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Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France

e-mail : loic.foissy@univ-reims.fr

ABSTRACT. We consider the combinatorial Dyson-Schwinger equation X = B+(P (X)) in
the non-commutative Connes-Kreimer Hopf algebra of planar rooted trees HNCK , where B+ is
the operator of grafting on a root, and P a formal series. The unique solution X of this equation
generates a graded subalgebra AN,P of HNCK . We describe all the formal series P such that
AN,P is a Hopf subalgebra. We obtain in this way a 2-parameters family of Hopf subalgebras
of HNCK , organized into three isomorphism classes: a first one, restricted to a polynomial ring
in one variable; a second one, restricted to the Hopf subalgebra of ladders, isomorphic to the
Hopf algebra of quasi-symmetric functions; a last (infinite) one, which gives a non-commutative
version of the Faà di Bruno Hopf algebra. By taking the quotient, the last classe gives an infinite
set of embeddings of the Faà di Bruno algebra into the Connes-Kreimer Hopf algebra of rooted
trees. Moreover, we give an embedding of the free Faà di Bruno Hopf algebra on D variables
into a Hopf algebra of decorated rooted trees, together with a non commutative version of this
embedding.
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Introduction

The Connes-Kreimer Hopf algebra HCK of rooted trees is introduced in [12]. It is commutative
and not cocommutative. A particular Hopf subalgebra of HCK , namely the Connes-Moscovici
subalgebra, is introduced in [5]. It is the subalgebra generated by the following elements:







δ1 = q ,
δ2 = q

q

,

δ3 = q∨
qq

+ q

q

q

,

δ4 = q∨
qq q

+ 3 q∨
qq

q

+
q∨
qq

q + q

q

q

q

,

δ5 = q∨
qq

�H
q q

+ 6 q∨
qq q

q

+ 3 q∨
qq

qq

+ 4 q∨
qq∨
qq

+ 4 q∨
qq

q

q

+
q∨
qq

q

q

+ 3
q∨
qq

q

q

+ q

q

q∨
q q

+ q

q

q

q

q

,
...

The appearing coefficients, called Connes-Moscovici coefficients, are studied in [4, 7]. It is
shown in [6] that the character group of this subalgebra is isomorphic to the group of formal
diffeomorphisms, that is to say the group of formal series of the form h + a1h

2 + . . ., with
composition. In other terms, the Connes-Moscovici subalgebra is isomorphic to the Hopf algebra
of functions on the group of formal diffeomorphisms, also called the Faà di Bruno Hopf algebra.

A non commutative version HNCK of the Connes-Kreimer Hopf algebra of trees is introduced
in [9, 11]. It contains a non commutative version of the Connes-Moscovici subalgebra, described
in [10]. Its abelianization can be identified with the subalgebra of HCK , here denoted by A1,1,
generated by the following elements of HCK :







a1 = q ,
a2 = q

q

,

a3 = q∨
qq

+ q

q

q

,

a4 = q∨
qq q

+ 2 q∨
qq

q

+
q∨
qq

q + q

q

q

q

,

a5 = q∨
qq

�H
q q

+ 3 q∨
qq q

q

+ q∨
qq

qq

+ 2 q∨
qq∨
qq

+ 2 q∨
qq

q

q

+
q∨
qq

q

q

+ 2
q∨
qq

q

q

+ q

q

q∨
q q

+ q

q

q

q

q

,
...

This subalgebra is different from the Connes-Moscovici subalgebra, but is also isomorphic to the
Faà di Bruno Hopf algebra.

In this paper, we consider a family of subalgebras of HNCK , which give a non commutative
version of the Faà di Bruno algebra. They are generated by a combinatorial Dyson-Schwinger
equation [2, 15, 16]:

XP = B+(P (XP )),

where B+ is the operator of grafting on a common root, and P =
∑

pkh
k is a formal series

such that p0 = 1. All this makes sense in a completion of HNCK , where this equation admits a
unique solution XP =

∑
ak, whose coefficients are inductively defined by:







a1 = q ,

an+1 =

n∑

k=1

∑

α1+...+αk=n

pkB
+(aα1 . . . aαk

),
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For the usual Dyson-Schwinger equation, P = α(1 − h)−1. We characterise the formal series P
such that the associated subalgebra is Hopf: we obtain a two-parameters family AN,α,β of Hopf
subalgebras of HNCK and we explicitely describe the system of generator of these algebras.

We then characterise the equalities between the AN,α,β’s and then their isomorphism classes.
We obtain three classes:

1. AN,0,1, equal to K[ q ].

2. AN,1,−1, the subalgebra of ladders, isomorphic to the Hopf algebra of quasi-symmetric
functions.

3. The AN,1,β’s, with β 6= −1, a non commutative version of the Faà di Bruno Hopf algebra.

By taking the quotient, we obtain three classes of Hopf subalgebras of HCK :

1. A0,1, equal to K[ q ].

2. A1,−1, the subalgebra of ladders, isomorphic to the Hopf algebra of symmetric functions.

3. The A1,β’s, with β 6= −1, isomorphic to the Faà di Bruno Hopf algebra.

We finally give an embedding of a non commutative version of the free Faà di Bruno on D
variables (see [1]) in a Hopf algebra of planar rooted trees decorated by the set {1, . . . ,D}3. By
taking the quotient, the free Faà di Bruno algebra appears as a subalgebra of a Hopf algebra of
decorated rooted trees.

This text is organized as follows. The first section gives some recalls about the Hopf algebras
of trees and the Faà di Bruno algebra. We define the subalgebras of HCK and HNCK associated
to a formal series P in section 2 and also give here the main theorem (theorem 4), which char-
acterizes the P ’s such that the associated subalgebras are Hopf. In section 3, we prove 2 =⇒ 3
of theorem 4. In section 4, we prove 4 =⇒ 1 of theorem 4. We also describe there the system of
generators, and the case of equalities of the subalgebras. We describe the isomorphism classes
of these subalgebras in the following section. In the last one, we consider the multivariable case.

Notations.

1. K is any field of characteristic zero.

2. Let λ ∈ K. We put:

gλ(h) = (1 − h)−λ =
∞∑

k=0

λ(λ + 1) . . . (λ + k − 1)

k!
hk =

∞∑

k=0

Qk(λ)hk ∈ K[[h]].

1 Preliminaries

1.1 Valuation and n-adic topology

In this paragraph, let us consider a graded Hopf algebra A. Let An be the homogeneous
component of degree n of A. For all a ∈ A, we put:

val(a) = max






n ∈ N / a ∈

⊕

k≥n

Ak






∈ N ∪ {+∞}.

For all a, b ∈ A, we also put d(a, b) = 2−val(a−b), with the convention 2−∞ = 0. Then d is a
distance on A. The induced topology over A will be called the n-adic topology.

3



Let A be the completion of A for this distance. In other terms:

A =
+∞∏

n=0

An.

