Geodesics as limits of geodesics on PL-surfaces

André Lieutier, Boris Thibert

To cite this version:

André Lieutier, Boris Thibert. Geodesics as limits of geodesics on PL-surfaces. 2007. hal-00160820v1

HAL Id: hal-00160820
https://hal.science/hal-00160820v1
Preprint submitted on 9 Jul 2007 (v1), last revised 25 Oct 2007 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Geodesic as limits of geodesics on PL-surfaces

André Lieutier* Boris Thibert ${ }^{\dagger}$

July 6, 2007

IMAG's Research Report
 $\mathrm{N}^{\circ} 1086-\mathrm{M}$

Abstract

In this paper, we study the problem of convergence of geodesics on PL-surfaces and in particular on subdivision surfaces. More precisely, if a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of PL-surfaces converges in distance and in normals to a smooth surface S and if C_{n} is a geodesic of T_{n} (i.e. it is locally a shortest path) such that $\left(C_{n}\right)_{n \in \mathbb{N}}$ converges to a curve C, we want to know if the limit curve C is a geodesic of S. Hildebrandt et al. [12] have already shown that if C_{n} is a shortest path, then C is also a shortest path. The result does not hold anymore for geodesics that are not (global) shortest paths. In this paper, we first provide a counter example for geodesics: we build a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of PL-surfaces that converges in distance and in normals to the plane. On each T_{n}, we build a geodesic C_{n}, such that $\left(C_{n}\right)_{n \in \mathbb{N}}$ converges to a planar curve which is not a line-segment (and thus not a geodesic of the plane). In a second step, we give a positive result of convergence for geodesics that needs additional assumptions concerning the rate of convergence of the normals and of the lengths of the edges of the PL-surfaces. Finally, we apply this result to different subdivisions surfaces (following schemes for bicubic B-splines, or Catmull-Clark schemes, or schemes for Bezier surfaces). In particular, these results validate an algorithm of PhamTrong et al. [20] that builds geodesics on subdivision surfaces.

Keywords : subdivision surfaces, triangulations, PL-surfaces, geodesics, shortest paths, convergence

1 Introduction

A geodesic is usually defined as a curve on a surface that is locally a shortest path. Geodesics appear naturally in several applications, among which we can mention: i) The modelling of the human heart: the heart left ventricle can be modelled by a family of embedded surfaces; a muscular fiber of the central region of the left ventricle has

[^0]particular properties and can be considered as a geodesic of one of those surfaces [17, 21]. ii) In the fabrication of composite parts by filament winding, the filament must idealy wind along geodesics [1]. iii) Finally the computation of radar cross sections involves the simulation of creeping ray which follow geodesics of the object [2,5]. In this context, and since piecewise linear 2-manifolds (denoted by PL-surfaces in the following) are widely used for surface modelling, it is natural to consider the modelling of geodesics on surfaces and in particular on PL-surfaces.

We distinguish the geodesics from the more restricted class of shortest paths. A shortest path is a curve on a surface that is connecting two points and whose length does not decrease if it is perturbed (without moving the two extremities). A geodesic is a curve on a surface whose length does not decrease if it is pertubed in a small neighborhood of any point. A shortest path is clearly a geodesic, but the converse is not true (for example, a great circle is a geodesic but not a shortest path of the sphere).

There exist several algorithms that build shortest paths on PLsurfaces $[13,14,15,19]$. Concerning the geodesics, Pham-Trong and her coauthors have also proposed an algorithm that builds geodesics on PL-surfaces [20]. In particular, they have also considered a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of PL-surfaces defined by the De Casteljau subdivision for Bezier surfaces that is converging to a Bezier surface S. On each T_{n}, they build a geodesic C_{n} whose sequence converges to a curve C. The natural question is then to wonder whether C is a geodesic of S.

