The operator π 1

Recall that π 1 is the projection on Im(F 1 ) = P rim(H R ) which vanishes on (1) ⊕ ⊕ j≥2 Im(F j ). Theorem 9.6 Let F be a non-empty forest.

We put ∆(F ) = (F ) F (1) ⊗ F (2) ; then:

π 1 (F ) = F - (F )
F (1) ⊤π 1 (F (2) ).

Proof: induction on weight(F ). If weight(F ) = 1, it is obvious. Suppose the formula is true for every forests of weight less than or equal to n -1. Let F be a forest of weight n. Then weight(F (2) ) < weight(F ), so:

∆(F ) = (F ) F (1) ⊗ F (2) = (F ) F (1) ⊗   π 1 (F (2) ) + (F (2) ) (F (2) ) (1) ⊤π 1 (F (2) ) (2) 
  = (F )   F (1) ⊗ π 1 (F (2) ) + (F (1) ) (F (1) ) (1) ⊗ (F (1) ) (2) ⊤π 1 (F (2) )   (by coassociativity) = (F )
∆ F (1) ⊤π 1 (F (2) ) (by 4.1).

So F -

(F )
F (1) ⊤π 1 (F (2) ) ∈ Im(F 1 ); as

(F )
F (1) ⊤π 1 (F (2) ) ∈ ⊕ j≥2 Im(F j ), we have the result for F .

So we have an easy way to find a family who generates the space of primitive elements of weight n, by induction on n. Moreover, we have relations between the π 1 (F ), which are given by π 1 (F ′ ⊤p) = 0 for any non-empty forest F ′ and for any primitive element p we have ever found. So we easily have a basis of the space of homogeneous primitive elements of weight n.

For example, for n = 1, we have π 1 (l 1 ) = l 1 ; the basis is (l 1 ); we have the relation π 1 (F ′ ⊤l 1 ) = 0 ∀F ′ non-empty forest; so R 1 : π 1 (T ) = 0 ∀T rooted tree of weight greater than or equal to 2.

Hence, for n = 2, we only have to compute

π 1 (l 2 1 ) = l 2 1 -2l 1 ⊤π 1 (l 1 ) = l 2 1 -2l 2 .
The basis is (l 2 1 -2l 2 ), and we have: π 1 (F ′ ⊤(l 2 1 -l 2 )) = 0, which gives: R 2 : π 1 (l 1 T ) = 0 ∀T rooted tree of weight greater than or equal to 2.

For n = 3, we have to compute π 1 (l 3 1 ); the others are zero by R 1 and R 2 . One finds the basis (l 3 1 -3l 1 l 2 + 3l 3 ) and the relation R 3 : π 1 (l 2 1 T ) = π 1 (l 2 T ) ∀T rooted tree of weight greater than or equal to 2.

For n = 4, one would have to compute π 1 (l 4 1 ) and π 1 (l 2 2 ), and so on.

Remark: by linearity, the formula of 9.6 is true for any x ∈ H R . For example, for x = p 1 p 2 , with p 1 , p 2 primitive elements of H R , one finds:

π 1 (x) = p 1 p 2 -p 1 ⊤p 2 -p 2 ⊤p 1 ; hence, S 1 (p 1 ) = π 1 (-Y (p 1 )l 1 )
with Y (F ) = weight(F ) F for all forest F , and S 1 defined in [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF].

10 Classification of the Hopf algebra endomorphisms of H R

In the sequel, we will denote by CT the set of (connected) rooted trees.

Definition 10.1 Let (P t ) t∈CT be a family of primitive elements of H R indexed by CT . Let Φ (Pt) be the algebra endomorphism of H R defined by induction on weight(T ) by:

Φ (Pt) (l 1 ) = P l 1 ; ∀T ∈ CT , with ∆(T ) = (T )
T (1) ⊗ T (2) ,

Φ (Pt) (T ) =   (T ) Φ (Pt) (T (1) )⊤P T (2)   + P T .
Then Φ (Pt) is a bialgebra endomorphism of H R .