The elements of A are written in the form
+∞∑

n=0

an, with an ∈ An for all n. Moreover, A is

naturally given a structure of associative algebra, by continuously extending the product of A.
The coproduct of A can also be extended in the following way:

∆ : A −→ A⊗̂A =
∏

i,j∈N

Ai ⊗Aj.

For all p =

+∞∑

k=0

anhn ∈ K[[h]], for all a ∈ A such that val(a) ≥ 1 , we put:

p(a) =

+∞∑

k=0

pnan ∈ A.

Indeed, for all n,m ∈ N, val

(
n+m∑

k=n

pnan

)

≥ n, so this series is Cauchy, and converges. It is an

easy exercise to prove that for all p, q ∈ K[[h]], such that q has no constant term, for all a ∈ A,
with val(a) ≥ 1, (p ◦ q)(a) = p(q(a)).

1.2 The commutative Connes-Kreimer Hopf algebra of trees

This Hopf algebra is introduced by Kreimer in [12] and studied for example in [3, 5, 7, 8, 13, 14].

Definition 1

1. A rooted tree t is a finite, connected graph without loops, with a special vertex called root.
The set of rooted trees will be denoted by TCK .

2. The weight of a rooted tree is the number of its vertices.

3. A planar rooted tree is a tree which is given an imbedding in the plane. The set of planar
rooted trees will be denoted by TNCK .

Examples.

1. Rooted trees of weight ≤ 5:

q , q

q

, q∨
qq

, q

q

q

, q∨
qq q

, q∨
qq

q

,
q∨
qq

q , q

q

q

q

, q∨
qq

�H
q q

, q∨
qq q

q

, q∨
qq

qq

, q∨
qq∨
qq

, q∨
qq

q

q

,
q∨
qq

q

q

,
q∨
qq

q

q

, q

q

q∨
q q

, q

q

q

q

q

.

2. Planar rooted trees of weight ≤ 5:

q , q

q

, q∨
qq

, q

q

q

, q∨
qq q

, q∨
qq

q

, q∨
qq

q

,
q∨
qq

q , q

q

q

q

, q∨
qq

�H
q q

, q∨
qq q

q

, q∨
qq q

q

, q∨
qq q

q

, q∨
qq

qq

, q∨
qq∨
qq

, q∨
qq∨
q q

, q∨
qq

q

q

, q∨
qq

q

q

,
q∨
qq

q

q

,
q∨
qq

q

q

,
q∨
qq

q

q

, q

q

q∨
q q

, q

q

q

q

q

.
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The Connes-Kreimer Hopf algebra of rooted trees HCK is the free associative commutative
algebra freely generated over K by the elements of TCK . A linear basis of HCK is given by
rooted forests, that is to say monomials in rooted trees. The set of rooted forests will be denoted
by FCK . The weight of a rooted forest F = t1 . . . tn is the sum of the weights of the ti’s.

Examples. Rooted forests of weight ≤ 4:

1, q , q q , q

q

, q q q , q

q

q , q∨
qq

, q

q

q

, q q q q , q

q

q q , q∨
qq

q , q

q

q

q , q

q

q

q

, q∨
qq q

, q∨
qq

q

,
q∨
qq

q , q

q

q

q

.

We now recall the Hopf algebra structure of HCK . An admissible cut of t is a non empty cut
such that every path in the tree meets at most one cut edge. The set of admissible cuts of t is
denoted by Adm(t). If c is an admissible cut of t, one of the trees obtained after the application
of c contains the root of t: we shall denote it by Rc(t). The product of the other trees will be
denoted by P c(t). The coproduct of t is then given by :

∆(t) = t ⊗ 1 + 1 ⊗ t +
∑

c∈Adm(t)

P c(t) ⊗ Rc(t).

This coproduct is extended as an algebra morphism. Then HCK becomes a Hopf algebra. Note
that HCK is given a gradation of Hopf algebra by the weight.

Examples.

∆( q∨
qq q

) = q∨
qq q

⊗ 1 + 1 ⊗ q∨
qq q

+ 3 q ⊗ q∨
qq

+ 3 q q ⊗ q

q

+ q q q ⊗ q ,

∆( q∨
qq

q

) = q∨
qq

q

⊗ 1 + 1 ⊗ q∨
qq

q

+ q

q

q ⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

+ q q ⊗ q

q

+ q ⊗ q∨
qq

,

∆(
q∨
qq

q ) =
q∨
qq

q ⊗ 1 + 1 ⊗
q∨
qq

q + q∨
qq

⊗ q + q q ⊗ q

q

+ 2 q ⊗ q

q

q

,

∆( q

q

q

q

) = q

q

q

q

⊗ 1 + 1 ⊗ q

q

q

q

+ q

q

q

⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

.

We define the operator B+ : HCK −→ HCK , that associates to a forest F ∈ FCK the tree

obtained by grafting the roots of the trees of F on a common root. For example, B+( q

q

q) = q∨
qq

q

.
Then, for all x ∈ HCK :

∆(B+(x)) = B+(x) ⊗ 1 + (Id ⊗ B+) ◦ ∆(x). (1)

This means that B+ is a 1-cocycle for a certain cohomology of coalgebra, see [5] for more details.
Moreover, this operator B+ is homogeneous of degree 1, so is continuous. So it can be extended
in an operator B+ : HCK −→ HCK .

1.3 The non commutative Connes-Kreimer Hopf algebra of planar trees

This algebra is introduced simultaneously in [9, 11]. As an algebra, HNCK is the free associative
algebra generated by the elements of TNCK . A basis of HNCK is given by planar rooted forests,
that is to say words in elements of TNCK . The set of planar rooted forests will be denoted by
FNCK .

Examples. Planar rooted forests of weight ≤ 4:

1, q , q q , q

q

, q q q , q

q

q , q q

q

, q∨
qq

, q

q

q

, q q q q , q

q

q q , q q

q

q, q q q

q

, q∨
qq

q, q q∨
qq

, q

q

q

q , q q

q

q

, q

q

q

q

, q∨
qq q

, q∨
qq

q

, q∨
qq

q

,
q∨
qq

q , q

q

q

q

.

The coproduct of HNCK is defined, as for HCK , with the help of admissible cuts. For
example :
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∆( q∨
qq

q

) = q∨
qq

q

⊗ 1 + 1 ⊗ q∨
qq

q

+ q

q

q ⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

+ q q ⊗ q

q

+ q ⊗ q∨
qq

,

∆( q∨
qq

q

) = q∨
qq

q

⊗ 1 + 1 ⊗ q∨
qq

q

+ q q

q

⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

+ q q ⊗ q

q

+ q ⊗ q∨
qq

.

Note that HNCK is a graded Hopf algebra, with a gradation given by the weight.

We define an operator, also denoted by B+ : HNCK −→ HNCK , as for HCK . For example,

B+( q q

q

) = q∨
qq

q

and B+( q

q

q) = q∨
qq

q

. Then (1) is also satisfied on HNCK . Moreover, this operator
B+ is homogeneous of degree 1, so is continuous. In consequence, it can be extended in an
operator B+ : HNCK −→ HNCK .