The convergence of geodesics has already been studied in the case of shortest paths by Hildebrandt et al. [12] and Memoli et al. [16]. They show that if a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of PL-surfaces converges in Hausdorff distance to S, if the normals of T_{n} also converge to the normals of S, then the limit curve of a sequence of shortest paths is a shortest path of S. However, this result does not hold anymore for geodesics: we provide in this paper (Section 4) a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of PL-surfaces whose both distance and angular limit is a plane. However a sequence of geodesics $C_{n} \subset T_{n}$ converges toward a limit curve C which is not a straight line of the plane, and thus not a geodesic of the plane.

It is worth noting that the result of convergence of Hildebrandt et al. [12] cannot be used in some applications: for example, in the modelling of the human heart, the curves modelling the fibers are closed and are not shortest paths [17]. Furthermore, this result cannot be used to validate the algorithm given in [20]: indeed, Pham Trong and her coauthors build a sequence of geodesics that are not shortest paths in general.

The main result of this paper deals with convergence for geodesics. More precisely, we suppose, as for the result with shortest paths given in [12], that the sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of PL-surfaces converges in Hausdorff distance and in normals to a smooth surface S. In addition, we also suppose that there exist two constants K_{1} and K_{2} independant on n such that the length of the edges of T_{n} is greater than $\frac{K_{1}}{2^{n}}$ and the maximal angle between the normals of T_{n} and the normals of S is less
than $\frac{K_{2}}{2^{n}}$. In other words, the rate of convergence of the length of the edges cannot be faster than the rate of convergence of the normals.

This result is then applied to PL-surfaces T_{n} that follow subdivision schemes, such as for example schemes for bicubic B-splines, or CatmullClark schemes, or Bezier surfaces. In particular, our results validate the algorithm of Pham-Trong and her coauthors [20] that builds geodesics on subdivision surfaces.

It is interesting to note that shortest paths and geodesics do not deal with notions of the same order: the notion of shortest path relies on the notion of length, which is a quantity related to the first derivative. However, since a geodesic is defined locally, it depends on the infinitesimal variation of the length, which is a notion of second order.

In this paper, we focus on the problem of convergence of geodesics. In Section 2, we recall the main definitions. In Section 3, we recall the result of convergence of $[12,16]$ for shortest paths. In Section 4 we give a counter example showing that the situation is more complicated for geodesics, and we also give the main result of convergence. We show in Section 5 that this result can be applied to several subdivision schemes (and in particular to the algorithm proposed in [20]). The last section proves all these results. In the following, we will refer to triangulations instead of PL-surfaces.

2 Definitions

2.1 Smooth surfaces

In the following, a smooth surface means a \mathcal{C}^{2} surface which is regular, oriented, compact with or without boundary. We have the following proposition [11]
Proposition 1 Let S be a smooth compact surface of \mathbb{R}^{3}. Then there exists an open set U_{S} of \mathbb{R}^{3} containing S and a continuous map ξ from U_{S} onto S satisfying the following: if p belongs to U_{S}, then there exists a unique point $\xi(p)$ realizing the distance from p to $S(\xi$ is nothing but the orthogonal projection onto S).

This proposition allows to introduce the following notion introduced by H. Federer [11]: The reach of a surface S is the largest $r>0$ for which ξ is defined on the open tubular neighborhood $U_{r}(S)$ of radius r of S.

2.2 Triangulations

A triangulation T is a connected topological 2-manifold made of a finite union of triangles of \mathbb{R}^{3}, such that the intersection of two triangles is either empty, or equal to a vertex, or equal to an edge.

2.3 Curves

In the following a curve C means a lipschitz parametrized curve C : $[0,1] \rightarrow \mathbb{R}^{3}$. Its length is denoted by $l(C)$. Similarly, for $0 \leq t_{a}<$
$t_{b} \leq 1$ we denote by $l\left(C, t_{a}, t_{b}\right)$ the length of the curve C restricted to $\left[t_{a}, t_{b}\right]$. As a particular case of Rademacher theorem, we know that C is differentiable almost everywhere. Moreover, it is the integral of its derivative. Whenever it exists, we denote by $C^{\prime}(t)$ the derivative of C at t.

