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Geodesics as limits of geodesics on PL-surfaces

Introduction

A geodesic is usually defined as a curve on a surface that is locally a shortest path. Geodesics appear naturally in several applications, among which we can mention: i) The modelling of the human heart: the heart left ventricle can be modelled by a family of embedded surfaces; a muscular fiber of the central region of the left ventricle has 1 particular properties and can be considered as a geodesic of one of those surfaces [START_REF] Mourad | Description topologique de l'architecture fibreuse et modélisation mécanique du myocarde[END_REF][START_REF] Streeter | Jr Gross morphology and fiber geometry of the heart[END_REF]. ii) In the fabrication of composite parts by filament winding, the filament must idealy wind along geodesics [START_REF] Blais | Modélisation de déviateurs CRT : empilement du fil et tassage[END_REF]. iii) Finally the computation of radar cross sections involves the simulation of creeping ray which follow geodesics of the object [START_REF] Bouche | Méthodes asymptotiques en électromagnétisme (French) Mathématiques & Applications[END_REF][START_REF] Dessarce | Calculs par lancer de rayons[END_REF]. In this context, and since piecewise linear 2-manifolds (denoted by PL-surfaces in the following) are widely used for surface modelling, it is natural to consider the modelling of geodesics on surfaces and in particular on PL-surfaces.

We distinguish the geodesics from the more restricted class of shortest paths. A shortest path is a curve on a surface that is connecting two points and whose length does not decrease if it is perturbed (without moving the two extremities). A geodesic is a curve on a surface whose length does not decrease if it is pertubed in a small neighborhood of any point. A shortest path is clearly a geodesic, but the converse is not true (for example, a great circle is a geodesic but not a shortest path of the sphere).

There exist several algorithms that build shortest paths on PLsurfaces [START_REF] Kimmel | Finding shortest paths on surfaces[END_REF][START_REF] Kimmel | Computing geodesic paths on manifolds[END_REF][START_REF] Maekawa | Computation of shortest paths on free-form parametric surfaces[END_REF][START_REF] Peyré | Geodesic Computations for Fast and Accurate Suface Remeshing and Parametrization[END_REF]. Concerning the geodesics, Pham-Trong and her coauthors have also proposed an algorithm that builds geodesics on PL-surfaces [START_REF] Pham-Trong | Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes[END_REF]. In particular, they have also considered a sequence (T n ) n∈N of PL-surfaces defined by the De Casteljau subdivision for Bezier surfaces that is converging to a Bezier surface S. On each T n , they build a geodesic C n whose sequence converges to a curve C. The natural question is then to wonder whether C is a geodesic of S.

The convergence of geodesics has already been studied in the case of shortest paths by Hildebrandt et al. [START_REF] Hildebrandt | On the Convergence of Metric and Geometric Properties of Polyedral Surfaces[END_REF] and Memoli et al. [START_REF] Memoli | Distance functions and geodesics on submanifolds of R d and point clouds[END_REF]. They show that if a sequence (T n ) n∈N of PL-surfaces converges in Hausdorff distance to S, if the normals of T n also converge to the normals of S, then the limit curve of a sequence of shortest paths is a shortest path of S. However, this result does not hold anymore for geodesics: we provide in this paper (Section 4) a sequence (T n ) n∈N of PL-surfaces whose both distance and angular limit is a plane. However a sequence of geodesics C n ⊂ T n converges toward a limit curve C which is not a straight line of the plane, and thus not a geodesic of the plane.

It is worth noting that the result of convergence of Hildebrandt et al. [START_REF] Hildebrandt | On the Convergence of Metric and Geometric Properties of Polyedral Surfaces[END_REF] cannot be used in some applications: for example, in the modelling of the human heart, the curves modelling the fibers are closed and are not shortest paths [START_REF] Mourad | Description topologique de l'architecture fibreuse et modélisation mécanique du myocarde[END_REF]. Furthermore, this result cannot be used to validate the algorithm given in [START_REF] Pham-Trong | Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes[END_REF]: indeed, Pham Trong and her coauthors build a sequence of geodesics that are not shortest paths in general.

The main result of this paper deals with convergence for geodesics. More precisely, we suppose, as for the result with shortest paths given in [START_REF] Hildebrandt | On the Convergence of Metric and Geometric Properties of Polyedral Surfaces[END_REF], that the sequence (T n ) n∈N of PL-surfaces converges in Hausdorff distance and in normals to a smooth surface S. In addition, we also suppose that there exist two constants K 1 and K 2 independant on n such that the length of the edges of T n is greater than K1 2 n and the maximal angle between the normals of T n and the normals of S is less than K2 2 n . In other words, the rate of convergence of the length of the edges cannot be faster than the rate of convergence of the normals.

This result is then applied to PL-surfaces T n that follow subdivision schemes, such as for example schemes for bicubic B-splines, or Catmull-Clark schemes, or Bezier surfaces. In particular, our results validate the algorithm of Pham-Trong and her coauthors [START_REF] Pham-Trong | Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes[END_REF] that builds geodesics on subdivision surfaces.

It is interesting to note that shortest paths and geodesics do not deal with notions of the same order: the notion of shortest path relies on the notion of length, which is a quantity related to the first derivative. However, since a geodesic is defined locally, it depends on the infinitesimal variation of the length, which is a notion of second order.

In this paper, we focus on the problem of convergence of geodesics. In Section 2, we recall the main definitions. In Section 3, we recall the result of convergence of [START_REF] Hildebrandt | On the Convergence of Metric and Geometric Properties of Polyedral Surfaces[END_REF][START_REF] Memoli | Distance functions and geodesics on submanifolds of R d and point clouds[END_REF] for shortest paths. In Section 4 we give a counter example showing that the situation is more complicated for geodesics, and we also give the main result of convergence. We show in Section 5 that this result can be applied to several subdivision schemes (and in particular to the algorithm proposed in [START_REF] Pham-Trong | Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes[END_REF]). The last section proves all these results. In the following, we will refer to triangulations instead of PL-surfaces.

Definitions

Smooth surfaces

In the following, a smooth surface means a C 2 surface which is regular, oriented, compact with or without boundary. We have the following proposition [START_REF] Federer | Curvature measures[END_REF] Proposition 1 Let S be a smooth compact surface of R 3 . Then there exists an open set U S of R 3 containing S and a continuous map ξ from U S onto S satisfying the following: if p belongs to U S , then there exists a unique point ξ(p) realizing the distance from p to S (ξ is nothing but the orthogonal projection onto S).

This proposition allows to introduce the following notion introduced by H. Federer [START_REF] Federer | Curvature measures[END_REF]: The reach of a surface S is the largest r > 0 for which ξ is defined on the open tubular neighborhood U r (S) of radius r of S.

Triangulations

A triangulation T is a connected topological 2-manifold made of a finite union of triangles of R 3 , such that the intersection of two triangles is either empty, or equal to a vertex, or equal to an edge.

Curves

In the following a curve C means a lipschitz parametrized curve C : [0, 1] → R 3 . Its length is denoted by l(C). Similarly, for 0 ≤ t a < t b ≤ 1 we denote by l(C, t a , t b ) the length of the curve C restricted to [t a , t b ]. As a particular case of Rademacher theorem, we know that C is differentiable almost everywhere. Moreover, it is the integral of its derivative. Whenever it exists, we denote by C ′ (t) the derivative of C at t. • We say that C has a uniform parametrization if it satisfies for almost every 3 with uniform parametrization is said to be a geodesic of a lipschitz surface M (M can be a triangulation or a smooth surface) if it locally minimizes the length, i.e. if for every t ∈ [0, 1], there exists 0 ≤ t a ≤ t ≤ t b ≤ 1 (where t a < t if t > 0 and

t ∈ [0, 1] C ′ (t) = l(C). • A curve C : [0, 1] → M ⊂ R
t b > t if t < 1), such that any lipschitz curve C : [0, 1] → M such that C(0) = C(t a ) and C(1) = C(t b ) satisfies l(C, t a , t b ) ≤ l( C).
The geodesic is said to be interior if for every t ∈ [0, 1], C(t) is interior to the surface M . The geodesic C is a shortest path, if the length of any curve on M connecting C(0) and C(1) has a length greater than l(C).

Properties of geodesics on triangulations

Let C be a polygonal curve of a triangulation T . Then C is a geodesic of T if and only if:

• C it is a straight line on each triangle. (The vertices p of C then belongs to the edges of T or are vertices of T .)

• If p belongs to the interior of an edge of T , then the incident and refracted angles of C at p are equal (see Figure 1).

• If p is a vertex of T , then C separates the set of the triangles of T containing p into two connected regions r 1 and r 2 (see Figure 1). If one denotes by α r1 p the sum of the angles α r1 i of the triangles of region r 1 at p (resp. by α r2 p the angles α r2 i of the triangles of region r 2 at p), one has

α r1 p ≥ π and α r2 p ≥ π. (1) 
Remark that if a geodesic traverses a vertex p of T , then the sum of the angles of the triangles of T at the vertex p is greater than 2π: α r1 p + α r2 p ≥ 2π. We can also notice that if α r1 p + α r2 p > 2π, then the geodesic containing the vertices q and p is not unique (see Figure 1): two distinct polygonal curves C 1 and C 2 containing p and q that satisfy Equation (1) are geodesics.