We proved in [9, 10] that HNCK is a self-dual Hopf algebra: it has a non degenerate pairing
denoted by <,>, and a dual basis (eF )F∈FNCK

of the basis of planar decorated forests. The
product in the dual basis is given by graftings (in an extended sense). For example:

e q

q

.e q q

q

= e q

q

q q

q

+ e q

q

q

q

q

+ e q q

q

q

q

+ e q q∨
qq

q

+ e q q

q

q

q

+ e q q∨
qq

q

+ e q q

q

q

q

.

1.4 The Faà di Bruno Hopf algebra

Let K[[h]] be the ring of formal series in one variable over K. We consider:

G =






h +

∑

n≥1

anhn+1 ∈ K[[h]]






.

This is a group for the composition of formal series. The Faà di Bruno Hopf algebra HFdB

is the Hopf algebra of functions on the opposite of the group G. More precisely, HFdB is the
polynomial ring in variables Yi, with i ∈ N

∗, where Yi is the function on G defined by:

Yi :







G −→ K

h +
∑

n≥1

anhn+1 −→ ai.

The coproduct is defined in the following way: for all f ∈ HFdB , for all P,Q ∈ G,

∆(f)(P ⊗ Q) = f(Q ◦ P ).

This Hopf algebra is commutative and not cocommutative. It is also a graded, connected
Hopf algebra, with Yi homogeneous of degree i for all i. We put:

Y = 1 +

∞∑

n=1

Yn ∈ HFdB.

Then:

∆(Y) =

∞∑

n=1

Yn+1 ⊗ Yn.

6



Indeed, with the convention a0 = b0 = 1:

∆(Y)








∑

i≥0

aih
i+1



⊗




∑

i≥0

bih
i+1







 = Y




∑

i≥0

bi




∑

j≥0

ajh
j+1





i+1



=
∑

i≥0

bi




∑

j≥0

aj





i+1

,

(
∞∑

n=1

Yn+1 ⊗ Yn

)






∑

i≥0

aih
i+1



⊗




∑

i≥0

bih
i+1







 =
∞∑

n=1




∑

i≥0

ai





n+1

bn.

The graded dual H∗
FdB is an enveloping algebra, by the Cartier-Quillen-Milnor-Moore theo-

rem. A basis of Prim(H∗
FdB) is given by (Zi)i∈N∗ , where:

Zi :







HFdB −→ K
Y α1

1 . . . Y αk

k −→ 0 if α1 + . . . + αk 6= 1,
Yj −→ δi,j .

By homogeneity, for all i, j ∈ N
∗, there exists a coefficient λi,j ∈ K such that [Zi, Zj ] = λi,jZi+j .

Moreover:

[Zi, Zj ](Y) = λi,j

= (Zi ⊗ Zj − Zj ⊗ Zi) ◦ ∆(Y)

= (Zi ⊗ Zj − Zj ⊗ Zi)

(
∞∑

n=1

Yn+1 ⊗ Yn

)

= Zi(Y
j+1) − Zj(Y

i+1)

= (j + 1) − (i + 1)

= j − i.

So the bracket of Prim(H∗
FdB) is given by:

[Zi, Zj ] = (j − i)Zi+j .

2 Subalgebras associated to a formal series

2.1 Construction

We denote by K[[h]]1 the set of formal series of K[[h]] with constant term equal to 1.

Proposition 2 Let P ∈ K[[h]]1.

1. There exists a unique element XP =
∑

k≥1

an ∈ HCK , such that XP = B+ (P (XP )).

2. There exists a unique element XP =
∑

k≥1

an ∈ HNCK , such that XP = B+ (P (XP )).

Proof.

7



1. Unicity. We put XP =
∑

n≥1

an, with an homogeneous of degree n for all n. Then the an’s

satisfy the following equations:






a1 = q ,

an+1 =

n∑

k=1

∑

α1+...+αk=n

pkB
+(aα1 . . . aαk

).
(2)

Hence, the an’s are uniquely defined.

Existence. The an’s defined inductively by (2) satisfy the required condition.

2. We put XP =
∑

n≥1

an, an homogeneous of degree n for all n. Then the an’s satisfy the

following equations:






a1 = q ,

an+1 =

n∑

k=1

∑

α1+...+αk=n

pkB
+(aα1 . . . aαk

).
(3)

The end of the proof is similar. �

Definition 3 Let P ∈ K[[h]]1.

1. The subalgebra AP of HCK is the subalgebra generated by the an’s.

2. The subalgebra AN,P of HNCK is the subalgebra generated by the an’s.

Remarks.

1. AP is a graded subalgebra of HCK , and AN,P is a graded subalgebra of HNCK .

2. For all n ∈ N
∗, an is an element of V ect(TCK). Hence:

V ect(TCK) ∩ AP = V ect(an, n ∈ N
∗). (4)

The same holds in the non commutative case.

2.2 Main theorem

One of the aim of this paper is to prove the following theorem:

Theorem 4 Let P ∈ K[[h]]1. The following assertions are equivalent:

1. AN,P is a Hopf subalgebra of HNCK .

2. AP is a Hopf subalgebra of HCK .

3. There exists (α, β) ∈ K2, such that P satisfies the following differential system:

Sα,β :

{
(1 − αβh)P ′(h) = αP (h)

P (0) = 1.

4. There exists (α, β) ∈ K2, such that:

(a) P (h) = 1 if α = 0.

(b) P (h) = eαh if β = 0.

(c) P (h) = (1 − αβh)
− 1

β if αβ 6= 0.

An easy computation proves the equivalence between assertions 3 and 4. Moreover, using
the Hopf algebra morphism ̟ : HNCK −→ HCK , defined by forgetting the planar data, it is
clear that AP = ̟(AN,P ). So, assertion 1 implies assertion 2.
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3 When is AP a Hopf subalgebra?

3.1 Preliminary results

The aim of this section is to show 2 =⇒ 3 in theorem 4.

Lemma 5 Suppose that AP is a Hopf subalgebra. Then two cases are possible:

1. P = 1. In this case, XP = q and AP = K[ q ].

2. p1 6= 0. In this case, an 6= 0 for all n ≥ 1.

Proof. Suppose first that p1 = 0, and suppose that there exists n ≥ 2 such that pn 6= 0. Let
us choose n minimal. Then, by (2), a2 = . . . = an = 0 and an+1 = pnB+( q

n). Then:

∆(B+( q

n)) = B+( q

n) ⊗ 1 +
n∑

k=0

(
n

k

)

q

k ⊗ B+( q

n−k) ∈ AP ⊗AP ,

which implies that B+( q) = q

q

∈ AP ∩ V ect(TCK) = V ect(an), so a2 6= 0: contradiction. So
P = 1 and XP = q .