- We say that C has a uniform parametrization if it satisfies for almost every $t \in[0,1]\left\|\mathcal{C}^{\prime}(t)\right\|=l(C)$.
- A curve $C:[0,1] \rightarrow M \subset \mathbb{R}^{3}$ with uniform parametrization is said to be a geodesic of a lipschitz surface M (M can be a triangulation or a smooth surface) if it locally minimizes the length, i.e. if for every $t \in[0,1]$, there exists $0 \leq t_{a} \leq t \leq t_{b} \leq 1$ (where $t_{a}<t$ if $t>0$ and $t_{\underline{b}}>t$ if $t<1$), such that any lipschitz curve $\widetilde{C}:[0,1] \rightarrow M$ such that $\widetilde{C}(0)=C\left(t_{a}\right)$ and $\widetilde{C}(1)=C\left(t_{b}\right)$ satisfies

$$
l\left(C, t_{a}, t_{b}\right) \leq l(\widetilde{C})
$$

The geodesic is said to be interior if for every $t \in[0,1], C(t)$ is interior to the surface M. The geodesic C is a shortest path, if the length of any curve on M connecting $C(0)$ and $C(1)$ has a length greater than $l(C)$.

2.4 Properties of geodesics on triangulations

Let C be a geodesic of a triangulation T. Then C is a polygonal curve If p is a vertex of C, we have the following properties:

- If p is not a vertex of T, then p belongs to an edge, and the incident and refracted angles of C at p are equal (see Figure 1).

Figure 1: A geodesic C passing through an edge of a $3 D$ triangulation

- Let p be a vertex of T. The curve C then separates the set of the triangles of T containing p into two connected regions r_{1} and r_{2} (see Figure 2). If one denotes by $\alpha_{p}^{r_{1}}$ the sum of the angles $\alpha_{i}^{r_{1}}$ of the triangles of region r_{1} at p (resp. by $\alpha_{p}^{r_{2}}$ the angles $\alpha_{i}^{r_{2}}$ of the triangles of region r_{2} at p), since C is a geodesic, one has:

$$
\begin{equation*}
\alpha_{p}^{r_{1}} \geq \pi \quad \text { and } \quad \alpha_{p}^{r_{2}} \geq \pi \tag{1}
\end{equation*}
$$

(Otherwise, if for example $\alpha_{p}^{r_{1}}<\pi$, then we could find a curve connecting q and r which is shorter than the curve C between q and r and which does not contain p.)
In particular, the sum of the angles of the triangles of T at the vertex p is greater than 2π : $\alpha_{p}^{r_{1}}+\alpha_{p}^{r_{2}} \geq 2 \pi$. We can also notice that if $\alpha_{p}^{r_{1}}+\alpha_{p}^{r_{2}}>2 \pi$, then the geodesic containing the vertices q and p is not unique (see Figure 2): two distinct polygonal curves C_{1} and C_{2} containing p and q that satisfy Equation (1) are geodesics.

Figure 2: A geodesic C passing through a vertex of a $3 D$ triangulation

3 Convergence of shortest paths

In this section, we recall a positive result of convergence for shortest paths, that can be found in [12] (a similar result can also be found in [16]). Proposition 2 states that if a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of triangulations tends to a surface S in distance and in normals, then a sequence of shortest paths of T_{n} is converging to a shortest path of S. Although this proposition has already been proved, for the sake of completeness, we give here a proof.