Convergence of shortest paths

In this section, we recall a positive result of convergence for shortest paths, that can be found in [START_REF] Hildebrandt | On the Convergence of Metric and Geometric Properties of Polyedral Surfaces[END_REF] (a similar result can also be found in
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Figure 1: A geodesic C passing through a vertex of a 3D triangulation [START_REF] Memoli | Distance functions and geodesics on submanifolds of R d and point clouds[END_REF]). Proposition 2 states that if a sequence (T n ) n∈N of triangulations tends to a surface S in distance and in normals, then a sequence of shortest paths of T n is converging to a shortest path of S. Although this proposition has already been proved, for the sake of completeness, we give here a proof.

Proposition 2 Let (T n ) n∈N be sequence of triangulations that converges in the Hausdorff sense to a smooth C 2 surface S. Let (d n ) n∈N be sequence of real numbers converging to 0. We suppose that a) for every n, the restriction ξ n : T n → S of the map ξ to T n is bijective;

b) for every m ∈ T n , the angle between any triangle ∆ containing m and the tangent plane Π S ξ(m) of S at ξ(m) is smaller than d n ; Let a and b be two points of S, and C n : [0, 1] → R 3 be a shortest path on T n between ξ -1 n (a) and ξ -1 n (b), with uniform parametrization. Then • there exists a subsequence (C n k ) of (C n ) that is uniformly converging to a curve C;

• if a subsequence of (C n ) is converging to a limit curve C, then C is a shortest path of S.

Proof of Proposition 2

First remark that the convergence in distance and in normals imply that there exists a sequence (ǫ n ) n∈N converging to 0 such that for every curve γ n of T n we have (see [START_REF] Morvan | Unfolding Of Surfaces[END_REF] or [START_REF] Hildebrandt | On the Convergence of Metric and Geometric Properties of Polyedral Surfaces[END_REF]):

(1 -ǫ n )l(γ n ) ≤ l(ξ n • γ n ) ≤ (1 + ǫ n )l(γ n ).
Let us denote by C a shortest path between a and b on S. We then have :

l(ξ n • C n ) ≤ (1 + ǫ n )l(C n ) ≤ (1 + ǫ n )l(ξ -1 n • C) ≤ 1 + ǫ n 1 -ǫ n l( C),
which finally gives

l( C) ≤ l(ξ n • C n ) ≤ 1 + ǫ n 1 -ǫ n l( C). (2) 
In particular l(ξ n • C n ) converges to l( C) and is then bounded. Then there exists a constant k independant of n such that for every t, t ′ ∈ (0, 1)

ξ n • C n (t) -ξ n • C n (t ′ ) ≤ l(ξ n • C n , t, t ′ ) ≤ (1 + ǫ n ) l(C n , t, t ′ ) = (1 + ǫ n ) l(C n )|t -t ′ | ≤ k |t -t ′ |.
The set {ξ n • C n , n ∈ N} is then equicontinuous (see [START_REF] Dieudonné | Éléments d'analyse. Tome I: Fondements de l'analyse moderne[END_REF] for example for more details). Arzela-Ascoli Theorem [START_REF] Dieudonné | Éléments d'analyse. Tome I: Fondements de l'analyse moderne[END_REF] then implies that a subsequence (ξ 

n k • C n k ) k∈N of (ξ n • C n ) n∈N is
(C) ≤ lim inf l(C n ). However, Equation (2) implies that lim C n = lim ξ n • C n = l( C). We then have l(C) ≤ l( C) which means that C is a shortest path.

Convergence of geodesics

The main result of this paper is given in this section. We first show in Section 4.1, by building a counter-example, that the previous result of convergence for shortest paths, does not hold anymore for geodesics in general. Then, in Section 4.2, we give a general result of convergence for geodesics.

Counter-example

The counter example shows a sequence (T n ) n∈N of triangulations whose both distance and angular limit is a plane. However a sequence of geodesics C n ⊂ T n converges toward a limit curve C which is not a straight line of the plane, and thus not a geodesic of the plane. We can notice that the triangulations T n and the curves C n satisfy all the assumptions of the result of Proposition 2, except that C n is a geodesic (and not a shortest path). However the limit curve C is not a geodesic. This counter example implies that the convergence in distance and in normals of T n to S is not sufficient to expect a result of convergence for geodesic. Detail of the construction: Figure 2 shows the triangulation T n for some n. The triangulation overlaps with the horizontal plane Π H of equation z = 0 outside the large circle and inside the small one. In the ring between the two circles, it is made of 4 n identical small "roof shaped" bumps detailed on the right of Figure 2 

∈ N, β 1 + β 2 + β 3 + β 4 > π.
Observe that the sequence (T n ) n∈N of triangulations converges toward the plane in the Hausdorff sense. Furthermore the normals of T n tend to the normals of the plane. The shortest path on T n between the point a n and b n is the straight line (dotted line on Figure 2). However, the line a n m n n n b n , wraped around the circle between m n and n n is a local minimum, that is a geodesic, between a n and b n (see Section 2). These geodesics converge in the Hausdorff sense toward a curve C composed of two lines and an arc of circle.

Convergence toward a geodesic

The main result of this paper is the following theorem. It states that if a sequence (T n ) n∈N of triangulations is converging to a smooth surface S, then, under reasonable assumptions, a sequence of geodesics of T n is converging to a geodesic of S.

Theorem 1 Let S be a smooth surface of R 3 , r denote the reach of S, and (T n ) be a sequence of triangulations. Let K, K, θ min be positive constants and (d n ) a sequence of real numbers converging to 0. Suppose that for every n: The proof of this theorem is given in Section 6.

Remark 1 If a sequence (T n ) n∈N of triangulations satisfies the conditions of Theorem 1, then the valency of the vertices of T n is uniformly bounded by a constant independant on n. Indeed, the convergence of the normals implies that the sum of the angles at a vertex p n tends to 2π when n tends to infinity. Combined with the fact that all the angles are greater than θ min , that implies that the valency of p n is uniformly bounded.

Remark 2 Remark that the result of Theorem 1 still holds if the sequence (C n ) n∈N does not converge to a curve C, but if we suppose that (l(C n )) n∈N is bounded. Indeed, in that case, we can show (as in the proof of Proposition 2) that the family {C n , n ∈ N} is equicontinuous. The Arzela-Ascoli theorem (see [START_REF] Dieudonné | Éléments d'analyse. Tome I: Fondements de l'analyse moderne[END_REF] for example) then implies that a subsequence (C n k ) k∈N of (C n ) n∈N uniformly converges to a curve C. Theorem 1 can then be applied to (C n k ) k∈N .

Application to subdivision surfaces

The previous theorem can be easily applied to subdivision surfaces. In this section, we first give a general corollary, Corollary 1, that can be easily applied to several subdivision schemes. We then show that the result of convergence for geodesics holds when the triangulations follow a subdivision scheme for either bicubic B-splines, or Catmull-Clark schemes, or Bezier surfaces. We first need to give a few definitions.

Let (P n ) n∈N be a sequence of parametrized triangulations

P n : [0, 1] 2 → R 3 that is converging to a paramatrized smooth surface f : [0, 1] 2 → R 3 . The parameter domain [0, 1] 2 of each P n can be triangulated so that P n is linear on each triangle of [0, 1] 2 .
-We say that the parameter domain of P n is a triangular grid if its vertices are p i,j n = i 2 n , j 2 n (where i, j ∈ {0, ..2 n }) and the edges are p i,j n p i+1,j n , p i,j n p i,j+1 n and p i,j n p i+1,j+1 n . -We say that (P n ) n∈N uniformly converges to a function f with rate of convergence 1 2 n if:

∃N ∈ N, ∃K ∈ R, n > N ⇒ sup (u,v)∈[0,1] 2 P n (u, v) -f (u, v) ≤ K 2 n .
-We say that (P n ) n∈N uniformly converges in derivative to f with rate of convergence 1 2 n if there exists K > 0 and N ∈ N, such that for any n > N : sup i∈{0,..,2 n -1} j∈{0,..,2 n }

2 n P n i + 1 2 n , j 2 n -P n i 2 n , j 2 n - ∂f ∂u i 2 n , j 2 n ≤ K 2 n ,
and sup i∈{0,..,2 n } j∈{0,..,2 n -1}

2 n P n i 2 n , j + 1 2 n -P n i 2 n , j 2 n - ∂f ∂v i 2 n , j 2 n ≤ K 2 n .
Corollary 1 Let (P n ) n∈N be a sequence of parametrized triangulations

P n : [0, 1] 2 → R 3 and f : [0, 1] 2 → R 3 be a parametrized surface of class C 2 , such that: a) the parameter domain of each P n is a triangular grid, b) (P n ) n∈N uniformly converges to f with rate of convergence 1 2 n , c) (P n ) n∈N uniformly converges in derivative to f with rate of con- vergence 1 2 n , d) f is regular, i.e. ∀(u, v) ∈ [0, 1] 2 ∂f ∂u (u, v) ∧ ∂f ∂v (u, v) = 0. Let (C n ) n∈N be a sequence of polygonal curves C n : [0, 1] → R 3 with uniform parametrization such that C n is an interior geodesic of P n . If (C n ) n∈N converges in the sup norm sense toward a curve C which is interior to S, then C is of class C 2 and is a geodesic of S.
The proof of this corollary is given in Section 6.7.

The previous corollary can be easily applied to some subdivision schemes. As an example, we give the following corollary concerning subdivision scheme for bicubic B-spline (see for example [START_REF] Farin | Curves and surfaces for computer aided geometric design, a practical guide[END_REF] for details on B-splines). First remark that the subdivision scheme for bicubic B-splines generates a sequence of quadrangulations. Each quadrangulation can be considered as a triangulation by dividing each quadrangle into two triangles.

