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ABSTRACT. We consider the combinatorial Dyson-Schwinger equation X = B*(P(X)) in
the non-commutative Connes-Kreimer Hopf algebra of planar rooted trees Hyck, where BT is
the operator of grafting on a root, and P a formal series. The unique solution X of this equation
generates a graded subalgebra Ay p of Hyck. We describe all the formal series P such that
An p is a Hopf subalgebra. We obtain in this way a 2-parameters family of Hopf subalgebras
of Hyok, organized into three isomorphism classes: a first one, restricted to a polynomial ring
in one variable; a second one, restricted to the Hopf subalgebra of ladders, isomorphic to the
Hopf algebra of quasi-symmetric functions; a last (infinite) one, which gives a non-commutative
version of the Faa di Bruno Hopf algebra. By taking the quotient, the last classe gives an infinite
set of embeddings of the Faa di Bruno algebra into the Connes-Kreimer Hopf algebra of rooted
trees. Moreover, we give an embedding of the free Faa di Bruno Hopf algebra on D variables
into a Hopf algebra of decorated rooted trees, together with a non commutative version of this
embedding.
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Introduction

The Connes-Kreimer Hopf algebra He e of rooted trees is introduced in [[J. It is commutative
and not cocommutative. A particular Hopf subalgebra of Hox, namely the Connes-Moscovici
subalgebra, is introduced in [f]. It is the subalgebra generated by the following elements:

o
P
53 = V—FI,

oy = \V+3R/+Y+[,

o5 = %V+6LI/ +3U +4\</+4L/+ Y+3V+Y+ l

The appearing coefficients, called Connes-Moscovici coefficients, are studied in [, . It is
shown in [[f] that the character group of this subalgebra is isomorphic to the group of formal
diffeomorphisms, that is to say the group of formal series of the form h + a1h® + ..., with
composition. In other terms, the Connes-Moscovici subalgebra is isomorphic to the Hopf algebra
of functions on the group of formal diffeomorphisms, also called the Faa di Bruno Hopf algebra.

A non commutative version H ycx of the Connes-Kreimer Hopf algebra of trees is introduced
in [, 1. It contains a non commutative version of the Connes-Moscovici subalgebra, described
in [@] Its abelianization can be identified with the subalgebra of Hc g, here denoted by A 1,
generated by the following elements of Hoxk:

ag = .,
as = I,
as = V—FI,

ay = \I/+2R/+Y+£,

as = *V+3{V+U+2Y/+2L/+Y+QV+Y+ l

This subalgebra is different from the Connes-Moscovici subalgebra, but is also isomorphic to the
Faa di Bruno Hopf algebra.

In this paper, we consider a family of subalgebras of Hyc gk, which give a non commutative
version of the Faa di Bruno algebra. They are generated by a combinatorial Dyson-Schwinger

equation [, (4, [d]:
Xp = B*(P(Xp)),

where B* is the operator of grafting on a common root, and P = 5 p,h* is a formal series
such that pg = 1. All this makes sense in a completion of Hyck, where this equation admits a
unique solution Xp = > ay, whose coefficients are inductively defined by:

a; =

n
apy1 = Z Z pkB'F(aoq...ao%)7

k=1 ai+..tog=n
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For the usual Dyson-Schwinger equation, P = «(1 — h)~!. We characterise the formal series P
such that the associated subalgebra is Hopf: we obtain a two-parameters family Ay g of Hopf
subalgebras of Hycx and we explicitely describe the system of generator of these algebras.

We then characterise the equalities between the Ay  g’s and then their isomorphism classes.
We obtain three classes:

1. Anp1, equal to K[.].

2. Apn,1,—1, the subalgebra of ladders, isomorphic to the Hopf algebra of quasi-symmetric
functions.

3. The An,3’s, with 3 # —1, a non commutative version of the Faa di Bruno Hopf algebra.
By taking the quotient, we obtain three classes of Hopf subalgebras of Hox:

1. Ap1, equal to K[.].

2. Ay _1, the subalgebra of ladders, isomorphic to the Hopf algebra of symmetric functions.

3. The A; g’s, with 3 # —1, isomorphic to the Faa di Bruno Hopf algebra.

We finally give an embedding of a non commutative version of the free Faa di Bruno on D
variables (see [[]) in a Hopf algebra of planar rooted trees decorated by the set {1,..., D}?. By
taking the quotient, the free Faa di Bruno algebra appears as a subalgebra of a Hopf algebra of
decorated rooted trees.

This text is organized as follows. The first section gives some recalls about the Hopf algebras
of trees and the Faa di Bruno algebra. We define the subalgebras of Hox and H ok associated
to a formal series P in section 2 and also give here the main theorem (theorem [f), which char-
acterizes the P’s such that the associated subalgebras are Hopf. In section 3, we prove 2 = 3
of theorem . In section 4, we prove 4 => 1 of theorem f]. We also describe there the system of
generators, and the case of equalities of the subalgebras. We describe the isomorphism classes
of these subalgebras in the following section. In the last one, we consider the multivariable case.

Notations.
1. K is any field of characteristic zero.

2. Let A € K. We put:

) = (1 = 3 AAFD e AERZD e $70, nt e k[pn)
k=0 ’ k=0

1 Preliminaries

1.1 Valuation and n-adic topology

In this paragraph, let us consider a graded Hopf algebra A. Let A, be the homogeneous
component of degree n of A. For all a € A, we put:

val(a) =max(neN/a € EBAk € NU {+o0}.
k>n

For all a,b € A, we also put d(a,b) = 2-val(a=b) " with the convention 27°° = 0. Then d is a
distance on A. The induced topology over A will be called the n-adic topology.