Proposition 2 Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be sequence of triangulations that converges in the Hausdorff sense to a smooth \mathcal{C}^{2} surface S. Let $\left(d_{n}\right)_{n \in \mathbb{N}}$ be sequence of real numbers converging to 0 . We suppose that
a) for every n, the restriction $\xi_{n}: T_{n} \rightarrow S$ of the map ξ to T_{n} is bijective;
b) for every $m \in T_{n}$, the angle between any triangle Δ containing m and the tangent plane $\Pi_{\xi(m)}^{S}$ of S at $\xi(m)$ is smaller than d_{n};
Let a and b be two points of S, and $C_{n}:[0,1] \rightarrow \mathbb{R}^{3}$ be a shortest path on T_{n} between $\xi_{n}^{-1}(a)$ and $\xi_{n}^{-1}(b)$, with uniform parametrization. Then

- there exists a subsequence $\left(C_{n_{k}}\right)$ of $\left(C_{n}\right)$ that is uniformly converging to a curve C;
- if a subsequence of $\left(C_{n}\right)$ is converging to a limit curve C, then C is a shortest path of S.

Proof of Proposition 2

First remark that the convergence in distance and in normals imply that there exists a sequence $\left(\epsilon_{n}\right)_{n \in \mathbb{N}}$ converging to 0 such that for every curve γ_{n} of T_{n} we have (see [18] or [12]):

$$
\left(1-\epsilon_{n}\right) l\left(\gamma_{n}\right) \leq l\left(\xi_{n} \circ \gamma_{n}\right) \leq\left(1+\epsilon_{n}\right) l\left(\gamma_{n}\right)
$$

Let us denote by \widetilde{C} a shortest path between a and b on S. We then have :

$$
l\left(\xi_{n} \circ C_{n}\right) \leq\left(1+\epsilon_{n}\right) l\left(C_{n}\right) \leq\left(1+\epsilon_{n}\right) l\left(\xi_{n}^{-1} \circ \widetilde{C}\right) \leq \frac{1+\epsilon_{n}}{1-\epsilon_{n}} l(\widetilde{C})
$$

which finally gives

$$
\begin{equation*}
l(\widetilde{C}) \leq l\left(\xi_{n} \circ C_{n}\right) \leq \frac{1+\epsilon_{n}}{1-\epsilon_{n}} l(\widetilde{C}) \tag{2}
\end{equation*}
$$

In particular $l\left(\xi_{n} \circ C_{n}\right)$ converges to $l(\widetilde{C})$ and is then bounded. Then there exists a constant k independant of n such that for every $t, t^{\prime} \in$ $(0,1)$

$$
\begin{aligned}
\left\|\xi_{n} \circ C_{n}(t)-\xi_{n} \circ C_{n}\left(t^{\prime}\right)\right\| & \leq l\left(\xi_{n} \circ C_{n}, t, t^{\prime}\right) \\
& \leq\left(1+\epsilon_{n}\right) l\left(C_{n}, t, t^{\prime}\right) \\
& =\left(1+\epsilon_{n}\right) l\left(C_{n}\right)\left|t-t^{\prime}\right| \\
& \leq k\left|t-t^{\prime}\right| .
\end{aligned}
$$

The set $\left\{\xi_{n} \circ C_{n}, n \in \mathbb{N}\right\}$ is then equicontinuous (see [6] for example for more details). Arzela-Ascoli Theorem [6] then implies that a subsequence $\left(\xi_{n_{k}} \circ C_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(\xi_{n} \circ C_{n}\right)_{n \in \mathbb{N}}$ is uniformly converging to a curve C. Remark now that for every $t \in(0,1)$, the point $\xi_{n}\left(C_{n}(t)\right)$ is the closest point of S to $C_{n}(t)$. That implies that $\left\|C_{n}(t)-\xi_{n} \circ C_{n}(t)\right\|$ is smaller than the Hausdorff distance between T_{n} and S, which tends to 0 . Therefore, the subsequence $\left(C_{n_{k}}\right)_{k \in \mathbb{N}}$ is also uniformly converging to C.

The fact that C_{n} uniformly converges to C implies that $l(C) \leq$ $\lim \inf l\left(C_{n}\right)$. However, Equation (2) implies that $\lim C_{n}=\lim \xi_{n} \circ$ $C_{n}=l(\widetilde{C})$. We then have $l(C) \leq l(\widetilde{C})$ which means that C is a shortest path.