Proof: one has to show (Φ (Pt) ⊗ Φ (Pt) ) • ∆(T ) = ∆(Φ (Pt) (T )) ∀T ∈ CT . We proceed by induction on n = weight(T ). It is obvious for n = 1, since then T = l 1 is primitive. Suppose it is true for all rooted trees of weight < n. Then as Φ (Pt) is an algebra endomorphism, it is true for all non connected forests of weight ≤ n. Let T be a rooted tree of weight n. Then:

∆(Φ (Pt) (T )) = (T ) ∆ Φ (Pt) (T (1) )⊤P T (2) =   (T ) Φ (Pt) (T (1) ) ⊗ P T (2)   + (T ) Φ (Pt) (T (1) ) ⊗ (Φ (Pt) (T (2) )⊤P T (3) ) = (T ) Φ (Pt) (T (1) ) ⊗   (T (2) ) Φ (Pt) ((T (2) ) (1) )⊤P (T (2) ) (2) + P (2) T   = (T )
Φ (Pt) (T (1) ) ⊗ Φ (Pt) (T (2) ).

We used the induction hypothesis and 4.1 for the second equality, and coassociativity of ∆ for the third.

Theorem 10.2 Let Ψ be an endomorphism of the bialgebra H R . Then there exists a unique family (P t ) of primitive elements, such that Ψ = Φ (Pt) .

Proof: one remarks that if (P t ) and (Q t ) are two families of primitive elements, such that P t = Q t if weight(t) ≤ n, then Φ (Pt) (x) = Φ (Qt) (x) for all x of weight ≤ n. So we only have to show that there exists a family (P t ) such that if we denote:

P (n) t = P t if weight(T ) ≤ n 0 if weight(T ) > n, then Ψ(x) = Φ (P (n) t ) (x 
) for all x of weight ≤ n. We take P l 1 = Ψ(l 1 ), and then it is true for n = 1. Suppose we have P t for all t of weight < n. We put Φ (P (n-1) t ) = Φ n-1 . Let T be a rooted tree of weight n.

∆(Ψ(T )) = (T ) Ψ(T (1) ) ⊗ Ψ(T (2) ) = (T ) Φ n-1 (T (1) ) ⊗ Φ n-1 (T (2) ) = ∆(Φ n-1 (T )).
We take P T = Ψ(T ) -Φ n-1 (T ); then Ψ(T ) = Φ (P (n) t ) (T ). For the uniqueness of the family (P t ), we have π 1 (Ψ(T )) = P T , ∀T rooted tree.

Lemma 11.1 Let p 1 , . . . , p j , p j+1 , . . . , p j+l be primitive elements of H R . Then π j+l (p j+l ⊤ . . . ⊤p j+1 .p j ⊤ . . . ⊤p 1 ) = σ (j,l)-shuffle p σ(j+l) ⊤ . . . ⊤p σ [START_REF] Bourbaki | Groupes et algèbres de lie[END_REF] , where a (j,l)-shuffle is a permutation σ of {1, . . . , j +l} such that σ(1) < σ(2) < . . . < σ(j) and σ(j + 1) < σ(j + 2) < . . . < σ(j + l).

Proof: by induction we prove: ∆j-l-1 (p j+l ⊤ . . . ⊤p j+1 .p j ⊤ . . . ⊤p 1 ) = σ (j,l)-shuffle

p σ(j+l) ⊗ . . . ⊗ p σ(1) = ∆j-l-1    σ (j,l)-shuffle p σ(j+l) ⊤ . . . ⊤p σ(1)    .
So p j+l ⊤ . . . ⊤p j+1 .p j ⊤ . . . ⊤p 1σ (j,l)-shuffle

p σ(j+l) ⊤ . . . ⊤p σ(1) is in (H R ) (P ) j+l-1 ,
which proves the lemma.

We naturally identify (H R )

(P ) n /(H R ) (P )
n-1 with Im(F n ). We can now describe gr(H R ), the associated graded Hopf algebra: i) as vector space, gr(H

R ) = (1) ⊕ ⊕ ∞ 1 Im(F i );
ii) ∀p j ⊤ . . . where * is the product of gr(H R );

iii) ∀p j ⊤ . . .