Let A be the completion of A for this distance. In other terms:

+oo
A=T1] An-
n=0
+oo
The elements of A are written in the form Zan, with a, € A, for all n. Moreover, A is

n=0
naturally given a structure of associative algebra, by continuously extending the product of A.

The coproduct of A can also be extended in the following way:

AA— AsA= ] A A

1,jEN
+o0o
For all p = Z anhy, € K[[h]], for all a € A such that val(a) > 1, we put:
k=0
+o0o
pla) = ana" €A
k=0
n—+m
Indeed, for all n,m € N, val <Z pna"> > n, so this series is Cauchy, and converges. It is an
k=n

easy exercise to prove that for all p,q € K[[h]], such that ¢ has no constant term, for all a € A,
with val(a) > 1, (p o ¢)(a) = p(q(a)).

1.2 The commutative Connes-Kreimer Hopf algebra of trees
This Hopf algebra is introduced by Kreimer in [[J] and studied for example in [B}, §, fd, §, [d, [4].
Definition 1

1. A rooted tree t is a finite, connected graph without loops, with a special vertex called root.
The set of rooted trees will be denoted by To g

2. The weight of a rooted tree is the number of its vertices.

3. A planar rooted tree is a tree which is given an imbedding in the plane. The set of planar
rooted trees will be denoted by T yok -

Examples.

1. Rooted trees of weight < 5:

avir byl v oy vl

2. Planar rooted trees of weight < 5:

aviv v vl b b v by by vyt



The Connes-Kreimer Hopf algebra of rooted trees Hox is the free associative commutative
algebra freely generated over K by the elements of Tog. A linear basis of Hog is given by
rooted forests, that is to say monomials in rooted trees. The set of rooted forests will be denoted
by Fog. The weight of a rooted forest F' =ty ...t, is the sum of the weights of the ¢;’s.

Examples. Rooted forests of weight < 4:

VDTS SUDUUR DUNL VAR SUURUUE DUTEAVANE SUE B S A K/ Y,I .

We now recall the Hopf algebra structure of Hor. An admissible cut of t is a non empty cut
such that every path in the tree meets at most one cut edge. The set of admissible cuts of ¢ is
denoted by Adm(t). If ¢ is an admissible cut of ¢, one of the trees obtained after the application
of ¢ contains the root of ¢: we shall denote it by R°(t). The product of the other trees will be
denoted by P¢(t). The coproduct of ¢ is then given by :

Ay=tol+lot+ Y P(t)®R(L).
ce Adm(t)

This coproduct is extended as an algebra morphism. Then Hc g becomes a Hopf algebra. Note
that Hox is given a gradation of Hopf algebra by the weight.

Examples.
AY) = V1419 V+3.@ V+3..01+...9.,
Ay = VervieVirne. viors.0ltnori.ov,
AY) = Yoirrio Y 4 Vo4 01+2.0l,
A(i) _torriel tle.rrers. ol

We define the operator BT : Hox — Hcok, that associates to a forest F' € Fox the tree

obtained by grafting the roots of the trees of F' on a common root. For example, B*(1.) = K/ .
Then, for all x € Heok:

A(BT(2)) =BT (z)®1+ (Id® B") o A(x). (1)

This means that BT is a 1-cocycle for a certain cohomology of coalgebra, see [f]] for more details.
Moreover, this operator B is homogeneous of degree 1, so is continuous. So it can be extended
in an operator B" : Hox — Hok.

1.3 The non commutative Connes-Kreimer Hopf algebra of planar trees

This algebra is introduced simultaneously in [}, []. As an algebra, Hycx is the free associative
algebra generated by the elements of T yox. A basis of Hycx is given by planar rooted forests,
that is to say words in elements of Tycg. The set of planar rooted forests will be denoted by

Fnek.
Examples. Planar rooted forests of weight < 4:

VUUUUE SUURUE DU DU VA SUDUUNE SUUE SUDIE SHR VANV SUUE 8 & Sk /28 L/ \} Y[ .

The coproduct of Hyck is defined, as for Hog, with the help of admissible cuts. For
example :



VeoltioVate.11o1+.0lt01+.0V,

b
<
Il

A(\)) ~ VeitieVias.41ot+.0linotd.0 V,
Note that Hycxk is a graded Hopf algebra, with a gradation given by the weight.

We define an operator, also denoted by BT : Hycx — Hnck, as for Hog. For example,

Bf(.1) = \} and BT(1.) = {/ . Then (fll) is also satisfied on Hycr. Moreover, this operator
B™ is homogeneous of degree 1, so is continuous. In consequence, it can be extended in an
operator BT : Hycx — HNCK-

We proved in [, [[d] that Hxycx is a self-dual Hopf algebra: it has a non degenerate pairing
denoted by <, >, and a dual basis (ep)reryo, Of the basis of planar decorated forests. The
product in the dual basis is given by graftings (in an extended sense). For example:

el.e.l =el.! +eII +ell Fe. K/ —i—e.[ —|—e.\) +e.ll.