4 Convergence of geodesics

The main result of this paper is given in this section. We first show in Section 4.1, by building a counter-example, that the previous result of convergence for shortest paths, does not hold anymore for geodesics in general. Then, in Section 4.2, we give a general result of convergence for geodesics.

4.1 Counter-example

The counter example shows a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of triangulations whose both distance and angular limit is a plane. However a sequence of

Figure 3: Triangulation T_{n} and geodesic C_{n} seen from above: on the left we see the whole surface; the region in the dashed rectangle is depicted on the right
geodesics $C_{n} \subset T_{n}$ converges toward a limit curve C which is not a straight line of the plane, and thus not a geodesic of the plane. All the assumptions of Proposition 2 are satisfied, except that every C_{n} is a geodesic (and not a shortest path). This counter example implies that we need additional assumptions to expect a result of convergence for geodesics in general.

Detail of the construction:

Figure 3 shows the triangulation T_{n} for some n. The triangulation overlaps with the horizontal plane Π_{H} of equation $z=0$ outside the large circle and inside the small one. In the ring between the two circles, it is made of 4^{n} identical small "roof shaped" bumps detailed on the right of Figure 3. The points $d_{n}^{1}, d_{n}^{2}, p_{n}$ and m_{n} are on the plane Π_{H} while the points t_{n}^{1} and t_{n}^{2} stand at some height above the plane. The faces $d_{n}^{1} t_{n}^{1} d_{n}^{2}, p_{n} t_{n}^{2} m_{n}, d_{n}^{1} t_{n}^{1} t_{n}^{2} m_{n}$ and $d_{n}^{2} t_{n}^{1} t_{n}^{2} p_{n}$ are planar and all make a slope s_{n} with Π_{H}. If we take $s_{n}=\frac{3}{2^{n}}$ and $\alpha_{n}=\frac{2 \pi}{4^{n}}$ one has, for each $n \in \mathbb{N}, \beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}>\pi$.

Observe that the sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of triangulations converges toward the plane in the Hausdorff sense. Furthermore the normals of T_{n} tend to the normals of the plane. The shortest path on T_{n} between the point a_{n} and b_{n} is the straight line (dotted line on Figure 3). However, the line $a_{n} m_{n} n_{n} b_{n}$, wraped around the circle between m_{n} and n_{n} is a local minimum, that is a geodesic, between a_{n} and b_{n}. These geodesics converge in the Hausdorff sense toward a curve C composed of two lines and an arc of circle.

4.2 Convergence toward a geodesic

The main result of this paper is the following theorem. It states that if a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of triangulations is converging to a smooth surface
S, then, under reasonable assumptions, a sequence of geodesics of T_{n} is converging to a geodesic of S.

Theorem 1 Let S be a smooth surface of \mathbb{R}^{3}, r denote the reach of S, and $\left(T_{n}\right)$ be a sequence of triangulations. Let $K, \widetilde{K}, \theta_{\min }$ be positive constants and $\left(d_{n}\right)$ a sequence of real numbers converging to 0 . Suppose that for every n :
a) T_{n} belongs to the tubular neighborhood $U_{r}(S)$ of radius r of S;
b) for every $m \in T_{n},\|m-\xi(m)\| \leq d_{n}$;
c) for every $m \in T_{n}$, the angle between any triangle Δ containing m and the tangent plane $\Pi_{\xi(m)}^{S}$ of S at $\xi(m)$ is smaller than $\frac{K}{2^{n}}$;
d) the lengths of the edges of T_{n} are greater than $\frac{\widetilde{K}}{2^{n}}$;
e) all the angles of T_{n} are greater than $\theta_{\text {min }}$;

Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of polygonal curves $C_{n}:[0,1] \rightarrow \mathbb{R}^{3}$ with uniform parametrization such that C_{n} is an interior geodesic of T_{n} and $\xi\left(C_{n}\right)$ does not intersect the boundary of S. If $\left(C_{n}\right)_{n \in \mathbb{N}}$ converges toward a curve C in the sup norm sense, then C is of class \mathcal{C}^{2} and is a geodesic of S.