Corollary 2 Let (P n ) n∈N be a sequence of triangulations (or quadrangulations) defined by the subdivision scheme for bicubic B-spline that is converging to a regular B-spline f (i.e. satisfies assumption d) of Corollary 1).

Let (C n ) n∈N be a sequence of polygonal curves C n : [0, 1] → R 3 with uniform parametrization such that C n is an interior geodesic of P n . If (C n ) n∈N converges in the sup norm sense toward a curve C which is interior to S, then C is of class C 2 and is a geodesic of S.
Proof The assumptions a) and d) of Corollary 1 are clearly satisfied. Let u ∈ [0, 1]. The polygonal curve v → P n (u, v) follows the subdivision scheme for cubic B-spline and is uniformly converging to the function f u : v → f (u, v). More precisely, there exists K u ∈ R such that for every n ∈ N one has (see Theorem 4.12 of [START_REF] Dyn | Subdivision schemes in geometric modelling[END_REF] or Corollary 3.3 of [START_REF] Dyn | Subdivision schemes in CAGD[END_REF]):

sup v∈[0,1] P n (u, v) -f (u, v) ≤ K u 2 n .
In fact, one can show that K u does not depend on u: let us denote by P i,j = P 0 (u i , v j ) the poles of the initial control mesh (where i, j ∈ {0, ..M }). The k th pole P u,k of f u is the evaluation at u of the B-spline whose control net is P 0,k ,...P M,k . That implies that P u,k belongs to the convex hull of P 0,k ,...P M,k and then to the convex hull of the P i,j .

Since K u only depends on the maximum distance between two poles of the control net of f u (see the proof of Theorem 4.11 of [START_REF] Dyn | Subdivision schemes in geometric modelling[END_REF]), it only depends on the diameter of the convex hull of the P i,j and does not depend on u.

This implies that (P n ) n∈N uniformly converges toward f . Assumption b) is then proved. Similarly, assumption c) is also proved on the divided difference scheme (see for example [START_REF] Warren | Subdivision Methods for Geometric Design: A constructive Approach[END_REF] for details on divided difference schemes).

Remark 3 Corollary 2 directly implies that the result of convergence still holds for Catmull-Clark schemes if the limit curve C does not contain extraordinary points of S (see [START_REF] Catmull | Recursively generated B-spline surfaces on arbitrary topological surfaces[END_REF] for details on the Catmull-Clark scheme). By extraordinary point on the limit surface, we precisely mean the limit of the sequence of vertices corresponding to an extraordinary point of the triangulation through successive subdivisions. Indeed, after a sufficient number of iterations, the curve traverses only a finite number of bicubic B-splines patches where Corollary 2 can be applied.

More precisely, the curve C is at a distance greater than µ > 0 from all the extraordinary points. Let us denote by (P n ) n∈N the sequence of triangulations (or quadrangulations) defined by Catmull-Clark scheme. Then, by compacity, there exists a finite number of triangulations V 1 n ,...V p n and 0 = t 0 < t 1 < t 2 < ... < t p = 1 such that: i) each V i n follows a subdivision scheme for bicubic B-spline (as in Corollary 2) and is converging to

S i ⊂ S; ii) for every i, C n ([t i-1 , t i ]) ⊂ V i n and C([t i-1 , t i ]) ⊂ S i ; iii) V i n ∩ V i+1 n ∩ C n ([t i-1 , t i ]
) is homeomorphic to a connected curve. We then apply Corollary 2 on each V i n .

Remark 4 A proof similar to the one of Corollary 2 shows that this result also holds for Bezier surfaces and their successive control nets defined by the De Casteljau algorithm.

Proof of Theorem 1

The aim of this section is to prove Theorem 1. The proof being quite long, we first give an overview of each subsection.

6.1 We introduce the definitions needed for the proof, but not usefull for the statement of Theorem 1.

6.2 We give basic lemmas about angles and orthogonal projections onto planes. These lemmas are used in the rest of the proof.

6.3

We give results concerning geodesics on triangulations. We first bound from above the angle of deviation β 3D dev (p n ) of the geodesic at a vertex p n . Intuitively, this means that if the triangulation is "almost planar", then the geodesic is "not turning too much". We then also bound from above the angle of deviation β T S dev (p n ) of the projection of the geodesic onto a plane. Intuitively, if the plane is "almost parallel" to the triangles of the triangulation, then the projection of the geodesic is "turning much less" than the geodesic itself.

6. [START_REF] Clarke | Optimization and NonSmooth Analysis[END_REF] We bound the number of intersections of a polygonal curve C n of T n with the edges of a triangulation T n . Intuitively, we show that if the curve is "not too long"and if it does "not turn too much", then its number of intersection is "small".

6.5 There is no underlying triangulation in this section. The result gives a sufficient condition on a sequence of curves so that its limit curve is of class C 1,1 .

6.6

We give here the core of the proof of Theorem 1, that is using the previous sections.

6.7

We prove in this section Corollary 1.

Preliminary definitions

Let ǫ be smaller than the reach of S. Let T be a triangulation such that ξ induces an injection from T to S. Let denote by R(T ) the set of polygonal curves C of T that are linear on each triangle of T , to be more precise, if τ is a triangle (a triangle is defined here as a closed simplex, i.e. containing its boundary edges and vertices) of T , the image of each connected component of {t ∈ [0, 1] , C(t) ∈ τ } is a line segment: geodesics on T trivially satisfy this condition. Notice that this condition allows the curve to visit more than once a given triangle τ but, in this case, has to visit the interior of other triangle between two successive visits of τ . Let C ∈ R(T ) be a polygonal curve that belongs to the tubular neighborhood V ǫ (S) of radius ǫ of S. In the following, if m ∈ S, we denote by P S m the orthogonal projection onto the tangent plane of S at the point m.

• The total curvature of C is given by:

T C 3D (C) = p vertex of C β 3D dev (p),
where β 3D dev (p) is the deviation angle of C at the vertex p (see Figure 3). Similarly, for 0 ≤ t a < t b ≤ 1 we denote by T C 3D (C, t a , t b ) the total curvature of the curve C restricted to [t a , t b ].

• The tangent total curvature of C with respect to S is defined by

T C S T an (C) = p vertex of C β T S dev (p),
where β T S dev (p) is the deviation angle of P S ξ(p) (C) at the vertex ξ(p) (see Figure 3). • Let ♯C be the number of intersections between C and the edges of T . More precisely, if one denotes by E the set of edges of T and N CC (X) the number of connected components of a set X:

♯C = e∈E N CC (C([0, 1]) ∩ e)
Notice that each time C transversally crosses an edge away from a vertex, ♯C is increased of 1 and each time C crosses a vertex "generically" (that is without following an edge), ♯C is increased of the vertex valency. If it follows an edge from one vertex to the other, it crosses two vertices but the edge is counted once. Similarly, for 0 ≤ t a < t b ≤ 1 we denote by ♯(C, t a , t b ) the number of intersections between the curve C restricted to [t a , t b ] and the edges of T .

Basic lemmas about planes in R 3

In this section, we prove several very usefull basic lemmas.

Lemma 1 There exists K > 0 such that for every planes Π and Π 1 and for every vectors u and v of Π, one has:

|∠(u, v) -∠(P 1 (u), P 1 (v))| ≤ K ∠(u, v) α 2 ,
and also

|∠(u, v) -∠(P 1 (u), P 1 (v))| ≤ K ∠(P 1 (u), P 1 (v)) α 2 ,
where P 1 is the orthogonal projection onto Π 1 , and α is the angle between Π and Π 1 .

Proof

• We put θ = ∠(u, v) and θ 1 = ∠(P 1 (u), P 1 (v)). We clearly have

P 1 (u) ≤ u ≤ 1 cos α P 1 (u) .
The same inequality holds with v. Furthermore a simple calculus gives

Area(∆) = 1 cos α Area(P 1 (∆)).
Now by using the fact that

sin θ = Area(∆) 2 u v and sin θ 1 = Area(P 1 (∆)) 2 P 1 (u) P 1 (v) , we have cos α ≤ sin θ 1 sin θ ≤ 1 cos α ,
and then

| sin θ -sin θ 1 | = O(α 2 ) sin θ = O(α 2 ) θ. (3) 
• We put X = u u and Y = v v . Then X -P 1 (X) ≤ sin α ≤ α. Furthermore we have π 2 -α ≤ ∠ (P 1 (X) -X, Y ) ≤ π 2 + α, which implies that | < X -P 1 (X), Y > | ≤ α 2 .
Similarly, we also have

| < Y -P 1 (Y ), X > | ≤ α 2 which implies that P 1 (X) P 1 (Y ) cos θ 1 =< P 1 (X), P 1 (Y ) > =< X, Y > +O(α 2 ) = cos θ + O(α 2 ).
We then have:

| cos θ -cos θ 1 | = O(α 2 ). (4) 
• Suppose now that θ ∈ 0, π 4 . If α is small enough, then Equation (3) implies that θ p ∈ 0, 3π 8 and that

|θ 1 -θ| ≤   sup x∈[0,sin 3π 8 ] | arcsin ′ (x)|   | sin θ 1 -sin θ| = O(α 2 ) θ.
Remark that the same results holds if θ ∈ 3π 4 , π 2 .