1.4 The Faa di Bruno Hopf algebra

Let K[[h]] be the ring of formal series in one variable over K. We consider:

G=1h+) ah"" € K[[h]]

n>1

This is a group for the composition of formal series. The Faa di Bruno Hopf algebra Hryp
is the Hopf algebra of functions on the opposite of the group G. More precisely, Hpqp is the
polynomial ring in variables Y;, with ¢ € N*, where Y; is the function on G defined by:

G — K
Y;: h—i—Zanh”“ — a;.

n>1

The coproduct is defined in the following way: for all f € Hggpg, for all P,Q € G,

Af)(PRQ) = f(QoP).

This Hopf algebra is commutative and not cocommutative. It is also a graded, connected
Hopf algebra, with Y; homogeneous of degree i for all i. We put:

o0
Y =1+ Y, € Hrap.
n=1
Then:

AY) =Y Y gy,

n=1
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Indeed, with the convention ag = by = 1:

i+1

AY) [ D ah™ | @ [ > bih™ = YD b [ D aptt

>0 >0 >0 7>0
i+1
- yu ()
>0 372>0
n+1
9] 9]
(veren ) ((at)e (L) ] = S (Ta]
n=1 >0 >0 n=1 \ >0

The graded dual H},;5 is an enveloping algebra, by the Cartier-Quillen-Milnor-Moore theo-
rem. A basis of Prim(H}.,p) is given by (Z;)ien+, where:

Hrpap — K
Ziq YLV — Oifar+.. o #1,
Vi — 0

By homogeneity, for all 7, j € N*, there exists a coefficient \; ; € K such that [Z;, Z;] = X\; ; Zi4;.
Moreover:

[Zi, Zi)(Y) = A
= (Zi ®L;—2Z;® Zi) o A(Y)

e}
= (Zi®Z;—Z;® Z;) (Z Y@ Yn>

n=1
— ZZ,(YjJrl) _ Zj(YiJrl)
G+ —-(+1)
— j—i.

So the bracket of Prim(H}.,;p5) is given by:

(Zi, Zj] = (j — 1) Ziy;.

2 Subalgebras associated to a formal series

2.1 Construction

We denote by K[[h]]1 the set of formal series of K[[h]] with constant term equal to 1.
Proposition 2 Let P € K[[h]];.

1. There exists a unique element Xp = Zan € Hok, such that Xp = BT (P(Xp)).
k>1

2. There exists a unique element Xp = Z an € Hynck, such that Xp = BT (P(Xp)).
k>1

Proof.



1. Unicity. We put Xp = Z ayn, with a, homogeneous of degree n for all n. Then the a,’s
n>1
satisfy the following equations:

ap =

an+1 = Z Z pkB+(aa1 cee aak)' (2)

k=1 ai+...4+op=n
Hence, the a,’s are uniquely defined.

Existence. The ay,,’s defined inductively by (f) satisfy the required condition.

2. We put Xp = Zan, a, homogeneous of degree n for all n. Then the a,’s satisfy the
n>1
following equations:

a; =

apy1 = Z Z peBt(aq, ... a,,). (3)

k=1 ai+...4+op=n

The end of the proof is similar. [J
Definition 3 Let P € K[[h]];.
1. The subalgebra Ap of Hex is the subalgebra generated by the a,’s.
2. The subalgebra Ay p of Hyck is the subalgebra generated by the a;,’s.
Remarks.
1. Ap is a graded subalgebra of Hcg, and Ay p is a graded subalgebra of Hycrk.
2. For all n € N*, a,, is an element of Vect(Tcx). Hence:

Vect(Torx) N Ap = Vect(an, n € N*). (4)

The same holds in the non commutative case.

2.2 Main theorem
One of the aim of this paper is to prove the following theorem:
Theorem 4 Let P € K[[h]]1. The following assertions are equivalent:
1. An.p is a Hopf subalgebra of Hnck .
2. Ap is a Hopf subalgebra of Ho .
3. There exists (o, 3) € K2, such that P satisfies the following differential system:

[ (1 —aph)P'(h) aP(h)
Sap { P(0) 1.

4. There exists (o, ) € K2, such that:
(a) P(h) =1 if a =0.
(b) P(h) =e" if 3=0.
(¢c) P(h) = (1—aBh)" 7 if af #0.

An easy computation proves the equivalence between assertions 3 and 4. Moreover, using
the Hopf algebra morphism w : Hyox — Hcek, defined by forgetting the planar data, it is
clear that Ap = w(Ap,p). So, assertion 1 implies assertion 2.



3 When is Ap a Hopf subalgebra?

3.1 Preliminary results

The aim of this section is to show 2 = 3 in theorem [I.

Lemma 5 Suppose that Ap is a Hopf subalgebra. Then two cases are possible:
1. P=1. In this case, Xp = . and Ap = K|.].

2. p1 # 0. In this case, a, # 0 for alln > 1.

Proof. Suppose first that p; = 0, and suppose that there exists n > 2 such that p, # 0. Let

us choose n minimal. Then, by @), a2 = ... = a, =0 and ap41 = p, BT(.™). Then:
A(B*(.")) =B ®1+Z<> ® BT(." %) e Ap @ Ap,

which implies that BT(.) = 1 € Ap N Vect(Tek) = Vect(ay), so az # 0: contradiction. So
P=1and Xp=.