The proof of this theorem is given in Section 6.
Remark 1 If a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of triangulations satisfies the conditions of Theorem 1, then the valency of the vertices of T_{n} is uniformly bounded by a constant independant on n.
Indeed, the convergence of the normals implies that the sum of the angles at a vertex p_{n} tends to 2π when n tends to infinity. Combined with the fact that all the angles are greater than $\theta_{\text {min }}$, that implies that the valency of p_{n} is uniformly bounded.

Remark 2 Remark that the result of Theorem 1 still holds if the sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ does not converge to a curve C. Indeed, in that case, we can show (as in the proof of Proposition 2) that the family $\left\{C_{n}, n \in \mathbb{N}\right\}$ is equicontinuous. The Arzela-Ascoli theorem (see [6] for example) then implies that a subsequence $\left(C_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(C_{n}\right)_{n \in \mathbb{N}}$ uniformly converges to a curve C. Theorem 1 can then be applied to $\left(C_{n_{k}}\right)_{k \in \mathbb{N}}$.

5 Application to subdivision surfaces

The previous theorem can be easily applied to subdivision surfaces. In this section, we first give a general corollary, Corollary 1, that can be easily applied to several subdivision schemes. We then show that the result of convergence for geodesics holds when the triangulations follow a subdivision scheme for either bicubic B-splines, or Catmull-Clark schemes, or Bezier surfaces. We first need to give a few definitions.

Let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be a sequence of parametrized triangulations P_{n} : $[0,1]^{2} \rightarrow \mathbb{R}^{3}$ that is converging to a paramatrized smooth surface
$f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$. The parameter domain $[0,1]^{2}$ of each P_{n} can be triangulated so that P_{n} is linear on each triangle of $[0,1]^{2}$.

- We say that the parameter domain of P_{n} is a triangular grid if its vertices are $p_{n}^{i, j}=\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)$ (where $i, j \in\left\{0, . .2^{n}\right\}$) and the edges are $p_{n}^{i, j} p_{n}^{i+1, j}, p_{n}^{i, j} p_{n}^{i, j+1}$ and $p_{n}^{i, j} p_{n}^{i+1, j+1}$.
- We say that $\left(P_{n}\right)_{n \in \mathbb{N}}$ uniformly converges to a function f with rate of convergence $\frac{1}{2^{n}}$ if:

$$
\exists N \in \mathbb{N}, \exists K \in \mathbb{R}, n>N \Rightarrow \sup _{(u, v) \in[0,1]^{2}}\left\|P_{n}(u, v)-f(u, v)\right\| \leq \frac{K}{2^{n}}
$$

- We say that $\left(P_{n}\right)_{n \in \mathbb{N}}$ uniformly converges in derivative to f with rate of convergence $\frac{1}{2^{n}}$ if there exists $K>0$ and $N \in \mathbb{N}$, such that for any $n>N$:

$$
\sup _{\substack{i \in\left\{0, \ldots, 2^{n}-1\right\} \\ j \in\left\{0, \ldots, 2^{2}\right\}}}\left\|2^{n}\left[P_{n}\left(\frac{i+1}{2^{n}}, \frac{j}{2^{n}}\right)-P_{n}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right]-\frac{\partial f}{\partial u}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right\| \leq \frac{K}{2^{n}},
$$

and

$$
\sup _{\substack{i \in\left\{0, \ldots, 2^{n}\right\} \\ j \in\left\{0, \ldots, 2^{n}-1\right\}}}\left\|2^{n}\left[P_{n}\left(\frac{i}{2^{n}}, \frac{j+1}{2^{n}}\right)-P_{n}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right]-\frac{\partial f}{\partial v}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right\| \leq \frac{K}{2^{n}} .
$$