Suppose p1 6= 0. By (2), the canonical projection of an+1 on Im((B+)2) (vector space of
trees such that the root has only one child) is p1B

+(an) for all n ≥ 1. Hence, for all n ≥ 1,
an+1 = 0 ⇒ an = 0. So for all n ≥ 1, an 6= 0. �

We put:

Z :

{
HCK −→ K

F ∈ FCK −→ δ q ,F .

Note that Z is an element of the graded dual H∗
CK . Moreover, Z can be extended to HCK ,

and satisfies, for all a, b ∈ HCK :

Z(ab) = Z(a)ε(b) + ε(a)Z(b).

Lemma 6 Let P ∈ K[[h]]1. If AP is a Hopf subalgebra of HCK , then:

(Z ⊗ Id) ◦ ∆(XP ) ∈ AP .

Proof. As AP is a Hopf subalgebra, for all n ∈ N
∗, ∆(an) ∈ AP ⊗AP . Hence, (Z ⊗ Id) ◦

∆(an) ∈ AP . �

Lemma 7 We consider the following continuous applications:

{
Z̃ = Z⊗̂Id : HCK⊗̂HCK −→ HCK ,

ε̃ = ε⊗̂Id : HCK⊗̂HCK −→ HCK .

Then ε̃ is an algebra morphism and Z̃ is a ε̃-derivation, i.e. satisfies:

Z̃(ab) = Z̃(a)ε̃(b) + ε̃(a)Z̃(b).

Proof. Immediate. �
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Let us fix t ∈ TCK . We put P (h) =
+∞∑

n=0

pnhn. As XP = B+(P (XP )), we have:

Z̃ ◦ ∆(XP ) =

+∞∑

n=0

pn(Z ⊗ Id) ◦ ∆ ◦ B+(Xn
P )

=

+∞∑

n=0

pnZ(B+(Xn
P ))1 +

+∞∑

n=0

pn(Z ⊗ B+)(∆(XP ))n

= Z(XP )1 + B+

(
+∞∑

n=0

pnZ̃(∆(XP )n)

)

= Z(XP )1 + B+

(
+∞∑

n=0

npnε̃(∆(XP ))n−1Z̃(∆(XP ))

)

= Z(XP )1 + B+

(
+∞∑

n=0

npnXn−1
P Z̃(∆(XP ))

)

= Z(XP )1 + B+
(
P ′(XP ).(Z ⊗ Id) ◦ ∆(XP ))

)

We consider the following linear application:

LP :

{
HCK −→ HCK

a −→ B+(P ′(XP )a).

Then, immediately, for all a ∈ HCK , val(LP (a)) ≥ val(a)+1, so Id−LP is invertible. Moreover,
by the preceding computation:

Z̃ ◦ ∆(XP ) = Z(XP )1 + LP ((Z ⊗ Id) ◦ ∆(XP ))

⇐⇒ (Id − LP )((Z ⊗ Id) ◦ ∆(XP )) = Z(XP )1

⇐⇒ Z̃ ◦ ∆(XP ) = Z(XP )(Id − LP )−1(1).

Hence, as Z(XP ) = 1, lemma 6 induces the following result:

Proposition 8 Let P ∈ K[[h]]1. If AP is a Hopf subalgebra of HCK , then:

(Id − LP )−1(1) ∈ AP .

3.2 Proof of 2 =⇒ 3

We put Y =
+∞∑

k=0

bn = (Id − LP )−1(1). Then bn can be inductively computed in the following

way:







b0 = 1,

bn+1 =
n∑

k=1

∑

α1+...+αk=n

(k + 1)pk+1B
+(aα1 . . . aαk

)

+

n∑

k=1

∑

α1+...+αk=n

kpkB
+(bα1aα2 . . . aαk

).

(5)

In particular, b1 = p1 q .

10



Suppose that AP is a Hopf subalgebra. Then bn ∈ (AP ∩ V ect(TCK))n = V ect(an) for
all n ≥ 1, so there exists αn ∈ K, such that bn = αnan. Let us compare the projection on
Im((B+)2) of an+1 and bn+1:

{
p1B

+(an) for an+1,
2p2B

+(an) + p1B
+(bn) = (2p2 + p1αn)B+(an) for bn+1.

Suppose that p1 6= 0. Then the an’s are all non zero by lemma 5, so αn is uniquely determined
for all n ∈ N

∗. We then obtain, by comparing the projections of an+1 and bn+1 over Im((B+)2):

{
α1 = p1,

αn+1 = 2
p2

p1
+ αn.

Hence, for all n ∈ N
∗, αn = p1 + 2

p2

p1
(n − 1).

Let us compare the coefficient of B+( q

n) in an+1 and in bn+1 with (2) and (5). we obtain:

{
pn for an+1,

(n + 1)pn+1 + npnp1 for bn+1.

Hence, αn+1pn = (n + 1)pn+1 + npnp1 for all n ≥ 1. As a consequence:

(n + 1)pn+1 +

(

p1 − 2
p2

p1

)

npn = p1pn.

This property is still true for n = 0, as p0 = 1. By multiplying by hn and taking the sum:

P ′(h) +

(

p1 − 2
p2

p1

)

hP ′(h) = p1P (h).

We then put α = p1 and β = 2
p2

p2
1

− 1. Hence:

(1 − αβh)P ′(h) = αP (h).

This equality is still true if p1 = 0, with α = 0 and any β. Hence, we have shown:

Proposition 9 If AP is a Hopf subalgebra of HCK , then there exists (α, β) ∈ K2, such that
P satisfies the following differential system:

Sα,β :

{
(1 − αβh)P ′(h) = αP (h)

P (0) = 1.

This implies:

1. P (h) = 1 if α = 0.

2. P (h) = eαh if β = 0.

3. P (h) = (1 − αβh)
− 1

β if αβ 6= 0.

4 Is AN,α,β a Hopf subalgebra?

The aim of this section is to prove in 4 =⇒ 1 in theorem 4.
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4.1 Generators of AN,α,β.

We denote by Pα,β the solution of Sα,β and we put Aα,β = APα,β
and AN,α,β = AN,Pα,β

, in order

to simplify the notations. We also put XPα,β
=
∑

n∈N

an(α, β) and Pα,β =

+∞∑

n=0

pn(α, β)hn. The

system Sα,β is equivalent to:

S′
α,β :







p0(α, β) = 1,

pn+1(α, β) = α
1 + nβ

n + 1
pn(α, β) for all n ∈ N.

Definition 10

1. For all i ∈ N
∗, we put [i]β = (1 + β(i − 1)). In particular, [i]1 = i et [i]0 = 1.

2. We put [i]β! = [1]β . . . [i]β . In particular, [i]1! = i! et [i]0! = 1. We also put [0]β ! = 1.

Immediately, for all n ∈ N:

pn(α, β) = αn [n]β!

n!
.