⊤p 1 ∈ Im(F j ), ∆(p j ⊤ . . . ⊤p 1 ) = (1 ⊗ p j ⊤ . . . ⊤p 1 ) + (p j ⊤ . . . ⊤p 1 ⊗ 1) + k=j k=2 (p j ⊤ . . . ⊤p k ) ⊗ (p k-1 ⊤ . . . ⊤p 1 ); iv) ∀x ∈ Im(F j ), j ≥ 1, ε(x) = 0; v) ∀p 1 ⊤ . . . ⊤p j ∈ Im(F j ), S * (p j ⊤ . . . ⊤p 1 ) = (-1) j p 1 ⊤ . . . ⊤p j .
Clearly, the linear map from gr(H R ) into H R which is the identity on every Im(F i ) is a coalgebra isomorphism. It is not an algebra morphism, although we shall prove later that gr(H R ) and H R are in fact isomorphic Hopf algebras, via another map.

We are going to classify the coalgebra endomorphisms H R or indifferently gr(H R ). First we fix a notation. Let u be a linear map from P rim(H R ) ⊗i into P rim(H R ) ⊗j . Then u is the linear map from Im(F i ) into Im(F j ) defined by u = F j • u • F -1 i .

Theorem 11.2 For all i ∈ N * , let u i : P rim(H R ) ⊗i -→ P rim(H R ). Let Φ (u i ) be the linear map defined by:

Φ (u i ) (1) = 1; Φ (u i ) (p n ⊤ . . . ⊤p 1 ) = n k=1 a 1 +...+a k =n (u a 1 ⊗ . . . ⊗ u a k )(p n ⊤ . . . ⊤p 1 ). Then Φ (u i ) is a coalgebra endomorphism of H R (or gr(H R )).
Moreover, if Φ is a coalgebra endomorphism of H R (or gr(H R )), then for all i ∈ N * , there exists a unique u i : P rim(H R ) ⊗i -→ P rim(H R ), such that Φ = Φ (u i ) .

Proof: first we prove that Φ (u i ) is a coalgebra endomorphism:

Φ (u i ) ⊗ Φ (u i ) ( ∆(p n ⊤ . . . ⊤p 1 )) = j a 1 +...+a k =j b 1 +...+b l =n-j [(u a 1 ⊗ . . . ⊗ u a k ) ⊗ (u b 1 ⊗ . . . ⊗ u b l )] [(p n ⊤ . . . ⊤p j+1 ) ⊗ (p j ⊤ . . . ⊤p 1 )] = ∆ d 1 +...+dm=n (u d 1 ⊗ . . . ⊗ u dm )(p n ⊤ . . . ⊤p 1 ) -u n (p n ⊤ . . . ⊤p 1 ) = ∆ d 1 +...+dm=n (u d 1 ⊗ . . . ⊗ u dm )(p n ⊤ . . . ⊤p 1 ) -0 = ∆(Φ (u i ) (p n ⊤ . . . ⊤p 1 )).
Let Φ be a coalgeabra endomorphism. ∆(Φ(1)) = Φ(1) ⊗ Φ(1), so Φ(1) = 0 or 1. As ε • Φ = ε, Φ(1) = 1. We constuct u i by induction on i. For i = 1, u 1 is the restriction of Φ on P rim(H R ). Suppose we have u i for i < n. Then with

u ′ i = u i if i < n and u ′ i = 0 if i ≥ n, Φ = Φ (u ′ i ) on (1) ⊕ ⊕ n-1 1 Im(F j ). So ∆(Φ(p n ⊤ . . . ⊤p 1 )) = (Φ ⊗ Φ) • ∆(p n ⊤ . . . ⊤p 1 ) = (Φ (u ′ i ) ⊗ Φ (u ′ i ) ) • ∆(p n ⊤ . . . ⊤p 1 ) = ∆(Φ (u ′ i ) (p n ⊤ . . . ⊤p 1 )
). So we can take u n (p n ⊤ . . . ⊤p 1 ) = (Φ -Φ (u ′ i ) )(p n ⊤ . . . ⊤p 1 ). For the uniqueness, observe that π 1 • Φ = u i on Im(F i ).