Corollary $1 \operatorname{Let}\left(P_{n}\right)_{n \in \mathbb{N}}$ be a sequence of parametrized triangulations $P_{n}:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ and $f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ be a parametrized surface of class \mathcal{C}^{2}, such that:
a) the parameter domain of each P_{n} is a triangular grid,
b) $\left(P_{n}\right)_{n \in \mathbb{N}}$ uniformly converges to f with rate of convergence $\frac{1}{2^{n}}$,
c) $\left(P_{n}\right)_{n \in \mathbb{N}}$ uniformly converges in derivative to f with rate of convergence $\frac{1}{2^{n}}$,
d) f is regular, i.e. $\forall(u, v) \in[0,1]^{2} \frac{\partial f}{\partial u}(u, v) \wedge \frac{\partial f}{\partial v}(u, v) \neq 0$.

Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of polygonal curves $C_{n}:[0,1] \rightarrow \mathbb{R}^{3}$ with uniform parametrization such that C_{n} is an interior geodesic of P_{n}. If $\left(C_{n}\right)_{n \in \mathbb{N}}$ converges in the sup norm sense toward a curve C which is interior to S, then C is of class \mathcal{C}^{2} and is a geodesic of S.

The proof of this corollary is given in Section 6.7.
The previous corollary can be easily applied to some subdivision schemes. As an example, we give the following corollary concerning subdivision scheme for bicubic B-spline (see for example [10] for details on B-splines). First remark that the subdivision scheme for bicubic B-splines generates a sequence of quadrangulations. Each quadrangulation can be considered as a triangulation by dividing each quadrangle into two triangles.

Corollary 2 Let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be a sequence of triangulations (or quadrangulations) defined by the subdivision scheme for bicubic B-spline that is converging to a regular B-spline f (i.e. satisfies assumption d) of Corollary 1).

Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of polygonal curves $C_{n}:[0,1] \rightarrow \mathbb{R}^{3}$ with uniform parametrization such that C_{n} is an interior geodesic of P_{n}. If $\left(C_{n}\right)_{n \in \mathbb{N}}$ converges in the sup norm sense toward a curve C which is interior to S, then C is of class \mathcal{C}^{2} and is a geodesic of S.

Proof The assumptions a) and d) of Corollary 1 are clearly satisfied. Let $u \in[0,1]$. The polygonal curve $v \rightarrow P_{n}(u, v)$ follows the subdivision scheme for cubic B-spline and is uniformly converging to the function $f_{u}: v \rightarrow f(u, v)$. More precisely, there exists $K_{u} \in \mathbb{R}$ such that for every $n \in \mathbb{N}$ one has (see Theorem 4.12 of [9] or Corollary 3.3 of [8]):

$$
\sup _{v \in[0,1]}\left\|P_{n}(u, v)-f(u, v)\right\| \leq \frac{K_{u}}{2^{n}}
$$

In fact, one can show that K_{u} does not depend on u : let us denote by $P_{i, j}=P_{0}\left(u_{i}, v_{j}\right)$ the poles of the initial control mesh (where $i, j \in$ $\{0, . . M\})$. The $k^{t h}$ pole $P_{u, k}$ of f_{u} is the evaluation at u of the B-spline whose control net is $P_{0, k}, \ldots P_{M, k}$. That implies that $P_{u, k}$ belongs to the convex hull of $P_{0, k}, \ldots P_{M, k}$ and then to the convex hull of the $P_{i, j}$.

Since K_{u} only depends on the maximum distance between two poles of the control net of f_{u} (see the proof of Theorem 4.11 of [9]), it only depends on the diameter of the convex hull of the $P_{i, j}$ and does not depend on u.

This implies that $\left(P_{n}\right)_{n \in \mathbb{N}}$ uniformly converges toward f. Assumption b) is then proved. Similarly, assumption c) is also proved on the divided difference scheme (see for example [22] for details on divided difference schemes).