Suppose p; # 0. By (f), the canonical projection of a,1 on Im((B¥)?) (vector space of
trees such that the root has only one child) is pyB*(a,) for all n > 1. Hence, for all n > 1,
nt1 =0=a,=0. Soforalln>1, a, #0. O

We put:

7. Hexg — K
| FeFecxk — 0. F.

Note that Z is an element of the graded dual H{, . Moreover, Z can be extended to Her,
and satisfies, for all a,b € Hog:

Z(ab) = Z(a)e(b) + e(a)Z(b).
Lemma 6 Let P € K[[h]|;1. If Ap is a Hopf subalgebra of Hox, then:
(Z®Id)o A(Xp) € Ap.

Proof. As Ap is a Hopf subalgebra, for all n € N*, A(a,) € Ap ® Ap. Hence, (Z ® Id) o
A(an) e Ap. O

Lemma 7 We consider the following continuous applications:

{

Then € is an algebra morphism and Z is a E-derivation, i.e. satisfies:

Z®Id : Hox®@Hcox — Hok,
= e®Id : Hex®Hcecx — Hek.

oy AN
|

Z(ab) = Z(a)é(b) + &(a) Z (b).

Proof. Immediate. [J



+oo
Let us fix t € Tex. We put P(h) = anh". As Xp = BT(P(Xp)), we have:
n=0

+o0o
ZoA(Xp) = an(Z(X) Id)o A OBJF(XI%)

n=0
+o0 o

= > paZ(BYXP)1+ Y pa(Z @ BY)(AXp))"
n=0 n=0

“+oo
= Z(Xp)l+B* (Z an(A(XP)")>

n=0

+o0o
= Z(Xp)1+B* (Z npag(A(Xp)" ' Z (A(XP))>
n=0

“+oo
= Z(Xp)l+ BT (Z nanJ’?,lZ(A(XP))>
n=0
= Z(Xp)l+ BT (P'(Xp).(Z ® Id) o A(Xp)))
We consider the following linear application:

I Hexk — Hok
P a — BT(P'(Xp)a).

Then, immediately, for all a € Hek, val(Lp(a)) > val(a)+1, so Id— Lp is invertible. Moreover,

by the preceding computation:

Z o A(Xp) = Z(Xp)1 + Lp((Z @ Id) o A(Xp))
< (Id—Lp)(Z®Id)o A(Xp)) = Z(Xp)1
> ZoA(Xp)=Z(Xp)(Id—Lp)~'(1).

Hence, as Z(Xp) = 1, lemma [ff induces the following result:
Proposition 8 Let P € K[[h]]1. If Ap is a Hopf subalgebra of Hcox, then:

(Id— Lp)~'(1) € Ap.

3.2 Proofof2=—3

+oo
We put ¥V = Zb (Id — Lp)~*(1). Then b, can be inductively computed in the following
way: h=0
by = 1,
n
bn+1 = (k + 1)pk+1B+(aa1 e aak)
k=1 ai+...+tar=n (5)
n
+ kpe BT (bay oy - - - Gay,)-
\ k=1 ai+...+a=n

In particular, by = p1..

10



Suppose that Ap is a Hopf subalgebra. Then b, € (Ap N Vect(Tck))n = Vect(a,) for
all n > 1, so there exists a,, € K, such that b, = ana,. Let us compare the projection on
Im((B*)?) of apy1 and byyq:

p1B*t(a,) for ani1,
2p2B+(an)+p1B+(bn) = (2])2 +p1an)B+(an) for bn+1-

Suppose that p; # 0. Then the a,’s are all non zero by lemma [, so «,, is uniquely determined
for all n € N*. We then obtain, by comparing the projections of a, 1 and b, 41 over Im((B*)?):

a1 = Pi1,
Qpt1 = 2% + .
1

Hence, for all n € N*, o, = p1 + 212(11 —1).
b1
Let us compare the coefficient of BT (.") in a1 and in b,41 with () and (f). we obtain:

{ pn for apqq,
(n+ 1)pp1 +nppp1r for  bpia.

Hence, ap41pn = (n+ 1)ppy1 + npppr for all n > 1. As a consequence:

(n+ 1)ppy1 + (Pl — 2%) Npn = P1Pn-

This property is still true for n = 0, as pg = 1. By multiplying by A" and taking the sum:
/ P2 /
P'(h) + <p1 — 2p_1> hP'(h) = p1 P(h).

We then put o = p; and 3 = 2])—2 — 1. Hence:
by

(1 — aBh)P'(h) = aP(h).
This equality is still true if p; = 0, with a = 0 and any (. Hence, we have shown:

Proposition 9 If Ap is a Hopf subalgebra of Hox, then there exists (o, 3) € K2, such that
P satisfies the following differential system:

[ (1—aBh)P'(h) = aP(h)
Saﬁ'{ P0) = 1.

This implies:
1. P(h)y=1ifa=0.
2. P(h) = e if 3 =0.

3. P(h) = (1 —aBh) "7 if af # 0.

4 Is Ay, a Hopf subalgebra?

The aim of this section is to prove in 4 = 1 in theorem [J.

11



4.1 Generators of Ay, 3.

We denote by P, s the solution of S, 3 and we put A, 3 = Ap, , and Ay o3 = AN P, 4, in order

“+oo
to simplify the notations. We also put Xp, , = Z ap(a, f) and P, g = an(a,ﬁ)h". The

neN n=0
system S, g is equivalent to:
& po(a, B) = 1,
: 1
a.,f pnii(a,B) = « n++n1ﬁpn(a,ﬁ) for all n € N.