For all F ∈ FCK , we define the coefficient F ! by:

F ! =
∏

s vertex of F

(fertility of s)!.

Note that these are not the coefficients F ! defined in [4, 7, 19]. They can be inductively defined
by:







q ! = 1,
(t1 . . . tk)! = t1! . . . tk!,

B+(F )! = k!F !

In a similar way, we define the following coefficients:

[F ]β ! =
∏

s vertex of F

[fertility of s]β !.

They can also be inductively defined:







[ q ]β! = 1,
[t1 . . . tk]β! = [t1]β! . . . [tk]β!,

[B+(F )]β! = [k]β ![F ]β !

In particular, for all forest F , [F ]1! = F ! and [F ]0! = 1.

Finally, for all n ∈ N
∗, we put an(α, β) =

∑

t∈TNCK , |t|=n

at(α, β)t.

Theorem 11 For any tree t,

at(α, β) = α|t|−1 [t]β!

t!
.

In particular, at(1, 0) = 1
t! , at(1, 1) = 1 and at(0, β) = δt, q for all β. Moreover:

at(1,−1) =

{
0 if t is not a ladder,
1 if t is a ladder.

12



Proof. Induction on |t|. If |t| = 1, then t = q and at(α, β) = 1. Suppose the result true for
all tree of weight strictly smaller than |t|. Then, with t = B+(t1 . . . tk), by (3):

at(α, β) = α|t1|−1+...+|tk |−1 [t1]β! . . . [tk]β!

t1! . . . tk!
αk [k]β !

k!

= α|t1|+...+|tk|
[t]β !

t!

= α|t|−1 [t]β !

t!
.

The formulas for (α, β) = (1, 0), (1, 1) and (0, β) are easily deduced. Finally, for (α, β) = (1,−1),
it is enough to observe that [1]β ! = 1 and [k]β ! = 0 if k ≥ 2. �

Examples.

a1(α, β) = q

a2(α, β) = α q

q

a3(α, β) = α2

(
(1 + β)

2
q∨
qq

+ q

q

q

)

a4(α, β) = α3

(

(1 + 2β)(1 + β)

6
q∨
qq q

+
(1 + β)

2
q∨
qq

q

+
(1 + β)

2
q∨
qq

q

+
(1 + β)

2
q∨
qq

q + q

q

q

q

)

a5(α, β) = α4











(1+3β)(1+2β)(1+β)
24

q∨
qq

�H
q q

+ (1+2β)(1+β)
6

q∨
qq q

q

+ (1+2β)(1+β)
6

q∨
qq q

q

+ (1+2β)(1+β)
6

q∨
qq q

q

+ (1+β)2

4
q∨
qq∨
qq

+ (1+β)2

4
q∨
qq∨
q q

+ (1+β)
2

q∨
qq

q

q

+ (1+β)
2

q∨
qq

q

q

+ (1+2β)(1+β)
6

q∨
qq

q

q

+ (1+β)
2

q∨
qq

qq

+ (1+β)
2

q∨
qq

q

q

+ (1+β)
2

q∨
qq

q

q

+ (1+β)
2

q

q

q∨
q q

+ q

q

q

q

q











In particular, a(1, 1) is the sum of all planar trees of weight n, so AN,1,1 is the subalgebra
of formal diffeomorphisms described in [10]. Moreover, a(1,−1) is the ladder of weight n, so
AN,1,−1 is the subalgebra of ladders of HNCK .

4.2 Equalities of the subalgebras AN,P

Lemma 12 Let P,Q ∈ K[[h]]1. Suppose that Q(h) = P (γh) for a certain γ. We denote

XP =
∑

n≥1

an. Then XQ =
∑

n≥1

γn−1an. In particular, if γ 6= 0, AN,P = AN,Q.

Proof. We put Y =
∑

n≥1

γn−1an. Then:

B+(Q(Y)) =
∑

n∈N

n∑

k=1

∑

n1+...+nk=n

γkpkB
+(γn1−1an1 . . . γnk−1ank

)

=
∑

n∈N

n∑

k=1

∑

n1+...+nk=n

γk+n−kpkB
+(an1 . . . ank

)

=
∑

n∈N

γn
n∑

k=1

∑

n1+...+nk=n

pkB
+(an1 . . . ank

)

=
∑

n∈N

γnan+1

= Y.

By unicity, Y = XQ. �
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Theorem 13 Let (α, β) and (α′, β′) ∈ K2. The following assertions are equivalent:

1. AN,α,β = AN,α′,β′.

2. Aα,β = Aα′,β′.

3. (β = β′ and αα′ 6= 0) or (α = α′ = 0).

Proof.

1 =⇒ 2. Obvious.

2 =⇒ 3. By theorem 11:







a1 = q , a2 = α q

q

, a3 = α2
q

q

q

+ α2 (1+β)
2

q∨
qq

;

a′1 = q , a′2 = α′
q

q

, a′3 = α′2
q

q

q

+ α′2 (1+β′)
2

q∨
qq

.

As Aα,β = Aα′,β′ , there exists γ 6= 0, sucht that α′
q

q

= γα q

q

. Hence, α′ = γα. In particular, if
α = 0, then α′ = 0. Suppose that α 6= 0. As a3 and a′3 are colinear, the following determinant
is zero:

α2 α2 (1+β)
2

α′2 α′2 (1+β′)
2

=
1

2
α2α′2(β′ − β) = 0.

As α and α′ are non zero, β = β′.

3 =⇒ 1. Suppose first α = α′ = 0. Then Pα,β = Pα′,β′ = 1, so AN,α,β = AN,α′,β′ . Suppose
β = β′ and αα′ 6= 0. Then there exists γ ∈ K − {0}, such that α = γα′. Then, immediately,
Pα,β(γh) = Pα′,β′(h). By the preceding lemma, AN,α,β = AN,α′,β′ . �

4.3 The AN,α,β’s are Hopf subalgebras

We now prove 4 =⇒ 1 in theorem 4. If α = 0, then AN,α,β = K[ q] and it is obvious. We take
α 6= 0. By theorem 13, we can suppose that α = 1.

Lemma 14 Let k, n ∈ N
∗. We consider the following element of K[X1, . . . ,Xn]:

Pk(X1, . . . ,Xn) =
∑

α1+...+αn=k

X1(X1 + 1) . . . (X1 + α1 − 1)

α1!
. . .

Xn(Xn + 1) . . . (Xn + αn − 1)

αn!
.

By putting S = X1 + . . . + Xn:

Pk(X1, . . . ,Xn) =
S(S + 1) . . . (S + k − 1)

k!
.
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Proof. Induction on k. This is obvious for k = 1. Suppose the result true at rank k. Then:

Pk(X1, . . . ,Xn)(X1 + . . . + Xn + k)

=
∑

α1+...+αn=k

n∑

i=1












X1(X1+1)...(X1+α1−1)
α1!
...

Xi(Xi+1)...(Xi+αi)
αi!
...