We now give a criterion of inversibility of a coalgebra endomorphism:

Proposition 11.3 Φ (u i ) is bijective if and only if the restriction u 1 of Φ (u i ) to P rim(H R ) is bijective. Proof: ⇒: obvious. ⇐: we put Φ = Φ (u i ) . Recall that C i = (1) ⊕ ⊕ i 1 Im(F j ). As Φ(C i ) ⊂ C i , it is enough to show that Φ |C i : C i -→ C i is inversible ∀i. For i = 1, it is the hypothesis. Suppose it is true for a certain i -1. Then Φ(p i ⊤ . . . ⊤p 1 ) -(u 1 ⊗ . . . ⊗ u 1 )(p i ⊤ . . . ⊤p 1 ) belongs to C i-1 , so it belongs to Im(Φ); hence (u 1 ⊗ . . . ⊗ u 1 )(C i ) ⊂ Im(Φ). As (u 1 ⊗ . . . ⊗ u 1 ) is surjective (because u 1 is surjective), Φ |C i is surjective. Let x ∈ C i , Φ(x) = 0. x = x i + y, x i ∈ Im(F i ), y ∈ C i-1 . Then Φ(x) = 0 = (u 1 ⊗ . . . ⊗ u 1 )(x i )+C i-1 , so (u 1 ⊗ . . . ⊗ u 1 )(x i ) = 0 (because it belongs to Im(F i )∩C i-1 ). As u 1 is injective, x i = 0, and x ∈ C i-1 . As Φ |C i-1 is injective, x = 0: Φ |C i is injective.
We now give a criterion to know when a coalgebra endomorphism is in fact a bialgebra endomorphism.

Lemma 12.3 1. ∀i ∈ N * , dim(V i ) is the number of rooted trees of weight i.

2.

There is an algebra isomorphism between (H R , .) and S(V ) which is the identity on V .

Proof:

1. We have dim(V i ) = dim(M i ) -dim(M 2 i ). A basis of M i is formed by forests of weight i, whereas a basis of M 2 i is formed by non connected forests of weight i. The first point is then obvious.

2. As H R is commutative, we have an algebra morphism:

Λ : S(V ) -→ (H R , .)

x ∈ V -→ x By lemma 12.1, Λ is surjective. S(V ) is graded as algebra by putting V i in degree i. By the first point, the homogeneous components of S(V ) and H R (for the weight) have the same (finite) dimensions. Moreover, Λ is homogeneous of degree zero; as it is surjective, it is injective; so it is an isomorphism.

Using Λ, we define an algebra isomorphism: Ξ :

(H R , .) -→ (H R , * )

x ∈ V -→ x By lemma 12.2, Ξ is surjective. Moreover, it is homogenous of degree zero for the weight; as the homogeneous components have the same finite dimensions in (H R , .) and in (H R , * ), it is an isomorphism.

As the coproduct is the same for both Hopf algebra structures on H R , and since Ξ fix a system of generators, it is a bialgebra isomorphism. Moreover, Ξ • S • Ξ -1 is an antipode of (H R , * , ∆), so it is equal to S * . Hence, Ξ is a Hopf algebra isomorphism.

We We work now in gr(H R ). We denote by M * 2 the square of the augmentation ideal in this algebra. Let u 1 be a linear application from P rim(gr(H R )) into itself. Can we extend it to a bialgebra endomorphism of gr(H R )? With 11.4, one sees that u 2 is entirely determined on M * 2 ∩Im(F 2 ), and we can extend it to the whole Im(F 2 ) as we want. More generally, u i is determined over M * 2 ∩Im(F i ). So in fact, if we fix a complement C of M * 2 , a bialgebra endomorphism Φ is entirely determined by (π 1 • Φ) |C : C -→ P rim(gr(H R )). Moreover, for any application L : C -→ P rim(gr(H R )), there is a unique bialgebra endomorphism Φ L such that (π 1 • Φ L ) |C = L. Because of 12.4, we have the same result for H R . In this case, two important choices of C can be done: We look for a lifting of GL(P rim(H R )) into Aut bialgeabra (H R ). It is easier to work in gr(H R ), for there is an obvious lifting: if u ∈ GL(P rim(H R )), we take u 1 = u, u i = 0 if i ≥ 2; then one proves easily that Φ u = Φ (u i ) ∈ Aut bialgebra (H R ), and Φ u • Φ v = Φ u•v . So, with 10.3 we have the following result:

Theorem 12.5
Aut bialgebra (H R ) = Aut Hopf (H R ) = Ker(χ) ⋊ GL(P rim(H R )). 