Definition 10
1. For all i € N*, we put [i]g = (1 4+ 8(i — 1)). In particular, [i]; =i et [i]o = 1.
2. We put [i]g! = [1]g...[i]s. In particular, [i];! = 1! et [i]o! = 1. We also put [0]g! = 1.

Immediately, for all n € N:
n)g!
pn(aaﬁ) = an&‘
For all F' € Fog, we define the coefficient F'! by:
F!= H (fertility of s)!.

s vertex of F

Note that these are not the coefficients F! defined in [, ], [9]. They can be inductively defined
by:

Jo= 1,
(.. t)! = t)...t),
BY(F) = kIF

In a similar way, we define the following coefficients:
[Flg! = H [fertility of ss!.
s vertex of F'

They can also be inductively defined:

[‘]5! = 1
[tl...tk]ﬁl = [ti]g!. .. [tkls!,
[BT(F)lg! = [K|g![F]s!

In particular, for all forest F', [F];! = F! and [F]o! = 1.

Finally, for all n € N*, we put a,(«, ) = Z a(a, PB)t.

teTnok, \t|:n

Theorem 11 For any tree t,

|
a(a, B) = altl=1 %

In particular, a;(1,0) = %, a(1,1) =1 and a¢(0,8) = d;.. for all 8. Moreover:

0 ift is not a ladder,
1 ift is a ladder.

12



Proof. Induction on |t|. If |t| = 1, then ¢t = . and a;(«, 3) = 1. Suppose the result true for
all tree of weight strictly smaller than [¢|. Then, with ¢ = BT (¢1...), by ({):

L Ttls! o [E]!
. \tl\_1+,,,+\tk\—1[t1]ﬁ [kﬁ kLB
(e, 8) = « oty k!
el it [H8!
tl
Jt-1Lts!
_ ol

The formulas for (o, 3) = (1,0), (1,1) and (0, ) are easily deduced. Finally, for (o, 8) = (1, —1),
it is enough to observe that [1]g! =1 and [k]g! = 0if £ > 2. O

Examples.

aj(a,8) = .

az(a,3) = ol

az(a, f) = a? <(1;ﬂ) V +I>

3 ((A+25)(1+0) (1+5) (1+5) (1+5)

a4(a,ﬁ)_a< c v + 5 K/+ 5 \}+ 5 Y+[
1+38)(14+28) (148 1+28)(1+8 14+28)(14+-8 1+28)(1+8
(99029 o | (20050 | ae2aen) § | a2 of

as(a,f) = o BNCETLE FONYCETICRY SYEES L/ GES) J FGEETER

+(1;ﬁ) U + (1456) L{ + (1456) Y + @YJF [

In particular, a(1,1) is the sum of all planar trees of weight n, so Ay 1 is the subalgebra
of formal diffeomorphisms described in [[(]. Moreover, a(1,—1) is the ladder of weight n, so
An.1,—1 is the subalgebra of ladders of Hyck.

4.2 Equalities of the subalgebras Ay p

Lemma 12 Let P,Q € K|[[h]];. Suppose that Q(h) = P(vh) for a certain . We denote
Xp = Zan. Then Xq = Z’yn_lan. In particular, if v # 0, An.p = An,Q-

n>1 n>1
Proof. We put Y = ny"‘lan. Then:

n>1

B+(Q(Y)) - Z Z ’YkpkB+(’Ynl_1an1 o ,ynk—lank)
= Z ARk BT (ay, ... a,,)

= Z an Z peBt(ay, ...a,,)

neN k=1 ni+...4+ng=n

neN
=Y.

By unicity, Y = Xg. [

13



Theorem 13 Let (o, 3) and (o/,3') € K2. The following assertions are equivalent:

1' AN7CV76 = AN70/76/-
2. Ao = Aarpr-

3. (B=p" and ad! #0) or (a =o' =0).

Proof.
1 = 2. Obvious.

2 = 3. By theorem [L1|:

a; = ., ax = al, as = a%—i—oﬂ%—mv;
a, = . ay = ot, dy = 0/21—1—0/2—(126/)\/.

As A, 3 = Ay p, there exists v # 0, sucht that o'l = yal. Hence, o/ = ya. In particular, if
a =0, then o/ = 0. Suppose that o # 0. As ag and a§ are colinear, the following determinant
is zero:

1
o2 a2(42‘5) ‘ 1 o

/
o2 0/2(126/) B 6"~ p8)=0.

As o and o are non zero, 3 = (.

3 = 1. Suppose first « = o/ =0. Then Pyg = Py g =1, 30 Ayopg = Ano g. Suppose
B = and ad’ # 0. Then there exists v € K — {0}, such that & = ya/. Then, immediately,
P, g(vh) = Py g (h). By the preceding lemma, Ay o3 = AN p. O

4.3 The Ay, p’s are Hopf subalgebras

We now prove 4 = 1 in theorem []. If o = 0, then Ay, = K[.] and it is obvious. We take
a # 0. By theorem [Id, we can suppose that a = 1.

Lemma 14 Let k,n € N*. We consider the following element of K[X1,...,X,]:

PXn X = Y X(X+D). (Nt —1D) XX+ D).. (Xntan—1)

aq! !
a1 +..4an=~k 1 n

By putting S = X1+ ...+ Xp:

SS+1)...(S+k—-1
Pk(X17"'7X7l): ( ) ]{?'( )

14



Proof. Induction on k. This is obvious for £ = 1. Suppose the result true at rank k. Then:

Pe(X1, .. X)) (X1 4.+ X+ K)

X1(X1+1)...(X1+a171)
aq!