Xn(Xn+1)...(Xn+αn−1)
αn!












=
∑

α′

1+...+α′

n=k+1

n∑

i=1

α′
i













X1(X1+1)...(X1+α′

1−1)
α′

1!
...

Xi(Xi+1)...(Xi+α′

i−1)
α′

i!
...

Xn(Xn+1)...(Xn+α′

n−1)
α′

n!













= (k + 1)
∑

α′

1+...+α′

n=k+1













X1(X1+1)...(X1+α′

1−1)
α′

1!
...

Xi(Xi+1)...(Xi+α′

i−1)
α′

i!
...

Xn(Xn+1)...(Xn+α′

n−1)
α′

n!













= (k + 1)Pk+1(X1, . . . ,Xn).

This implies the announced result. �

Let F = t1 . . . tk be a forest and t be a tree. Using the dual basis (eF )F∈FNCK
:

coefficient of F ⊗ t in ∆(X1,β) = < eF ⊗ et,∆(X1,β) >

= < eF et,X1,β >

=
∑

s grafting of F on t

< es,X1,β >

=
∑

s tree, grafting of F on t

[s]β!

s!
.

Let n be the weight of t and s1, . . . , sn its vertices. Let fi be the fertility of si. Let (α1, . . . , αn)
such that α1 + . . . + αn = k and consider the graftings of F on t such that αi trees of F are
grafted on si for all i. Then:

1. If s is such a grafting, we have:







[s]β ! = [t]β![t1]β! . . . [tk]β!
[f1 + α1]β !

[f1]β!
. . .

[fn + αn]β !

[fn]β!
,

s! = t!t1! . . . tk!
(f1 + α1)!

f1!
. . .

(fn + αn)!

fn!
.

2. The number of such graftings is:

(
f1 + α1

α1

)

. . .

(
fn + αn

αn

)

.
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Hence, by putting xi = fi + 1/β and s = x1 + . . . + xn, by lemma 14:

coefficient of F ⊗ t in ∆(X1,β)

=
∑

α1+...+αn=k

[t]β!

t!

[t1]β!

t1!
. . .

[tk]β!

tk!

[f1 + α1]β !

[f1]β !α1!
. . .

[fn + αn]β!

[fn]β!αn!

=
[t]β!

t!

[t1]β !

t1!
. . .

[tk]β!

tk!

∑

α1+...+αn=k

n∏

i=1

(1 + fiβ) . . . (1 + (fi + αi − 1)β)

αi!

=
[t]β!

t!

[t1]β !

t1!
. . .

[tk]β!

tk!

∑

α1+...+αn=k

n∏

i=1

βαi
xi(xi + 1) . . . (xi + αi − 1)

αi

=
[t]β!

t!

[t1]β !

t1!
. . .

[tk]β!

tk!
βkPk(x1, . . . , xn)

=
[t]β!

t!

[t1]β !

t1!
. . .

[tk]β!

tk!
βk s(s + 1) . . . (s + k − 1)

k!
.

Moreover, as t is a tree:

s = f1 + . . . + fn + n/β = number of edges of t + n/β = n − 1 + n/β = n(1 + 1/β) − 1.

So, as Qk(S) =
S(S + 1) . . . (S + k − 1)

k!
:

∆(X1,β) = X1,β ⊗ 1 +

∞∑

k=0

∑

F=t1...tk , t

[t]β!

t!

[t1]β !

t1!
. . .

[tk]β!

tk!
βkQk(|t|(1 + 1/β) − 1)F ⊗ t

= X1,β ⊗ 1 +

∞∑

n=1

∞∑

k=0

Qk(n(1 + 1/β) − 1)βkXk
1,β ⊗ an(1, β)

= X1,β ⊗ 1 +
∞∑

n=1

(1 − βX1,β)−n(1/β+1)+1 ⊗ an(1, β).

Proposition 15 The coproduct of the an(1, β)’s is given by:

∆(X1,β) = X1,β ⊗ 1 +
∞∑

n=1

(1 − βX1,β)−n(1/β+1)+1 ⊗ an(1, β).

As a consequence, AN,1,β is a Hopf subalgebra of HNCK .

Remark. By taking the abelianization of AN,1,β, the same holds in A1,β:

∆(X1,β) = X1,β ⊗ 1 +

∞∑

n=1

(1 − βX1,β)−n(1/β+1)+1 ⊗ an(1, β).

5 Isomorphisms between the AN,α,β’s

5.1 Another system of generators of AN,1,β

Notation. We denote by B− the inverse of B+ : HNCK −→ V ect(TNCK), that is to say the
application defined on a tree by deleting the root.

We define bn(α, β) = B−(an+1(α, β)) for all n ∈ N, and:

Y(α, β) =

∞∑

n=0

b(α, β).
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We have:

Y(α, β) =
∑

F∈FCK

α|B+(F )|−1 [B+(F )]β !

B+(F )!
F

=

∞∑

k=0

∑

t1,...,tk∈TCK

α|t1|+...+|tk|
[k]β ![t1]β ! . . . [tk]β !

k!t1! . . . tk!
t1 . . . tk

=
∑

k=0

[k]β !

k!
Xk

α,β

=

∞∑

k=0

1(1 + β) . . . (1 + β(k − 1))

k!
Xk

α,β

=

∞∑

k=0

1/β(1/β + 1) . . . (1/β + k − 1))

k!
βkXk

α,β

=

∞∑

k=0

Qk(1/β)βkXk
α,β

= (1 − βXα,β)−1/β .

By the last equality, bn(α, β) ∈ AN,α,β for all n ∈ N. Moreover, by the second equality, if n ≥ 1:

bn(α, β) =
∑

t∈TCK , |t|=n

αn [t]β !

t!
t + forests with more than two trees

= αan(α, β) + forests with more than two trees.

So (bn(α, β))n≥1 is a set of generators of AN,α,β if α 6= 0.

Proposition 16 Suppose α = 1. Then:

∆(Y(1, β)) =
∞∑

n=0

Y(1, β)n(β+1)+1 ⊗ bn(1, β).

Proof. As Y(1, β) = B−(X(α, β)), by (1):

∆(Y(1, β)) = (Id ⊗ B−) (∆(X(1, β)) − X(1, β) ⊗ 1)

=

∞∑

n=1

(1 − βX1,β)−n(1/β+1)+1 ⊗ B−(an(1, β))

=

∞∑

n=1

Y
n(1+β)−β
1,β ⊗ bn−1(1, β)

=
∞∑

n=0

Y
(n+1)(1+β)−β
1,β ⊗ bn(1, β)

=

∞∑

n=0

Y
n(1+β)+1
1,β ⊗ bn(1, β). �

5.2 Isomorphisms between the AN,α,β’s

Proposition 17 If β 6= −1 and β′ 6= −1, then AN,1,β and AN,1,β′ are isomorphic.