Figure 1 :

 1 Figure 1: the rooted trees of weight less than or equal to 4. The first, second, third and fifth trees are ladders.

Figure 2 :

 2 Figure 2: an example of coproduct.

Figure 3 :

 3 Figure 3: the antipode.

Figure 4 :

 4 Figure 4: the bilinear map ⊤.
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 11 . They are in the same orbit under the action of G[START_REF] Bourbaki | Groupes et algèbres de lie[END_REF][START_REF] Bourbaki | Groupes et algèbres de lie[END_REF] 

⊤p 1 ∈

 1 Im(F j ), p j+l ⊤ . . . ⊤p j+1 ∈ Im(F l ), (p j+l ⊤ . . . ⊤p j+1 ) * (p j ⊤ . . . ⊤p 1 ) = σ (j,l)-shuffle p σ(j+l) ⊤ . . . ⊤p σ(1) ,

  have deg p (Ξ(x)) ≤ deg p (x) ∀x ∈ H R , since it is true for any x ∈ V . We get:Ξ({x ∈ H R /deg p (x) ≤ j, weight(x) = i}) ⊂ {x ∈ H R /deg p (x) ≤ j, weight(x) = i} ∀i, j.As these spaces have the same finite dimension, they are in fact equal. We deduce:Ξ({x ∈ H R /deg p (x) = j}) = {x ∈ H R /deg p (x) = j}.We have entirely proved: Theorem 12.4 gr(H R ) and H R are isomorphic Hopf algebras; there is a Hopf algebra isomorphism Ξ : (H R , .) -→ (H R , * ) such that weight(Ξ(x)) = weight(x) and deg p (Ξ(x)) = deg p (x) for any x ∈ H R .

  1. if we choose C the subspace generated by the rooted trees: with notations of 10.1,(π 1 • Φ (pt) ) |C : rooted trees -→ P rim(H R ) t -→ p t .2. if we choose a complement C which contains P rim(H R ), then we see thatEnd bialgebra (H R ) -→ L(P rim(H R )) Aut bialgeabra (H R ) -→ GL(P rim(H R )) Φ -→ Φ |P rim(H R )

	Φ	-→	Φ |P rim(H R )	is surjective.
	Because of 11.3, we have a surjection:	
	χ :			

As the (p i 1 ⊤ . . . ⊤p i k )'s are homogeneous for the weight, (f j 1 ,...,j l ) k≥0,i 1 ,...,i k ≥1 is a basis of H * g R .

(f j 1 ,...,j l f j ′ 1 ,...,j ′ n , p i 1 ⊤ . . . ⊤p i k ) = (f j 1 ,...,j l ⊗ f j ′ 1 ,...,j ′ n , ∆(p i 1 ⊤ . . . ⊤p i k ))

= (f j 1 ,...,j l ⊗ f j ′ 1 ,...,j ′ n , k s=0 p i 1 ⊤ . . . ⊤p is ⊗ p i s+1 ⊤ . . . ⊤p i k ) = 1 if (j 1 , . . . , j l , j ′ 1 , . . . , j ′ n ) = (i 1 , . . . , i k ), 0 if (j 1 , . . . , j l , j ′ 1 , . . . , j ′ n ) = (i 1 , . . . , i k ).

So f j 1 ,...,j l f j ′ 1 ,...,j ′ n = f j 1 ,...,j l ,j ′ 1 ,...,j ′ n , hence H * g R and the free algebra generated by the f i 's, i ≥ 1, are isomorphic algebras. Moreover, the f i 's are homogeneous elements of H * g R , so we have weight(

As H * g R and U(L 1 ) are isomorphic graded algebras, the proposition is proved.

Let A be the augmentation ideal of U(L 1 ), that is to say A = ker(ε). Lemma 8.2 in the duality between U(L 1 ) and H R , the orthogonal of

As U(L 1 ) = (1) ⊕ ker(ε), one has four cases to considerate:

2. ε(l 1 ) = 0 and l 2 = 1: obvious; 3. l 1 = 1 and ε(l 2 ) = 0: obvious; 4. l 1 = l 2 = 1 : one has to show that (1, x) = 2(1, x); as (1, x) = 0 it is true.

We denote by U(L 1 ) n the space of the homogeneous elements of U(L 1 ) of weight n. We have dim(U(L

Proof: we denote by < G > the subalgebra of U(L 1 ) generated by G. Let l ∈ U(L 1 ), homogeneous of weight n; we proceed by induction on n. If n = 0, then l is constant: it is then obvious. Suppose that every element of weight less than n is in

n , one can suppose that l = l 1 l 2 , with l 1 , l 2 ∈ A. By lemma 8.1, weight(l) = weight(l 1 ) + weight(l 2 ), so weight(l 1 ) < n, and weight(l 2 ) < n.