= Z Z Xi(Xi‘f'l;i-!-(Xi‘f'ai)

al+...fFan=k 1=1

X (Xn+1)...(Xn+om—1)

o
Xl(Xl—f—l)...(Xl-i-O/l—l)
o!

n
- @ !

oy +.. ol =k+1 =1

Xn(Xn+1)...(Xn+al,—1)

ah!
X1(X1+1)...(X1+a/171)
ol !
!
. . . ’_
— (k+1) XZ(XZJrl).../(XZJrai 1)
a;!
o+ Aoy =k+1
Xn(Xn+1)...( Xn+a),—1)

]
ay,!

= (k‘ + 1)Pk+1(X1, ce ,Xn)

This implies the announced result. [J

Let F' =t;...t; be a forest and ¢ be a tree. Using the dual basis (er) peF o :

coefficient of F @t in A(X13) = <er®e,A(Xyg) >
= < eFet,XLﬁ >
= Z < es,XLB >

s grafting of F on t

s|g!
_ 3 Ll

s tree, grafting of F on t

Let n be the weight of ¢ and sy, ..., s, its vertices. Let f; be the fertility of s;. Let (av,..., )
such that a; + ...+ a, = k and consider the graftings of F' on ¢ such that «; trees of F' are
grafted on s; for all 4. Then:

1. If s is such a grafting, we have:

[f —|—Oz]! [fn+an]'
[s]g! = [tls![tals! - - [tk]s! l[fl];ﬁ [fn]g!ﬁ’

(f1+a1)! (fn+an)!
il o .

slo= iyl 1)

2. The number of such graftings is:
fi+a Jnt+an
o . o, .

15



Hence, by putting ; = f; +1/8 and s = 21 + ... + x,, by lemma [[4;

coefficient of F ® ¢ in A(X; )
_ 3 [tlg! [t]g!  [tels! [f1 + calg!  [fn + ang!

al+...4an=k th ! o t! [fl] lay ! o [fn] lay!
tlg! [t]g!  [t)s! (4 fiB) . (L (f; + o — 1)B)
= tll!ﬁ ff > 1l -

oa1+...fan=k i=1

_ Mol Bl g et Dmtacy

t ! Tty a;
1 k oa1+...fan=k i=1 v

_ [if!ﬁ;¥ﬂ...Hﬂﬁlﬂkfi(xlr..,xn)

: 1:
e tls! [t Bks(3+1) (s+k-1)
T A k!

Moreover, as t is a tree:

s=fi+...+ fn+n/0=number of edges of t + n/B=n—-1+n/f=n(1+1/5)—1.

S(S+1)...(S+k—1)
Tl '

So, as Qk(S) =

AX) = Xipe1ey Y DI Bl s ags - ype

t !
k=0 F=ty...ty, t
= xlﬁ®1+§j§j@k (1+1/8) = 1)3*XE s @ an(1,8)
n=1k=0

= Xig@1l+ Y (1-pXy5) "W a,(1,8).

n=1

Proposition 15 The coproduct of the a,(1,[3)’s is given by:

AXyg)=Xip@1+ > (1— X5 "/ ga,(1,8).

n=1

As a consequence, Ay is a Hopf subalgebra of Hnck -

Remark. By taking the abelianization of Ay ;1 g, the same holds in A; g:

A(X1p) = X150 1+ > (1 X1 "V @ a,(1, ).

n=1
5 Isomorphisms between the Ay, 3’s

5.1 Another system of generators of Ay g

Notation. We denote by B~ the inverse of B* : Hycx — Vect(Tnck), that is to say the
application defined on a tree by deleting the root.

We define b, («, 3) = B~ (ap+1(«, 3)) for all n € N, and:
a,8) =2 _bla,f).
n=0

16



We have:

.
Y(.p) = ) aB+<F>1%?;f!F
FeFok

_ i Z otk [k?]ﬁl[tl]ﬁ! e [tk]ﬁltl oty

Elty!. ..t
k= 0t17 ,thTcK ! k

-

k=0
1(148)...1+8k-1

_ kzo ( ) (k! ( ))X’;ﬂ

_ i1/5(1/5+1)--]€-!(1/ﬁ+k—1))ﬁkxiglﬁ
k=0

= > Qu(1/8)8*XE 4

= (1—BXa5) "7,

By the last equality, by, («, 3) € A o, for all n € N. Moreover, by the second equality, if n > 1:

t]a!
b,(a,8) = Z a”%t + forests with more than two trees
teTek, [t|=n '
= aay(a, fB) + forests with more than two trees.

So (bp(a, 8))n>1 is a set of generators of Ay o g if o # 0.

Proposition 16 Suppose o« = 1. Then:

ZY By P @ b, (1, 8).