Proof. Let γ ∈ K − {0}. We put:

Z(1, β) = Y(1, β)γ =
∞∑

k=0

cn(1, β),

17



with cn(1, β) ∈ A(1, β), homogeneous of degree n. This makes sense, because b0(1, β) = 1.
Moreover, for all n ≥ 1:

cn(1, β) = Q1(γ)bn(1, γ) + forests with more than two trees

= γbn(1, γ) + forests with more than two trees,

so (cn(1, β))n≥1 is a set of generators of A(1, β). Moreover:

∆(Z(1, β)) =
∞∑

k=0

Qk(γ)

(
∞∑

n=1

Y(1, β)n(β+1)+1 ⊗ bn(1, β)

)k

=
∞∑

k=0

Qk(γ)
∑

a1,...,ak≥1

Y(1, β)(a1+...+ak)(β+1)+k ⊗ ba1(1, β) . . . bak
(1, β)

=
∞∑

l=0

∞∑

k=0

Qk(γ)
∑

a1+...+ak=l

Y(1, β)l(β+1)+k ⊗ ba1(1, β) . . . bak
(1, β)

=

∞∑

l=0

Y(1, β)l(β+1)





∞∑

k=0

∑

a1+...+ak=l

Qk(γ)Y(1, β) ⊗ ba1(1, β) . . . Y(1, β) ⊗ bak
(1, β)





=
∞∑

l=0

Y(1, β)l(β+1)Y(1, β)γ ⊗ cl(1, β)

=
∞∑

l=0

Z(1, β)
l
(

β+1
γ

)

+1
⊗ cl(1, β).

We now chose γ = β+1
β′+1 . As β′ 6= −1, this is well defined; as β 6= −1, this is non zero. Then:

∆(Z(1, β)) =
∞∑

l=0

Z(1, β)l(β
′+1)+1 ⊗ cl(1, β).

So the unique isomorphism of algebras defined by:

{
A1,β′ −→ A1,β

bn(1, β′) −→ cn(1, β)

is a Hopf algebra isomorphism. �

In the non commutative case, the following result holds:

Corollary 18 There are three isomorphism classes of AN,α,β’s:

1. the AN,1,β’s, with β 6= −1. These are not commutative and not cocommutative.

2. AN,1,−1, isomorphic to QSym, the Hopf algebra of quasi-symmetric functions ([17, 20])
This one is not commutative and cocommutative.

3. AN,0,1 = K[ q ]. This one is commutative and cocommutative.

Consequently, in the commutative case:

Corollary 19 There are three isomorphism classes of Aα,β’s:

1. the A1,β’s, with β 6= −1. These are isomorphic to the Faà di Bruno algebra on one variable.

2. A1,−1, isomorphic to Sym, the Hopf algebra of symmetric functions. This one is commu-
tative and cocommutative.

18



3. A0,1 = K[ q ].

Proof. As Aα,β is the abelianization of AN,α,β, if AN,α,β ≈ AN,α′,β′ , then Aα,β ≈ Aα′,β′ .
Moreover, A1,β is not cocommutative if β 6= −1, whereas A1,−1 is. So A1,β and A1,−1 are not
isomorphic if β 6= −1. It remains to show that A1,β is isomorphic to the Faà di Bruno Hopf
algebra on one variable if β 6= −1. Let us consider the dual Hopf algebra of A1,β. By Cartier-
Quillen-Milnor-Moore’s theorem ([18]), this is an enveloping algebra U(L1,β). Moreover, L1,β

has for basis (Tn)n∈N∗ defined by:

Tn :







L1,β −→ K
aα1

1 . . . aαk

k −→ 0 if α1 + . . . + αk 6= 1,
am −→ δm,n.

Moreover, Tn is homogeneous of degree n. By proposition 15, for all i, j ≥ 1:

(Ti ⊗ Tj) ◦ ∆(X1,β) = Ti(X1,β)Tj(1) +

∞∑

n=1

∞∑

k=0

Qk(n(1/β + 1) − 1)βkTi(X
k
1,β)Tj(an(1, β))

= 0 + Q1(j(1/β + 1) − 1)βTi(X1,β)

= j(1 + β) − β.

By homogeneity, there exists λi,j ∈ K such that [Ti, Tj ] = λi,jTi+j . Then:

λi,j = [Ti, Tj ](X1,β)

= (Ti ⊗ Tj) ◦ ∆(X1,β) − (Tj ⊗ Ti) ◦ ∆(X1,β)

= j(1 + β) − β − i(1 + β) + β

= (i − j)(1 + β).

Then, there exists a Lie algebra morphism:

{
Lα,β −→ Prim(H∗

FdB)
Tn −→ (1 + β)Zn.

In particular, if β 6= −1, this is an isomorphism. Hence, A∗
1,β is isomorphic to H∗

FdB , so A1,β is
isomorphic to the Faà di Bruno Hopf algebra on one variable. �

Remark. The Connes-Moscovici subalgebra HCM of HCK (see [5, 6]) does not appear here:

as it is generated by q, q

q

, q∨
qq

+ q

q

q

, . . ., it would be A(1,1). The fourth generator of A(1,1) is:

q∨
qq q

+ 2 q∨
qq

q

+
q∨
qq

q + q

q

q

q

,

whereas the fourth generator of HCM is:

q∨
qq q

+ 3 q∨
qq

q

+
q∨
qq

q + q

q

q

q

.

So they are different.

6 The case of the free Faà di Bruno algebra with D variables

We here fix an integer D ≥ 1. We denote by W the set of non empty words in letters {1, . . . ,D}.
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6.1 Construction

We now recall the construction of the free Faà di Bruno algebra in D variables (see [1]). Consider
the ring of non commutative formal series K〈〈h1, . . . , hD〉〉 on D variables. We consider:

GD =







(
∑

w∈W

a(i)
w hw

)

1≤i≤D

/ a
(i)
j = δi,j






.

We use the following convention: if u1 . . . uk ∈ W , then hw = hu1 . . . huk
. In other terms, GD is

the set of formal diffeomorphisms on KD which are tangent to the identity at the origin. This
is a group for the composition of formal series.

Then HFdB,D is the Hopf algebra of functions on the opposite of the group GD. Hence, it
is the polynomial ring in variable Y i

w, 1 ≤ i ≤ D, with the convention that if w has only one
letter j, then Y i

j = δi,j . The coproduct is given in the following way: for all f ∈ HFdB,D, for all
P,Q ∈ GD,

∆(f)(P ⊗ Q) = f(Q ◦ P ).

In particular, if:

P =

(
∑

w∈W

a(i)
w hw

)

1≤i≤D

and Q =

(
∑

w∈W

b(i)
w hw

)

1≤i≤D

,

then:

∆(Y i
w)(P ⊗ Q) = Y i

w(Q ◦ P )

= Y i
w








∑

u1...uk∈W

bj
u1...uk

∑

w1,...,wk∈W

au1
w1

. . . auk
wk

hw1...wk





1≤j≤D





=
∑

u1...uk∈W

∑

w1...wk=w

bj
u1...uk

au1
w1

. . . auk
wk

.