We define a sequence (P i ) i≥1 of elements in H ladder by:

As Ψ n = X n + Ψ n (X 1 , . . . , X n-1 , 0), we have l n = Ψ n (P 1 , . . . , P n-1 , P n ).

Proposition: 9.2 P i is primitive for all i ≥ 1.

Proof: induction on i. It is trivial for i = 1. Suppose it is true for each

Ψ j (P 1 , . . . , P j ) ⊗ Ψ i-j (P 1 , . . . , P i-j ) = ∆ (Ψ i (P 1 , . . . , P i-1 , 0)) by 9.1, and the fact that P 1 , . . . , P i-1 are primitive. So ∆ (l i -Ψ i (P 1 , . . . , P i-1 , 0)) = ∆(P i ) = 0, hence P i is primitive.

We work again in Q[[X 1 , . . . , X n , . . .]]. In this algebra, we have:

Proposition 10.3 Let Ψ be an endomorphism of the bialgebra H R ; then Ψ is an endomorphism of the Hopf algebra H R , that is to say Ψ • S = S • Ψ.

Let B + be the operator of H R which appends each term of a forest t 1 . . . t n to a common root. One can show that for every x ∈ H R ,

Lemma 10.4 Let p be a primitive element of H R and let x ∈ H R , with ε(x) = 0. Then

S(x (1) )(x (2) ⊤p) where ∆(x) = (x)

x (1) ⊗ x (2) .

In particular, for p = l 1 ,

S(x (1) )B + (x (2) ).

Proof: we have (S ⊗ Id) • ∆(x) = 0. Then we use 4.1 to conclude.

Proof of the proposition: let

We conclude by an induction on the weight.

Associated graded algebra of H R and coalgebra endomorphisms

As it is shown in [START_REF]Towards cohomology of renormalization : bigrading the combinatorial Hopf algebra of rooted trees[END_REF], H R is filtered as Hopf algebra by deg p . What is the associated graded algebra ?

The filtration is given by (H R ) [START_REF] Bourbaki | Groupes et algèbres de lie[END_REF]. We put π i the projection on Im(F i ) which vanishes on (1)⊕⊕ j =i Im(F j ).

2. (case of gr(H R )) Φ is a bialgebra endomorphism if and only if for all x i ∈ Im(F i ),

Proof: we study the case of H R . Observe that Φ(x i .x j ) = u i+j (x i * x j ) + Φ (i+j-1) (x i .x j ) because x i .x j -x i * x j belongs to C i+j-1 . Moreover Φ = Φ (i+j-1) on C i+j-1 . It is then obvious. The proof in the case of gr(H R ) is analog, even easier.

12 Automorphisms of H R

In the following, we shall identify gr(H R ) and H R as vector spaces via:

Now the vector space H R has two Hopf algebra structures: (H R , ., ∆, S) and (H R , * , ∆, S * ). Note that the coproduct is the same in both cases. Both are graded as Hopf algebras by the weight. We still denote by H i the homogeneous components, which are the same for both structures. (H R , * , ∆, S * ) is by construction graded as Hopf algebra by deg p , and the homogeneous components are the Im(F i )'s.

We denote the augmentation ideal, which is the same for both structures, by M, and its square in (H R , .) by M 2 . We put

i ⊕⊕ j V i,j . We put V i = ⊕ j V i,j , and V = ⊕ i,j V i,j . Note that V 1 = H 1 . Moreover, for any x ∈ M 2 , π c (x) = 0, so by lemma 9.4, M 2 ∩ Im(F 1 ) = M 2 ∩ P rim(H R ) = (0). So V i,1 = H i ∩ Im(F 1 ). Lemma 12.1 V generates the algebra (H R , .).

Proof: we denote by V the subalgebra of (H R , .) generated by V . We have to show that H i ⊂ V ∀i ≥ 1. We proceed by induction on i.

i , one can suppose that x = m 1 m 2 , with m 1 and m 2 in M. Then m 1 and m 2 cannot be constant, so weight(m 1 ) < i and weight(m 2 ) < i. So they are in V , so x ∈ V . We denote by S(V ) the symmetric algebra generated by V .