Proof. As Y(1,8) = B~ (X(«a, 3)), by ([):
A(Y(L,0) = (Id®B™)(AX(L,0)) - X(1,6) ®1)

e e}

= 3 (1 Xy ) VIV @ B (a,(1,8)
n=1
= ZY"W ®bu-1(1,8)

= ZY"“)“*B @ ba(1, )

- ZY"(HB bn(1,3). 0

5.2 Isomorphisms between the Ay, 3’s
Proposition 17 If 8 # —1 and ' # —1, then An 13 and An1 g are isomorphic.

Proof. Let v € K —{0}. We put:
Z(1,8) = Y(1,8) =) ca(l
k=0

17



with ¢, (1,8) € A(1,3), homogeneous of degree n. This makes sense, because by(1,3) = 1.
Moreover, for all n > 1:

c(1,8) = Q1(7)bn(1,7) + forests with more than two trees
= b, (1,v) + forests with more than two trees,

50 (cn(1, 3))n>1 is a set of generators of A(1, 3). Moreover:

o o k
A(Z(1,8)) = > Qr(v) (ZY(Lﬁ)"(B“)“®bn(176)>

k=0 n=1

= fjww > Y@ttt @b, (1,8) .. by, (1, 8)
k=0 at,...,ap>1

= Y D) () D YA Rb,, (1,0). .. ba,(1,0)
=0 k=0 ai+...4ap=I

= > YWLAETAS T S Qr(N)Y(1,8) @b, (1,0) ... Y(1,8) @by (1, )
=0 k=0a1+...+ar=I

= > Y1,P)PIY(,8)T ®e(l,f)
=0

= Zz T eap).

We now chose v = 6 H . As 3/ # —1, this is well defined; as 3 # —1, this is non zero. Then:

ZZl ﬁl(ﬁ+1+1®c(1 /8)
=0

So the unique isomorphism of algebras defined by:

{ Al,ﬁ/ I Al,ﬁ
b, (1,8) — cu(1,0)

is a Hopf algebra isomorphism. [

In the non commutative case, the following result holds:
Corollary 18 There are three isomorphism classes of AN ,g’s:

1. the Ana’s, with 3 # —1. These are not commutative and not cocommutative.

2. An1,-1, isomorphic to QSym, the Hopf algebra of quasi-symmetric functions ([, B4])
This one is not commutative and cocommutative.

3. Ano1 = K[.]. This one is commutative and cocommutative.

Consequently, in the commutative case:

Corollary 19 There are three isomorphism classes of Aq g’s:

1. the Ay g’s, with 3 # —1. These are isomorphic to the Faa di Bruno algebra on one variable.

2. Ay 1, isomorphic to Sym, the Hopf algebra of symmetric functions. This one is commu-
tative and cocommutative.

18



3. Apy = K[.].

Proof. As A, is the abelianization of Ay o3, if Anag = Ano g, then Ay g = Ay g
Moreover, A; g is not cocommutative if 3 # —1, whereas Ay _1 is. So A; 3 and A; _; are not
isomorphic if 8 # —1. It remains to show that A; 3 is isomorphic to the Faa di Bruno Hopf
algebra on one variable if 3 # —1. Let us consider the dual Hopf algebra of A; 3. By Cartier-
Quillen-Milnor-Moore’s theorem ([L§]), this is an enveloping algebra U(Ly 5). Moreover, £ g
has for basis (7},)nen+ defined by:

Lig — K
T,:< af'...ap* — Oifoqg+... 4o, #1,

Um  — Omn-

Moreover, T), is homogeneous of degree n. By proposition [LF, for all i,j > 1:

(T;®T)) 0o A(X1 ) = Ti(X16)T, +ZZQk (1/8+1) = VBT (XT 5) T (an(1, )
n=1k=0
= 0+ @Qi(i(1/8+1) —1)BT(X16)
= j(1+8) -5

By homogeneity, there exists \; ; € K such that [T, T}] = A; jTi4;. Then:

Aij = [T, Tj](X1,)
= (Ti®Tj) o A(X1p) — (T} ®T;) 0 A(Xy,p)
= jA+p8)-—-i(1+8) +83
= (i—7)(1+p).

Then, there exists a Lie algebra morphism:

Losg — Prim(Hf,g)
T, — (14082,

In particular, if 3 # —1, this is an isomorphism. Hence, A} g s isomorphic to Hy 5, S0 A1 5 is
isomorphic to the Faa di Bruno Hopf algebra on one variable. [J

Remark. The Connes-Moscovici subalgebra Hen of Her (see [, [f]) does not appear here:
as it is generated by ., 1, V + I,..., it would be Ay ;). The fourth generator of A 1y is

\V+2£/+Y+[,

whereas the fourth generator of Heoyy is:

W+3{/+Y+[.

So they are different.

6 The case of the free Faa di Bruno algebra with D variables

We here fix an integer D > 1. We denote by W the set of non empty words in letters {1,..., D}.
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6.1 Construction

We now recall the construction of the free Faa di Bruno algebra in D variables (see [[]). Consider

the ring of non commutative formal series K ((h1,...,hp)) on D variables. We consider:
GD = <Z ag)hw> /agz) = 52‘7j
weW 1<i<D

We use the following convention: if u;...u; € W, then b = hy,, ... hy, . In other terms, Gp is
the set of formal diffeomorphisms on K which are tangent to the identity at the origin. This
is a group for the composition of formal series.

Then Hpqp,p is the Hopf algebra of functions on the opposite of the group Gp. Hence, it
is the polynomial ring in variable Y/, 1 < i < D, with the convention that if w has only one
letter j, then in = 0;,j. The coproduct is given in the following way: for all f € Hrqp p, for all
P,Q € Gp,

AP Q) = f(QoP).