• Suppose now that θ ∈ π 4 , 3π 4 . If α is small enough, then Equation (4) implies that

|θ 1 -θ| ≤   sup x∈[0,cos π 8 ] | arccos ′ (x)|   | cos θ-cos θ 1 | = O(α 2 ) = O(α 2 ) θ.
The second inequation of Lemma 1 is a direct consequence of the first one (with a larger constant). 

2 sin ∠(u, v) 2 ≤ u -v min( u , v ) ≤ 2 sin ∠(u, v) 2 + 2ǫ 1 -ǫ .
Proof Suppose that v ≤ u . We then have

u -v v ≥ a v = 2 sin ∠(u, v) 2 .
We also have

u -v v ≤ a + b v = 2 sin ∠(u, v) 2 + u -v v ≤ 2 sin ∠(u, v) 2 + 2ǫ 1 -ǫ .
Lemma 3 For some constant K, if P 1 and P 2 are the respective projections on two planes Π 1 and Π 2 with ∠ (Π 1 , Π 2 ) = θ ≤ 1 10 and if u and v are two unit vectors and γ > 0 a number such that:

• ∠ (Π 2 , u) ≤ 1 10 • ∠ (Π 2 , v) ≤ 1 10 • ∠ (Π 1 , u) ≤ γ ≤ 1 10 • ∠ (Π 1 , v) ≤ γ ≤ 1
10 , one has:

∠ (P 2 (u), P 2 (v)) ≤ K ∠ (P 1 (u)), P 1 (v)) + sin θ ∠ (u, v) + γ 2 .
Proof Let δ = vu The affine projection P 1 induces a corresponding projection between vectors which is also denoted P 1 . δ can be splited in δ = P 1 (δ) + δ with P 1 (δ) and δ respectively parallel and orthogonal to Π 1 , which entails P 1 (δ) = P 1 (δ 1 ) and δ ≤ δ . One has P 2 (δ) = P 2 (P 1 (δ)) + P 2 ( δ) and:

P 2 (δ) ≤ P 2 (P 1 (δ)) + P 2 ( δ) ≤ P 1 (δ) + P 2 ( δ) ≤ P 1 (δ) + sin θ δ ≤ P 1 (δ) + sin θ δ .
From ∠ (Π 2 , u) ≤ 1 10 and ∠ (Π 2 , v) ≤ 1 10 , one has:

min ( P 2 (u) , P 2 (v) ) ≥ cos 1 10
.

Using twice Lemma 2 we have:

2 sin ∠ (P 2 (u), P 2 (v)) 2 ≤ 1 cos 1 10 P 2 (δ)
and

P 1 (δ) ≤ 2 sin ∠ (P 1 (u), P 1 (v)) 2 + O(γ 2 ).
This gives:

2 sin ∠ (P 2 (u), P 2 (v)) 2 ≤ 1 cos 1 10 2 sin ∠ (P 1 (u), P 1 (v)) 2 + O(γ 2 ) + sin θ δ .
Using that δ = 2 sin ∠(u,v)

2
and that, for any angle β ∈ [0, π] one has 2 π β ≤ 2 sin β 2 ≤ β we get the above bound on ∠ (P 2 (u), P 2 (v)).

Lemma 4 There exists K > 0 such that for every planes Π 1 and Π 2 and for every unit vectors u and v of R 3 such that ∠(u, Π i ) ≤ π 4 and ∠(v, Π i ) ≤ π 4 , we have:

|∠(P 1 (u), P 1 (v)) -∠(P 2 (u), P 2 (v))| ≤ K γ,
where P 1 and P 2 denote the respective projections on Π 1 and Π 2 , and γ denotes the angle between Π 1 and Π 2 .

Proof We put P = P 1 -P 2 , θ = ∠(u, v), θ 1 = ∠(P 1 (u), P 1 (v)) and

θ 2 = ∠(P 2 (u), P 2 (v)). Case 1: θ ∈ π 10 , π -π 10 
Let X be a vector of R 3 . We put X 1 = P 1 (X) and X ⊥ 1 = X -X 1 . We then have P (X) = P (X 1 ) + P (X ⊥ 1 ) ≤ P (X 1 ) + P (X ⊥ 1 ) .

On the other hand

P (X 1 ) = X 1 -P 2 (X 1 ) ≤ sin γ X 1 ≤ γ X , and 
P (X ⊥ 1 ) = P 2 (X ⊥ 1 ) ≤ sin γ X ⊥ 1 ≤ γ X ,
which implies that P (X) ≤ 2 γ X . We then have:

| P 1 (u) -P 2 (u) | ≤ P (u) ≤ 2 γ and | P 1 (v) -P 2 (v) ≤ 2 γ.
Furthermore, the fact that

P i (u) ≥ 1 √ 2 , P i (v) ≥ 1 √ 2 and cos θ i = P i (u) 2 + P i (v) 2 -P i (u -v) 2 2 P i (u) P i (v) ,
implies that there exists K > 0 such that

| cos θ 1 -cos θ 2 | ≤ K γ.
Then there exists K > 0 such that

|θ 1 -θ 2 | ≤ K γ. Case 2: θ ∈ 0, π 10 
We denote by ∆ a triangle with edges u, v and uv and by θ ′ and θ ′′ the two other angles of ∆. Remark that θ ′ = θ ′′ ∈ π 2 -π 20 , π 2 . We also denote by θ ′ i and θ ′′ i the two angles of the triangle P i (∆). We then

have |θ ′ 1 -θ ′ 2 | ≤ K γ and |θ ′′ 1 -θ ′′ 2 | ≤ K γ. Then |θ 1 -θ 2 | = |(π -θ ′ 1 -θ ′′ 1 ) -(π -θ ′ 2 -θ ′′ 2 )| ≤ 2 K γ. Case 3: θ ∈ π -π 10 , π Since π -θ ∈ 0, π 10 , we have |θ 1 -θ 2 | = |(π -θ 1 ) -(π -θ 2 )| ≤ K γ.

Majoration of the deviation angles of a geodesic

Proposition 3 There exists K 1 , such that for every n: if C n is a geodesic of T n and p n is a vertex of C n , then we have:

β 3D dev (p n ) ≤ K 1 α n , and β T S dev (p n ) ≤ K 1 α 2 n ,
where α n is the maximal angle between all the triangles of T n containing p n and Π S ξ(pn) . Proof Case 1: p n is not a vertex of T n We denote by ∆ 1 and ∆ 2 the two triangles containing p n and by e their common edge. We denote by Π 1 and Π 2 the planes containing respectively ∆ 1 and ∆ 2 . We consider the following unit vectors:

pn angle α Π 1 ∆ 2 ∆ 1 - → V -→ V 1 -→ V 2 -→ U 1 -→ U 2 C n β β
-→ V is colinear to e; -→ U 1 and -→ U 2 are colinear to C n respectively in the planes Π 1 and Π 2 and oriented with the orientation of curve C n ;

-→ V 1 is the vector in the plane Π 1 orthogonal to -→ V ; -→ V 2 is the vector in the plane Π 2 orthogonal to -→ V and -→ n 1 is the vector normal to P 1 . We denote by α the angle between ∆ 1 and ∆ 2 , and β is the incident and refracted angle of C n at p n (see Figure 5). One has:

-→ V 2 = cos α -→ V 1 + sin α -→ n 1 and -→ U 1 = cos β -→ V + sin β -→ V 1 -→ U 2 = cos β -→ V + sin β -→ V 2 .
Which gives:

-→ U 2 - -→ U 1 = sin β (cos α -1) -→ V 1 + sin α -→ n 1 then 2 sin β 3D dev (p) 2 = -→ U 2 - -→ U 1 ≤ 1 2 α 2 + α ≤ 2 α ≤ 2α n . (5) 
Then, there exists K 1 such that

β 3D dev (p) ≤ K 1 α n .
Similarly, one has, P S ξ(pn) being linear:

P S ξ(pn) -→ U 2 -P S ξ(pn) -→ U 1 = sin β (1 -cos α)P S ξ(pn) -→ V 1 + sin αP S ξ(pn) ( -→ n 1 ) .
That gives :

P S ξ(pn) -→ U 2 -P S ξ(pn) -→ U 1 ≤ sin β (1 -cos α) P S ξ(pn) -→ V 1 + sin α P S ξ(pn) ( -→ n 1 )
We know that:

P S ξ(pn) ( -→ n 1 ) ≤ sin α n ≤ α n .
Which gives:

P S ξ(pn) -→ U 2 -P S ξ(pn) -→ U 1 ≤ 1 2 α 2 + α α n ≤ 2α n 2 . ( 6 
)
Lemma 2 then implies:

β T S dev (p n ) ≤ K 1 α 2 n .
Case 2: p n is a vertex of T n • In this case, the sum of all the angles of T n at p n is necessarily greater

p n α r 1 1 α r 1 2 α r 1 m C n projection region r 1 Π S ξ(pn) α r 1 pn Figure 6: Proof of Proposition 3 -Case 2
than 2π (see Section 2.4). To be more precise, the curve C n separates the set of the triangles of T n containing p n into two connected regions r 1 and r 2 (see Figure 6). If one denotes by α r1 p the sum of the angles α r1 i of the triangles of region r 1 at p n (resp. by α r2 p the angles α r2 i of the triangles of region r 2 at p n ), since C n is a geodesic, one has:

α r1
pn ≥ π and α r2 pn ≥ π.