Hence:

∆
(
Y i

w

)
=

n∑

k=1

∑

1≤ui≤D

∑

w1,...,wk∈W ,
w1...wk=w

Y u1
w1

. . . Y uk
wk

⊗ Y i
u1...uk

.

For D = 1, we recover HFdB.

6.2 Subalgebras of HD
NCK

We now put D = {1, . . . ,D}3. The elements of D will be denoted in the following way: i, (u1, u2).
In the same way, it is possible to construct a commutative Hopf algebra HD

CK of rooted trees
decorated by D, and a non commutative Hopf algebra HD

NCK of planar rooted trees decorated
by D. In both cases, we define, for all i, (u1, u2) ∈ D, a linear endomorphism B+

i,(u1,u2)
, which

sends forest F on the tree obtained by grafting all the trees of F on a common root decorated
by i, (u1, u2).

Definition 20 Let i ∈ {1, . . . ,D} and w = u1 . . . un ∈ W . We define an element Y i
w ∈

HD
NCK inductively on n in the following way:







Yi
w = δi,w if n = 1,

Yi
w =

∑

1≤α,β≤D

∑

w1,w2∈W,
w1w2=w

B+
i,(α,β)

(

Y α
w1

Y β
w2

)

if n ≥ 2.
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Examples. For i, u1, u2, u3 and u4 elements of {1, . . . ,D}:

Y i
u1

= δi,u1 ,

Y i
u1u2

= q i, (u1, u2) ,

Y i
u1u2u3

=
∑

1≤α≤D

( q

q

i, (α, u3)
α, (u1, u2) + q

q

i, (u1, α)
α, (u2, u3)) ,

Y i
u1u2u3u4

=
∑

1≤α,β≤D

(

q∨
qq

i, (α, β)
β, (u3, u4)α, (u1, u2)

+ q

q

q

i, (α, u4)
α, (u1, β)
β, (u2, u3)

+ q

q

q

i, (α, u4)
α, (β, u3)
β, (u1, u2)

+ q

q

q

i, (u1, α)
α, (u2, β)
β, (u3, u4)

+ q

q

q

i, (u1, α)
α, (β, u4)
β, (u2, u3))

.

An easy induction shows that Y i
u1...un

is homogeneous of degree n − 1.

Theorem 21 For all i ∈ {1, . . . ,D}, w ∈ W of length n:

∆
(
Y i

w

)
=

n∑

k=1

∑

1≤αi≤D

∑

w1,...,wk∈W,
w1...wk=w

Y α1
w1

. . . Y αk
wk

⊗ Y i
α1...αk

.

Proof. By induction on n. It is obvious if n = 1 or 2. Suppose it is true for all rank < n.
Then:

∆(Y i
w) =

∑

α,β

∑

w1w2=w

∆ ◦ B+
i,(α,β)

(

Y α
w1

Y β
w2

)

= Y i
w ⊗ 1 +

∑

α,β

∑

w1w2=w

∑

w1,1...w1,k=w1

∑

α1,...,αk

∑

w2,1...w2,l=w2

∑

β1,...,βl

Y α1

w1,1
. . . Y αk

w1,k
Y β1

w2,1
. . . Y βl

w2,l
⊗ B+

i,(α,β)

(

Y α
α1...αk

Y β
β1...βl

)

= Y i
w ⊗ 1 +

∑

k≥2

∑

w1...wk=w

∑

α1,...,αk

Y α1
w1

. . . Y αk
wk

⊗




∑

α,β

∑

w′

1w′

2=α1...αk

B+
i,(α,β)

(

Y α
w′

1
Y β

w′

2

)





= Y i
w ⊗ 1 +

∑

k≥2

∑

w1...wk=w

∑

α1,...,αk

Y α1
w1

. . . Y αk
wk

⊗ Y i
α1...αk

=
∑

k≥1

∑

w1...wk=w

∑

α1,...,αk

Y α1
w1

. . . Y αk
wk

⊗ Y i
α1...αk

. �

Hence, the subalgebra of HD
NCK generated by the Y i

w’s is a Hopf subalgebra. Its abelianiza-
tion can be seen as a subalgebra of HD

CK , and is isomorphic to HFdB,D.

Remark. In the case where D = 1, we put Y 1
1 . . . 1
︸ ︷︷ ︸

n+1 times

= Yn. Then, by definition:







Y0 = 1,
Y1 = q ,

Yn =

n−1∑

k=0

B+(YkYn−1−k) = 2B+(Yn−1) +

n−2∑

k=1

B+(YkYn−1−k) if n ≥ 2.

Hence, by (4), this is the subalgebra associated to 1 + 2h + h2 = (1 + h)2 = P4,− 1
2
(h), namely

AD,4,− 1
2
.
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6.3 Description of the Y
i
w’s in the generic case

Definition 22 A tree t ∈ T
D
CK is admissible if:

1. Every vertex is of fertility less than 2.

2. For each vertex of fertility 1, the decorations are set in this way:

q

q

i, (a, b)
a, (c, d) or q

q

i, (a, b)
b, (c, d) .

3. For each vertex of fertility 2, the decorations are set in this way:

q∨
qq

i, (a, b)
b, (e, f)a, (c, d)

.

Let t be an admissible tree. We associate to it a word in W in the following inductive way:

1. w( q i, (a, b)) = ab.

2. If the root of t has fertility 1, with decorations set as q

q

i, (a, b)
a, (c, d) , then, if we denote t′ = B−(t),

w(t) = w(t′)b.

3. If the root of t has fertility 1, with decorations set as q

q

i, (a, b)
b, (c, d) , then, if we denote t′ = B−(t),

w(t) = aw(t′).

4. If the root of t has fertility 2, then, if we denote t′t′′ = B−(t), w(t) = w(t′)w(t′′).

Remark. The cases 1 and 2 are not incompatible, so w(t) is not well defined. For example,
for t = q

q

i, (a, a)
a, (c, d) , two results are possible: cda and acd.

An easy induction shows that:

Proposition 23 Suppose that w ∈ W is generic, that is to say all his letters are distinct.
Then Y i

w is the sum of admissible trees t such that:

1. w(t) = w.

2. The decoration of the root of t is of the form i, (a, b), with 1 ≤, a, b ≤ D.

If the word is not generic, we obtain Y i
w by specializing the generic case. For example, if

w = aaa, we have:

Y i
abc =

∑

1≤α≤D

q

q

i, (α, c)
α, (a, b) +

∑

1≤α≤D

q

q

i, (a, α)
α, (b, c)

=⇒ Y i
aaa =

∑

1≤α≤D

q

q

i, (α, a)
α, (a, a) +

∑

1≤α≤D

q

q

i, (a, α)
α, (a, a).

In particular, q

q

i, (a, a)
a, (a, a) appears with multiplicity 2.
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