In particular, if:

P= (Z ag>hW> and Q = (Z bﬁ?h“’) :
1<i<D 1<i<D

weW weW
then:
7 7
AYy)(P®Q) = Yy (QoP)
_ i j ul Up 7,W1 ... W
= Y, g bijnuk E awl...awkh
uy..u, €W w,...,wxgEW 1<5<D
_ E E j U1 U
- bg“...ukawl "'awk'
ul...ukEW w1... W=w
Hence:

n
7\ Uuq Uk 7
A(Yw) = E E E Yo, ...ka ®Yu1...uk'
k=1 1<u; <D w1,..., wx€W>

wW1.. W =w

For D =1, we recover Hpyp.

6.2 Subalgebras of H%CK

We now put D = {1,...,D}>. The elements of D will be denoted in the following way: 7, (uy, us).
In the same way, it is possible to construct a commutative Hopf algebra HgK of rooted trees
decorated by D, and a non commutative Hopf algebra 'ch 5 of planar rooted trees decorated
by D. In both cases, we define, for all i, (u1,u2) € D, a linear endomorphism B which

Zv(u17u2)’
sends forest I’ on the tree obtained by grafting all the trees of F' on a common root decorated

by i, (u1,u2).

Definition 20 Let i € {1,...,D} and w = uy...u, € W. We define an element Y €
HR i inductively on n in the following way:

Y, = Ginifn=1,
Vo= Y Y Bl (vavh) ez
1<a,<D wi,w2eW,
w1wWwe=w

20



ug, us3)
i, (Eufozg ) .

Examples. For i, uj, ug, ug and uy elements of {1,..., D}:
Yzl - 5i,u15
Y@Zlug = e (ur,u2)s
YJ1u2u3 = Z (1@ + 1odza),
1<a<D
B, (u2,uz) B, (u1, u2) (uz,uq)
a, (ug,u B, (usz, u w s a, (u
Yuzlmu;:,m; - Z e 2)\/1',(a(,53) 8 + Il ((a 1“ )) Il ((aﬁu + I (u2045)) + I
1<a,8<D
An easy induction shows that Y&l u, 1s homogeneous of degree n — 1.
Theorem 21 For alli € {1,...,D}, w € W of length n:
n
IED DD DENED DR G D A
k=1 1<o;<D wi,...,wx€W,
W1 ... W =W

Proof.

Then:

By induction on n. It is obvious if n = 1 or 2. Suppose it is true for all rank < n.

> Y AoBf,, (YﬁlYfQ)

a,f wiw2=w

Viol+d) Y >

a,f Wiw2=w wi,1...W1 g=w1

)OO DD DI ¢

ALy, A W21 W2 1 =W2 B1,...,0

Yi@l+d Y > vl vue

k>2 wi..wp=w a1,...,0p

1 ! 8

w11 : Y$1 kam : Yfzz ®Bz J(a,8) <Y0(éxl OékY51
+

Z Z Bl J(a,8) (Ya Yw2>

a,f wiwh=aq...ak

Veol+) > Z Yo LYY
k>2 wi..wp=w Qai,...,x
S Y v veevl .0

k>1 wi..wp=w ai,...,Q

Hence, the subalgebra of H%C i generated by the Y}’s is a Hopf subalgebra. Its abelianiza-
tion can be seen as a subalgebra of HgK, and is isomorphic to Hpgp, p.

Remark. In the case where D = 1, we put Yl1

Hence, by (f]), this

AD747_% :

Yo = 1,

i = .
n—1

Y, =

k=0

is the subalgebra associated to 1 + 2h + h? =

1 =Y, Then, by definition:
——

n+1 times

n—2
k=1

(1+h)? =P _

21

> BT(WiYno1ok) = 2B (Y1) + Y BN (YyY,_1og) if n > 2.

1 (h), namely

5)



6.3 Description of the Y’s in the generic case

Definition 22 A tree t € ']I'gK is admissible if:
1. Every vertex is of fertility less than 2.

2. For each vertex of fertility 1, the decorations are set in this way:

Wolad) or 128

3. For each vertex of fertility 2, the decorations are set in this way:

a, (¢, d) '\/i’b(,a(’el;)f) )

Let ¢t be an admissible tree. We associate to it a word in W in the following inductive way:
1. w(.i,(a,b)) = ab.

2. If the root of ¢ has fertility 1, with decorations set as 12, then, if we denote t' = B~ (¢),
w(t) = w(t')b.

3. If the root of ¢ has fertility 1, with decorations set as 1%(5:# , then, if we denote t' = B~ (t),
w(t) = aw(t’).

4. If the root of ¢ has fertility 2, then, if we denote t't" = B~ (t), w(t) = w(t")w(t").

Remark. The cases 1 and 2 are not incompatible, so w(t) is not well defined. For example,
for t = 1¢:(&d | two results are possible: cda and acd.

An easy induction shows that:

Proposition 23 Suppose that w € W is generic, that is to say all his letters are distinct.
Then Y, is the sum of admissible trees t such that:

1. w(t) =w.

2. The decoration of the root of t is of the form i,(a,b), with 1 <,a,b < D.

If the word is not generic, we obtain Y;’ by specializing the generic case. For example, if
w = aaa, we have:

S D R - B S Y

1<a<D 1<a<D
= Vi = Y 10@n 4+ > iy,
1<a<D 1<a<D

In particular, 1¢{*% appears with multiplicity 2.
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