By Lemma 1, the angular defect |2π -(α r1 p + α r2 p )| is less than 2Kπα 2 n . We then have π ≤ α r1 p ≤ π + 2Kπα 2 n . Let denote by α r1 i the angle of the projection onto Π S ξ(pn) of α r1 i . We denote by α r1 p the sum of the α r1 i . By using again Lemma 1, we have α r1 pα r1 p ≤ 2Kπα 2 n and then

β T S dev (p n ) = α r1 p -π ≤ α r1 p -α r1 p + α r1 p -π ≤ 4Kπα 2 n .
• The curve C n is included in the neighborhood of p n in two triangles ∆ 1 and ∆ 2 . We denote by Π 1 the plane containing ∆ 1 and by P 1 the orthogonal projection onto Π 1 . Let -→ U 1 and -→ U 2 denote respectively the two unitary vectors colinear to C n in ∆ 1 and in ∆ 2 , oriented with the orientation of curve C n . We put

-→ U 2 ⊥ = P 1 ( -→ U 2 ) - -→ U 2 .
Similarly as before, by using Lemma 1 and the projection P 1 onto Π 1 , we have

∠(P 1 ( -→ U 1 ), P 1 ( -→ U 2 )) ≤ 4Kπα 2 n .
We also have:

-→ U 1 - -→ U 2 = -→ U 1 -P 1 ( -→ U 2 ) + -→ U 2 ⊥ = P 1 ( -→ U 1 ) -P 1 ( -→ U 2 ) + -→ U 2 ⊥ .
Since P 1 ( -→ U 1 ) = 1 and P 1 ( -→ U 2 ) ≥ cos α n , by Lemma 2 we have:

2 sin ∠( -→ U1, -→ U2) 2 = -→ U 1 - -→ U 2 ≤ P 1 ( -→ U 1 ) -P 1 ( -→ U 2 ) + -→ U 2 ⊥ ≤ 2 sin ∠(P1( -→ U1),P1( -→ U2)) 2 + O(α n 2 ) + sin(α n ) ≤ ∠(P 1 ( -→ U 1 ), P 1 ( -→ U 2 )) + O(α n ) = O(α n ).
This implies that there exists K 1 such that Proposition 4 There exists a constant K 2 , such that for any curve C n ∈ R(T n ), one has:

β 3D dev (p n ) = ∠( -→ U 1 , -→ U 2 ) ≤ K 1 α n . 6.4 Majoration of ♯C n a n 1 a n mp n ξ(p n ) γ 1 γ 2
♯(C n ) ≤ K 2 1 + T C T S T an (C n ) + 2 n l(C n ) .

Proof of Proposition 4

If p n is a vertex of T n , let us denote by Cell(p n ) the set of points of the triangulation T n that are closer to p n than to the other vertices of T n . Let η min denote the length of the smallest edge of T n , and by θ min the smallest angle of the triangulation T n . First remark that the smallest altitude is larger than η min sin(θ min ). We put l min = ηmin sin(θmin) 4 . • Let us first consider a curve C n ∈ R(T n ) that satisfies:

l(C n ) ≤ l min and T C T S T an (C n ) ≤ π.
We are going to show that the number ♯C n of intersections between C n and the edges of T n is bounded by a constant independant of n. Case 1: There exists a vertex p n of T n such that the distance from p n to C n is less than l min . Since the length of the curve C n is less than l min , every point m of C n is a distance less than 2l min from the vertex p n . This implies that

C n ⊂ Cell(p n ).
By definition, the curve C n of R(T n ) "crosses" every intersected edge. This implies that C n either contains the vertex p n or is turning around the vertex p n without changing the sense (in the clockwise sense or in the counter-clockwise sense).

-If p n ∈ C n , then C n follows 0, 1 or 2 edges and only contains the vertex p n . This implies that ♯C n is less than the valence of p n which is uniformly bounded from above by a constant V (see Remark 1).

-If C n is turning around p n , we are going to show that C n cannot intersect three times the same edge e. If C n is intersecting twice the same edge e, then the discrete Gauss-Bonnet formulae of the projecton P S ξ(pn) (C n ) of the curve C n onto the plane Π S ξ(p) implies that (see Figure 7)

T C 3D (P S ξ(pn) (C n )) + γ 1 + γ 2 ≥ 2π, where γ 1 ∈ [0, π] and γ 2 ∈ [-π, 0]. We the have |γ 1 + γ 2 | ≤ π and: T C 3D (P S ξ(pn) (C n )) ≥ 2π -(γ 1 + γ 2 ) ≥ π.
Let us denote by a n 1 ,...a n mp n consecutive vertices of P S ξ(pn) (C n ) such that a n 1 and a n mp n belong to the same edge e. Remark that m pn -1 is equal to the valency of p n and thus is less than V . Since the angle between Π S ξ(a n i ) and Π S ξ(pn) is less than 1 2 n , Lemma 4 implies that:

T C T S T an (C n ) ≥ T C 3D (P S ξ(pn) (C n )) - K m pn 2 n ≥ π - K V 2 n .
Let us now suppose that C n is intersecting three times an edge e. Then we have that:

T C T S T an (C n ) ≥ 2π - 2K V 2 n > π,
for n large enough, which contradicts the assumption made on the curve C n . This implies that the number ♯C n of intersections between C n and T n is bounded from above by twice the valency of p n , which is less than 2V . Then ♯C n is uniformly bounded from above. Case 2: The distance between C n and all the vertices of T n is larger than l min . Let ∆ n = p n q n r n denote a triangle of T n that is intersected by C n . The intersection is a segment [a n , b n ] and we denote by θ pn the angle at p n (see Figure 8). We can suppose that p n a n ≤ p n b n and we have: Then the number ♯C n of intersection between C n and the edges of T n is less than:

a n b n ≥ 2 sin θ pn 2 p n a n ≥ 2 sin θ min 2 l min . p n q n r n a n b n θ pn
1 + l(C n ) 2 sin θmin 2 l min ≤ 1 + 1 2 sin θmin 2 .
In the two cases, ♯C n is bounded by a constant independant on n. That implies that there exists a constant K such that:

♯(C n ) ≤ K.
• Let us now consider any curve C n ∈ R(T n ). The curve C n can be subdivided in N curves C 1 n ,...,C N n that satisfy:

l(C i n ) ≤ l min and T C T S T an (C i n ) ≤ π, where N ≤ l(C n ) l min + T C T S T an (C n ) π + 1.
Then there exists a constant K 2 such that:

♯(C n ) ≤ N K ≤ K 2 1 + T C T S T an (C n ) + 2 n l(C n ) .

A sufficient condition for the regularity of the limit curve

Proposition 5 Let (C n ) n∈N be a sequence of polygonal curves C n : [0, 1] → R 3 , with uniform parametrization that converges toward a non constant curve C in the sup norm sense. If

∃k 1 , k 2 , ∀t a , t b ∈ [0, 1] T C 3D (C n , t a , t b ) ≤ k 1 2 n + k 2 l(C n , t a , t b ),
then the curve C has uniform parametrization, is of class C 1,1 and has curvature bounded by k 2 . Moreover l(C) = lim n→∞ l(C n ) and for any t 0 ∈ (0, 1):

lim n→∞ dC n dt + (t 0 ) = dC dt (t 0 ).
Proof One first proves a few lemmas.

Lemma 5 In the conditions of Proposition 5, for any θ > 0, there is an integer number N such that for any n, m ≥ N and any t ∈ [0, 1):

∠ dC n (t) dt + , dC m (t) dt + < θ. ( 7 
)
Proof Recall that, because the curves C n have uniform parametrization, dCn dt + (t) is constant on [0, 1]. And, as C is non constant and

C n → C in the sup norm sense, let t < t ′ be such that C(t ′ ) = C(t). Then, for some N 0 , n ≥ N 0 ⇒ C -C n ∞ < 1 4 C(t ′ ) -C(t) , which entails: C n (t ′ ) -C n (t) > 1 2 C(t ′ ) -C(t) .
Therefore, for l = 1 2 C(t ′ ) -C(t) , for any n ≥ N 0 , dCn dt + (t) > l > 0. Let N ≥ N 0 be such that:

k 1 2 N < θ 16 , (8) 
and:

∀n ≥ N, C n -C ∞ < θ 2 128k 2 . (9) 
Notice that if Lemma 5 holds for θ < min π 2 , k 2 l , it holds in general. We proceed by contradiction. Let us assume that the assertion of the lemma does not hold for some t ∈ [0, 1 2 ], and θ < min π 2 , k 2 l . More precisely, let us assume that, for some t ∈ [0, 1 2 ] and n, m ≥ N , one has:

∠ dC n (t) dt + , dC m (t) dt + ≥ θ. (10) 
Without loss of generality, one can assume that:

dC n dt + (t) ≥ dC m dt + (t) . (11) 
We consider:

t ′ = t + θ 16k 2 dCn dt + (t) . Notice that θ < k 2 l entails t ′ < 1. One has l(C n , t, t ′ ) ≤ θ
16k2 which gives, with the assumption in Proposition 5 together with inequation (8):

T C 3D (C n , t, t ′ ) ≤ k 1 2 n + k 2 l(C n , t, t ′ ) ≤ θ 8 .
Therefore, one has, for any τ ∈ [t, t ′ ]:

dC n dt + (τ ) - dC n dt + (t) ≤ 2 sin( θ 16 
) dC n dt + , and:

t ′ t dC n dt + (τ )dτ -(t ′ -t) dC n dt + (t) = t ′ t dC n dt + (τ ) - dC n dt + (t) ≤ (t ′ -t) dC n dt + (τ ) - dC n dt + (t) ≤ (t ′ -t)2 sin( θ 16 ) dC n dt + = 2 sin( θ 16 ) θ 8k 2 .
Which gives:

t ′ t dC n dt + (τ )dτ -(t ′ -t) dC n dt + (t) ≤ θ 2 64k 2 . ( 12 
)
And similarly, using inequation [START_REF] Federer | Curvature measures[END_REF], one has:

t ′ t dC m dt + (τ )dτ -(t ′ -t) dC m dt + (t) ≤ θ 2 64k 2 . (13) 
On another hand, inequations [START_REF] Federer | Curvature measures[END_REF] and [START_REF] Farin | Curves and surfaces for computer aided geometric design, a practical guide[END_REF] entail:

(t ′ -t) dC n dt + (t) -(t ′ -t) dC m dt + (t) ≥ sin θ (t ′ -t) dC n dt + (t) ,
which gives:

(t ′ -t) dC n dt + (t) -(t ′ -t) dC m dt + (t) ≥ sin θ θ 8k 2 > θ 2 16k 2 . (14) 
But:

t ′ t dCn dt + (τ )dτ - t ′ t dCm dt + (τ )dτ = C n (t ′ ) -C n (t) -C m (t ′ ) + C m (t) ≤ 2 C n -C ∞ ,
which gives, using (9):

t ′ t dC n dt + (τ )dτ - t ′ t dC m dt + (τ )dτ ≤ θ 2 32k 2 .
This last equation can not hold together with inequations ( 14), ( 12) and [START_REF] Kimmel | Finding shortest paths on surfaces[END_REF]. Therefore, inequation [START_REF] Farin | Curves and surfaces for computer aided geometric design, a practical guide[END_REF] does not hold and the lemma is proved for t ∈ [0, 1 2 ]. By reparametrizattion of the curves by t → 1t, one gets the same property for t ∈ [ 1 2 , 1] but expressed with the left derivatives. However, in the condition of the lemma, the left and right derivatives satisfy:

∀n, ∀t, dC n dt -(t) - dC n dt + (t) ≤ k 1 2 n .
This entails, using that ∀n ≥ N 0 , dCn dt + (t) > l > 0 that both have same uniform limit angle.

Lemma 5 gives a Cauchy sequence condition on the angle allows to derive the following lemma on Cauchy sequence conditions on right derivatives.

Lemma 6

In the conditions of Proposition 5, the sequence of dCn dt + (t) is bounded by some number l. Moreover, it is a Cauchy sequence, that is, for any ǫ > 0, there is an integer number N such that for any n, m ≥ N and any t ∈ [0, 1):

dC n (t) dt + - dC m (t) dt + < ǫ. (15) 
Proof We first claim that, for any β > 0, there is N such that, for any n, m ≥ N and t ∈ [0, 1 2 ], one has:

dC n (t) dt + - dC m (t) dt + ≤ β max dC n (t) dt + , dC m (t) dt + . (16) 
As in the proof of Lemma 5, we consider N 0 and l > 0 such that ∀n ≥ N 0 , dCn dt

+ (t) > l > 0. We consider θ < min π 2 , k 2 l such that (1 -cos θ) < β 2 and N 1 ≥ N 0 such that k 1 2 N1 < θ 2 . ( 17 
)
We consider again N ≥ N 1 , using Lemma 5, such that, ∀n, m ≥ N :

∠ dC n (t) dt + , dC m (t) dt + < θ (18) 
and

C n -C m ∞ ≤ θβ 8k 2 . (19) 
We consider some t ∈ [0, 1 2 ] and n, m ≥ N , and we will prove that (16) holds. Without loss of generality, one can assume that dCn(t)

dt + ≥ dCm(t) dt +
. As in the proof of Lemma 5, we consider the interval [t, t ′ ]:

t ′ = t + θ 2k 2 dCn dt + (t) , (20) 
which gives (t ′t) dCn dt + (t) = θ 2k2 and we get from (17) that, ∀τ ∈ [t, t ′ ]:

∠ dC n dt + (τ ), dC n dt + (t) ≤ θ. (21) 
We consider the unitary vector e = dCn dt + (t) dCn dt + (t) . One has, using Inequality [START_REF] Streeter | Jr Gross morphology and fiber geometry of the heart[END_REF]:

< e, C n (t ′ ) -C n (t) > = < e, t ′ t dC n dt + (τ )dτ > = t ′ t < e, dC n dt + (τ ) > dτ ≥ cos θ (t ′ -t) dC n dt + .
Similarly, using ( 18) and ( 21), one gets:

< e, C m (t ′ ) -C m (t) > = < e, t ′ t dC m dt + (τ )dτ > = t ′ t < e, dC m dt + (τ ) > dτ ≤ (t ′ -t) dC m dt + .
Using [START_REF] Peyré | Geodesic Computations for Fast and Accurate Suface Remeshing and Parametrization[END_REF] we get:

|< e, C n (t ′ ) -C n (t) > -< e, C m (t ′ ) -C m (t) >| ≤ θβ 4k 2 ,
and the three last inequalities sum up in:

cos θ (t ′ -t) dC n dt + ≤ (t ′ -t) dC m dt + + θβ 4k 2 .
Dividing both terms by (t

′ -t) = θ 2k2 dCn dt + (t) gives: cos θ dC n dt + (t) ≤ dC m dt + + β 2 dC n dt + (t) ,
which gives:

dC n dt + (t) - dC m dt + ≤ ( β 2 + 1 -cos θ) dC n dt + (t) .
The fact that (1 -cos θ) < β 2 proves (16). Property [START_REF] Memoli | Distance functions and geodesics on submanifolds of R d and point clouds[END_REF] easily proves the lemma. Indeed, taking β = 1 2 gives that, for some N :

n ≥ N ⇒ dC n dt + (t) - dC N dt + (t) ≤ 1 2 max dC n dt + (t) , dC N dt + (t) ,
which entails:

n ≥ N ⇒ dC n dt + (t) ≤ 2 dC N dt + (t) .
Therefore, the sequence of dCn dt + (t) is bounded by some number l and ( 16) entails that, for any β > 0, one has:

n ≥ N ⇒ dC n dt + (t) - dC N dt + (t) ≤ β l.
This implies that dCn dt + (t) is a Cauchy sequence. This fact, combined with Lemma 5, implies that dCn dt + (t) is a Cauchy sequence. The fact that for every t ∈ (0, 1), one has l(C n ) = dCn dt + (t) , implies by Lemma 6, that the sequence of lengths l(C n ) is converging to L. For two points a and b, d(a, b) denotes the euclidean distance between a and b. First one proves the following: Lemma 7 In the conditions of Proposition 5, for any ǫ with 0 < ǫ < 1 10 , there is η and an integer number N such that if 0 < t bt a ≤ η, then for any t, t ′ such that t a ≤ t < t ′ ≤ t b and for any n ≥ N :

C n (t ′ ) -C n (t) t ′ -t - C n (t b ) -C n (t a ) t b -t a ≤ ǫ C n (t b ) -C n (t a ) t b -t a (22) 
and:

l(C n )(t b -t a )(1 -ǫ 2 ) ≤ d (C n (t a ), C n (t b )) ≤ l(C n )(t b -t a ). ( 23 
)
Proof of Lemma 7

We put η = ǫ 4k2 l and N such that k1 2 N ≤ ǫ 4 . If 0 < t bt a ≤ η, we then have:

l(C n , t a , t b ) = l(C n ) (t b -t a ) ≤ l ǫ 4 k 2 l = ǫ 4 k 2 .
We then have

T C 3D (C n , t a , t b ) ≤ k 1 2 n + k 2 l(C n , t a , t b ) ≤ ǫ 4 + ǫ 4 = ǫ 2 .
First remark that the right derivative of C n exists everywhere. In the following, we denote it by dCn dt + . Furthermore, since C n is differentiable almost everywhere, the Lebesgues integral of its derivative is equal to the Lebesgues integral of dCn dt + . For any t 1 , t 2 ∈ [t a , t b ], one has:

∠ dC n dt + (t 1 ), dC n dt + (t 2 ) ≤ ǫ 2 .
Then, since C n has uniform parametrization, one has:

∀t 1 ∈ [0, 1] dC n dt + (t 1 ) = l(C n ),
and therefore, for any t 1 , t 2 ∈ [t a , t b ], one has:

dC n dt + (t 2 ) - dC n dt + (t 1 ) ≤ 2 l(C n ) sin ǫ 4 .
That implies that for any t 1 ∈ [t a , t b ] and t, t ′ with t a ≤ t < t ′ ≤ t b :

C n (t ′ ) -C n (t) t ′ -t - dC n dt + (t 1 ) = 1 t ′ -t t ′ t dC n dt + (τ ) - dC n dt + (t 1 ) dτ ≤ 2l(C n ) sin ǫ 4 .
Again:

C n (t ′ ) -C n (t) t ′ -t - C n (t b ) -C n (t a ) t b -t a = 1 t b -t a t b ta C n (t ′ ) -C n (t) t ′ -t - dC n dt + (τ ) dτ ≤ 1 t b -t a t b ta C n (t ′ ) -C n (t) t ′ -t - dC n dt + (t 1 ) dτ ≤ 2l(C n ) sin ǫ 4 . (24) 
On the other hand:

C n (t b ) -C n (t a ) t b -t a 2 = 1 t b -t a t b ta dC n dt + (τ )dτ . 1 t b -t a t b ta dC n dt + (τ )dτ = 1 (t b -t a ) 2 t b ta t b ta dC n dt + (τ 1 ) • dC n dt + (τ 2 )dτ 2 dτ 1 .

This gives

l(C n ) 2 cos ǫ 2 ≤ C n (t b ) -C n (t a ) t b -t a 2 ≤ l(C n ) 2 and l(C n ) cos ǫ 2 ≤ C n (t b ) -C n (t a ) t b -t a ≤ l(C n ). (25) 
Using ǫ < 1 10 , Equations ( 24) and (25) imply Equation [START_REF] Warren | Subdivision Methods for Geometric Design: A constructive Approach[END_REF]; Equation (25) proves Equation (23).

We recall that L = lim sup n→∞ l(C n ). Now, by using the fact that C n -C ∞ → 0, Lemma 7 gives that, for any ǫ with 0 < ǫ < 1 10 , there is η such that, if 0 < t bt a ≤ η:

C(t ′ ) -C(t) t ′ -t - C(t b ) -C(t a ) t b -t a ≤ ǫ C(t b ) -C(t a ) t b -t a .
Remark that:

C n (t b ) -C n (t a ) t b -t a ≤ l(C n ).
Which entails, by taking the limit of both sides as n → ∞:

C(t b ) -C(t a ) t b -t a ≤ L.
We have then:

C(t ′ ) -C(t) t ′ -t - C(t b ) -C(t a ) t b -t a ≤ ǫL. ( 26 
)
For a given real number t 0 ∈ [0, 1], and an integer number j ≥ 1 we introduce the closed subset K j (t 0 ) as:

K j (t 0 ) = Closure C(t ′ ) -C(t) t ′ -t | max 0, t 0 - 1 j ≤ t < t ′ ≤ min 1, t 0 + 1 j .
From Equation (26) K j (t 0 ) is bounded for j large enough, and therefore compact. It is obviously not empty and decreasing for the inclusion: K j (t 0 ) ⊃ K j+1 (t 0 ). From compactness, the set K(t 0 ) = ∩ j≥1 K j (t 0 ) is not empty and Equation ( 26) entails that it must be contained in a ball of radius ǫL for arbitrarily small ǫ which entail that K(t 0 ) is a single point:

K(t 0 ) = {ψ(t 0 )}.
Again, Equation (26) entails:

∀ǫ > 0, ∃h > 0, max (0, t 0 -h) ≤ t < t ′ ≤ min (1, t 0 + h) ⇒ C(t ′ ) -C(t) t ′ -t -ψ(t 0 ) < ǫ.
Therefore, for 0 < t 0 < 1, ψ(t 0 ) is the derivative of C at t 0 . In fact, the expression above is stronger: it states that C is strictly differentiable (see [START_REF] Clarke | Optimization and NonSmooth Analysis[END_REF] page 30), which entails that the derivative function is continuous. For t 0 = 0 (resp. t 0 = 1 ) this shows that C has a right (resp. left) derivative at 0 (resp. 1). We have proven so far that C is of class C 1 .

Lemma 8

The sequence of right derivatives dCn dt + uniformly converges to dC dt . In other words, for every ǫ >, there exists N ∈ N such that:

n > N ⇒ ∀t ∈ (0, 1) dC n dt + (t) - dC dt (t) ≤ ǫ.
Proof Proof of Lemma 8

We know by Lemma 6 that dCn dt + uniformly converges. We only have to show that dCn dt + (t 0 ) converges to dC dt (t 0 ) for any t 0 ∈ (0, 1). From Lemma 7, for any ǫ such that 0 < ǫ < 1 10 , there is h 0 > 0 and an integer number N such that, for n ≥ N and h ≤ h 0 , one has:

C n (t 0 + h) -C n (t 0 -h) 2h - dC n dt + (t 0 ) ≤ ǫ.
Since C is of class C 1 , we can take h small enough to have:

C(t 0 + h) -C(t 0 -h) 2h - dC dt (t 0 ) ≤ ǫ and let N ≥ N be such that n ≥ N ⇒ C n -C ∞ ≤ ǫh. One gets: C n (t 0 + h) -C n (t 0 -h) 2h - C(t 0 + h) -C(t 0 -h) 2h ≤ 2ǫh 2h = ǫ,
which gives, for any n ≥ N :

dC n dt + (t 0 ) - dC dt (t 0 ) ≤ 3ǫ.
This is true for arbitrary small ǫ which proves the claim.

Lemma 8 allows to apply Lebesgues' dominated convergence theorem which entails that, for 0 ≤ t a < t b ≤ 1:

lim n→∞ l(C n , t a , t b ) = l(C, t a , t b ), (27) 
and in particular:

lim n→∞ l(C n ) = L = l(C).
The assumptions of Proposition 5 entail that:

∀t a , t b ∈ [0, 1] ∠ dC n dt + (t a ), dC n dt + (t b ) ≤ k 1 2 n + k 2 l(C n , t a , t b ).
This, together with Lemma 8 and Equation ( 27) entail:

∀t a , t b ∈ [0, 1] ∠ dC dt (t a ), dC dt (t b ) ≤ k 2 l(C, t a , t b ),
which proves that k 2 bounds the curvature of C. Moreover, Lemma 8 entails that, for any t 0 with 0 < t 0 < 1:

dC dt (t 0 ) = L = l(C).
It follows that C has uniform parametrization and dC dt is K-Lipschitz with K = L 2 k 2 .

Proof of Theorem 1

We take the notations of Theorem 1. Let α n be the smallest real number such that for every m ∈ T n , the angle between any triangle ∆ containing m and the tangent plane Π S ξ(m) of S at ξ(m) is smaller than α n . By assumption, we have

α n ≤ K 2 n .
Step 1: Let us consider a given interval [t a , t b ] ⊂ [0, 1]. By definition, we have:

T C T S T an (C n , t a , t b ) = p vertex of Cn([ta,t b ]) β T S dev (p).
Propositions 3 and 4 imply that:

T C T S T an (C n , t a , t b ) ≤ K 1 (2α n ) 2 ♯ (C n , t a , t b ) (by Prop. 3) ≤ K 1 K 2 (2α n ) 2 1 + T C T S T an (C n , t a , t b ) + 2 n l(C n , t a , t b ) (by Prop. 4) ≤ 4K 2 4 n K 1 K 2 1 + T C T S T an (C n , t a , t b ) + 2 n l(C n , t a , t b ) .
Therefore, for some constants K 3 and K 4 independant of t a and t b , one has:

T C T S T an (C n , t a , t b ) ≤ K 3 2 n l(C n , t a , t b ) + K 4 4 n . (28) 
Step 2: We have:

T C 3D (C n , t a , t b ) = p vertex of Cn(ta,t b ) β 3D dev (p) ≤ K 1 (2α n ) ♯ (C n , t a , t b ) (By Prop. 3) ≤ 2K 1 K 2 α n 1 + T C T S T an (C n , t a , t b ) + 2 n l(C n , t a , t b ) (By Prop. 4) ≤ 2KK1K2 2 n 1 + T C T S T an (C n , t a , t b ) + 2 n l(C n , t a , t b )
. Equation (28) then implies that there exist constants K and K ′ :

T C 3D (C n , t a , t b ) ≤ K l(C n , t a , t b ) + K ′ 1 2 n , (29) 
and Proposition 5 then implies that the curve C is of class C 1,1 .

Step 3

We consider a point p 0 = C(t 0 ) and we recall that P S p0 denotes the projection on the plane Π S p0 tangent to S at p 0 . In this step, we are are going to prove the following lemma: Lemma 9 For any t 0 ∈ (0, 1), the projection P S C(t0) • C of C on the plane tangent to S at C(t 0 ) is twice derivable at t 0 and:

d 2 P S C(t0) • C dt 2 ˛t = t 0 = 0

Proof of Lemma 9

Let α be such that 0 < α < 1 and let r > 0 be the reach of the surface S. We recall the following proposition (see [START_REF] Federer | Curvature measures[END_REF] page 435):

Proposition 6 In the ball B(p 0 , αr), the map ξ is 1 1-α -Lipschitz. Let s be such that s l = αr 2 . Using the fact that C n has uniform parametrization and length upper bounded by l, the respective lengths of the arcs C n ([t 0s, t 0 ]) and C n ([t 0 , t 0 + s]) are smaller than αr 2 and therefore one has:

C n ([t 0 -s, t 0 + s]) ⊂ B C n (t 0 ), αr 2 . 
Let us now take n large enough such that C n -C ∞ ≤ αr 2 . We then have:

C n ([t 0s, t 0 + s]) ⊂ B(p 0 , αr).

Using Proposition 6, it follows that the curves ξ • C n ([t 0s, t 0 ]) and ξ • C n ([t 0 , t 0 + s]) have length bounded by αr 1-α . Therefore, since the curvature of S is bounded by 1 r , if one denotes by Π S ξ(Cn(t)) the tangent planes to S at the point ξ (C n (t)), one has, for any t ∈ [t 0s, t 0 + s]:

2 sin ∠ Π S ξ(Cn(t)) , Π S ξ(Cn(t0)) 2 ≤ α 1 -α . ( 30 
)
We consider now the sequence of curves C n which are the projections P S p0 (C n ) and which converge toward the projection P S p0 •C of the curve C on the plane Π S p0 . We consider the arc curve P S p0 (C ([t 0s, t 0 + s])) in the plane Π S p0 , for s = αr e l . Let t n i be the parameter of the i th vertex p n i = C n (t n i ) of C n . We apply Lemma 3, taking the unit vectors along dCn dt just before and just after the vertex p n i for the vector u and v of the proposition, and the projections P S ξ(p n i ) and P S p0 respectively for the projections P 

β Π0 i ≤ K β T S dev (p n i ) + sin θ β 3D dev (p n i ) + 1 4 n ,
where θ is the angle between the planes Π S ξ(p n i ) and Π S p0 and satisfies sin θ ≤ 2 sin θ 2 ≤ α 1-α from Equation 30. One has then:

β Π0 i ≤ K β T S dev (p n i ) + α 1 -α β 3D dev (p n i ) + 1 4 n .
Therefore, by summing over all the vertices p n i , one has:

T C 3D P S p0 • C n , t 0s, t 0 + s ≤ K ′ T C T S T an (C n , t 0s, t 0 + s) + ♯ (C n , t 0s, t 0 + s)

4 n + α 1 -α
T C 3D (C n , t 0s, t 0 + s) .

Equation (28) gives:

T C T S T an (C n , t 0s, t 0 + s) ≤

K 3 2s 2 n + K 4 4 n .
Equation (29) implies:

T C 3D (C n , t 0 -s, t 0 + s) ≤ K 2s l + K ′ 1 2 n .
Proposition 4 implies that:

♯ (C n , t 0s, t 0 + s) ≤ K 2 1 + T C T S T an (C n , t 0s, t 0 + s) + 2 n 2s l .

Then, by combining all these results and using the fact that α = e ls r , we have, for some constant K 5 , K 6 and K 7 :

T C 3D P S p0 • C n , t 0 -s, t 0 + s ≤ K 5 4 n + K 6 s 2 n + K 7 s 2 .
The vector C ′ (t 0 ) belongs to the tangent plane of S at C(t 0 ). Furthermore, the fact that Df (0, 0) = 0 implies that D 2 f (γ(t 0 )).(γ ′ (t 0 ), γ ′ (t 0 )) = II C(t0) (C ′ (t 0 )),

where II C(t0) is the second fundamental form of S at the point C(t 0 ) [START_REF] Do | Differential geometry of curves and surfaces[END_REF]. We then have

C ′′ (t 0 ) = II C(t0) (C ′ (t 0 )) N S C(t0) .
In this expression, C ′′ (t 0 ) depends continuously on t 0 . That implies that C is of class C 2 in t 0 . The function C is then of class C 2 . Lemma 9 then implies that C has zero geodesic curvature, and then is a geodesic [START_REF] Do | Differential geometry of curves and surfaces[END_REF].

Proof of Corollary 1

We first need to check that the assumptions a) to e) of Theorem 1 are satisfied. The uniform convergence of P n to f clearly implies assumption a). Now, since the map ξ realises the distance to S, for every m = P n (u, v) ∈ P n , one has ξ(m)m ≤ f (u, v) -P n (u, v) which implies assumption b). By using the regularity of f and by compacity, we have that: Let ∆ n be a triangle of P n . The vertices of ∆ n are for example of the form p n = P n i 2 n , j 2 n q n = P n i + 1 2 n , j 2 n and r n = P n i + 1 2 n , j + 1 2 n . Now the fact that (P n ) n∈N uniformly converges in derivative to f implies that there exists N and K such that for every n > N , the lengths of p n q n , p n r n and q n r n are greater than 1 2 n m -K

2 n
and less than

1 2 n M + K 2 n .
If N is large enough we then have:

1 2 n m 2 ≤ p n q n ≤ 1 2 n 2 M, 1 2 n m 2 ≤ p n r n ≤ 1 2 n 2 M, 1 2 n m 2 ≤ r n q n ≤ 1 2 n 2 M, (32) 
In particular, assumption d) is proved. The fact that P n uniformly converges in derivative to f also implies that there exists N and K such that for every n > N :

4 n--→ q n r n ∧ --→ q n p n - ∂f ∂u ∧ ∂f ∂v i 2 n , j 2 n ≤ K 2 n . ( 33 
)
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Conclusion and future works

The main result of this work gives sufficient conditions for a sequence of geodesics on PL-surfaces to converge toward a geodesic on a smooth limit surface. We believe this is a significant step toward an effective notion of geodesic: indeed, the usual definition of geodesic is not effective because it relies on the notions of smooth curves and surfaces and on the pointwise curvature which can not be exactly represented on computers. Our main theorem states that the usual notion of geodesic coincides with the limit of a sequence of PL-curves that can be represented (at least if one restricts ourselves to PL-surfaces with rational vertices coordinates). Therefore, by using our result, a realistic algorithm can output a sequence of curves whose limit is a geodesic of a smooth surface. Notice that, given a smooth surface with bounded curvature, there exists a sequence of PL-surfaces converging to it (and that matches the conditions of our theorem). However, in order to completely get the effective notion of geodesic, one still has to quantify the rate of convergence of this sequence of curves. We also believe that our result could be improved by relaxing the condition on the edge lengths: indeed, in the counter-example the lengths decrease with the order 1 4 n with respect to a decrease rate of 1 2 n of the angular convergence. We believe that it is possible to improve the theorem between the K 2 n condition of the theorem and the 1 4 n of the counter-example.

Another possible improvement of the result is to suppose that the limit surface is of class C 1,1 (instead of C 2 ). Notice that such a generalisation would be very usefull for some subdivision surfaces with extraordinary points. Indeed, at extraordinary points, the limit surface of some subdivision surfaces is only of class C 1,1 . We proved (for example for the Catmull-Clark scheme) that if the limit curve of a sequence of geodesics does not contain extraordinary points, then it is a geodesic. We believe that the result still holds if the limit curve contains extraordinary points.

  a) T n belongs to the tubular neighborhood U r (S) of radius r of S; b) for every m ∈ T n , mξ(m) ≤ d n ; c) for every m ∈ T n , the angle between any triangle ∆ containing m and the tangent plane Π S ξ(m) of S at ξ(m) is smaller than K 2 n ; d) the lengths of the edges of T n are greater than e K 2 n ; e) all the angles of T n are greater than θ min ; Let (C n ) n∈N be a sequence of polygonal curves C n : [0, 1] → R 3 with uniform parametrization such that C n is an interior geodesic of T n and ξ(C n ) does not intersect the boundary of S. If (C n ) n∈N converges toward a curve C in the sup norm sense, then C is of class C 2 and is a geodesic of S.
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 7 Figure 7: Projection of C n onto the plane Π S ξ(pn) (Proposition 4 -case 1)
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 8 Figure 8: Proof of Proposition 4 -case 2

  uniformly converging to a curve C. Remark now that for every t ∈ (0, 1), the pointξ n (C n (t)) is the closest point of S to C n (t). That implies that C n (t)ξ n • C n (t)is smaller than the Hausdorff distance between T n and S, which tends to 0. Therefore, the subsequence (C n k ) k∈N is also uniformly converging to C.The fact that C n uniformly converges to C implies that l

  . The points d 1 n , d 2 n , p n and m n are on the plane Π H while the points t 1 n and t 2 n stand at some height above the
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Let t ∈ [t 0s, t 0 + s]. Lemma 2 implies that there exists K 8 such that:

We finally have:

(31) Let ǫ > 0. By Lemma 8, there exists N such that for every n > N and for every u ∈ (0, 1):

We then have for every u ∈ (0, 1):

By using Equation (31), we have:

We finally get:

This allows to conclude the proof.

Step 4 Let t 0 ∈ (0, 1). In a neighborhood of C(t 0 ), the surface S can be parametrized by its tangent plane at C(t 0 ): in an appropriated frame with origin C(t 0 ), the surface is parametrized by (x, y)

where U 0 is a neighborhood of (0, 0), f is a function of class C 2 that satisfies f (0, 0) = 0 and Df (0, 0) = 0. For every t close enough to t 0 , we put γ(t) = P S C(t0) (C(t)). The function γ is of class C 1,1 , and by Lemma 9, we know that it is twice differentiable in t 0 and that γ ′′ (t 0 ) = 0. We have in a neighborhood of t 0 ,

.

The function C is then twice differentiable in t 0 and we have

.

If we take N such that K 2 n ≤ m 2 , we then have

Together with Equation (32), that implies that

The angle ∠( --→ q n p n , --→ q n r n ) is then lower bounded by a constant independant on n. The same result holds with the other angles of T n , which proves assumption e).

We now denote by N Tn qn a unitary normal of the triangle p n q n r n and N S i,j the normal of S at f ( i 2 n , j 2 n ). By using Equation (33) and Lemma 2, we have:

2 sin θmin,m " .

Let now m n ∈ ∆ n . Then we need to bound the angle ∠(N Tn qn , N S ξ(mn) ). There exists K such that

Then, by using Proposition 6, we have:

which implies that there exists k such that:

This result holds for all the triangles of T n . Assumption c) is then proved. We now only need to prove that ξ(C n ) is interior to S for n large enough: the curve C is interior to S. The compacity of S and C implies that the distance from C to the boundary of S is more than η > 0. The curve ξ(C n ) clearly tends to C. That implies that for n large enough ξ(C n ) is an interior curve.
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