Remark 3 Corollary 2 directly implies that the result of convergence still holds for Catmull-Clark schemes if the limit curve C does not contain extraordinary points of S (see [3] for details on the Catmull-Clark scheme). By extraordinary point on the limit surface, we precisely mean the limit of the sequence of vertices corresponding to an extraordinary point of the triangulation through successive subdivisions. Indeed, after a sufficient number of iterations, the curve traverses only a finite number of bicubic B-splines patches where Corollary 2 can be applied.

More precisely, the curve C is at a distance greater than $\mu>0$ from all the extraordinary points. Let us denote by $\left(P_{n}\right)_{n \in \mathbb{N}}$ the sequence of triangulations (or quadrangulations) defined by Catmull-Clark scheme. Then, by compacity, there exists a finite number of triangulations $V_{n}^{1}, \ldots V_{n}^{p}$ and $0=t_{0}<t_{1}<t_{2}<\ldots<t_{p}=1$ such that: i) each V_{n}^{i} follows a subdivision scheme for bicubic B-spline (as in Corollary 2) and is converging to $S^{i} \subset S$; ii) for every $i, C_{n}\left(\left[t_{i-1}, t_{i}\right]\right) \subset V_{n}^{i}$ and $C\left(\left[t_{i-1}, t_{i}\right]\right) \subset S^{i}$; iii) $V_{n}^{i} \cap V_{n}^{i+1} \cap C_{n}\left(\left[t_{i-1}, t_{i}\right]\right)$ is homeomorphic to a connected curve. We then apply Corollary 2 on each V_{n}^{i}.

Remark 4 A proof similar to the one of Corollary 2 shows that this result also holds for Bezier surfaces and their successive control nets defined by the De Casteljau algorithm.

6 Proof of Theorem 1

The aim of this section is to prove Theorem 1. The proof being quite long, we first give an overview of each subsection.
6.1 We introduce the definitions needed for the proof, but not usefull for the statement of Theorem 1.
6.2 We give basic lemmas about angles and orthogonal projections onto planes. These lemmas are used in the rest of the proof.
6.3 We give results concerning geodesics on triangulations. We first bound from above the angle of deviation $\beta_{\text {dev }}^{3 D}\left(p_{n}\right)$ of the geodesic at a vertex p_{n}. Intuitively, this means that if the triangulation is "almost planar", then the geodesic is "not turning too much". We then also bound from above the angle of deviation $\beta_{\text {dev }}^{T S}\left(p_{n}\right)$ of the projection of the geodesic onto a plane. Intuitively, if the plane is "almost parallel" to the triangles of the triangulation, then the projection of the geodesic is "turning much less" than the geodesic itself.
6.4 We bound the number of intersections of a polygonal curve C_{n} of T_{n} with the edges of a triangulation T_{n}. Intuitively, we show that if the curve is "not too long"and if it does "not turn too much", then its number of intersection is "small".
6.5 There is no underlying triangulation in this section. The result gives a sufficient condition on a sequence of curves so that its limit curve is of class $\mathcal{C}^{1,1}$.
6.6 We give here the core of the proof of Theorem 1 , that is using the previous sections.
6.7 We prove in this section Corollary 1.

6.1 Preliminary definitions

Let ϵ be smaller than the reach of S. Let T be a triangulation such that ξ induces an injection from T to S. Let denote by $R(T)$ the set of polygonal curves C of T that are linear on each triangle of T, to be more precise, if τ is a triangle (a triangle is defined here as a closed simplex, i.e. containing its boundary edges and vertices) of T, the image of each connected component of $\{t \in[0,1], C(t) \in \tau\}$ is a line segment: geodesics on T trivially satisfy this condition. Notice that this condition allows the curve to visit more than once a given triangle τ but, in this case, has to visit the interior of other triangle between two successive visits of τ.

Let $C \in R(T)$ be a polygonal curve that belongs to the tubular neighborhood $\mathcal{V}_{\epsilon}(S)$ of radius ϵ of S. In the following, if $m \in S$, we denote by P_{m}^{S} the orthogonal projection onto the tangent plane of S at the point m.

- The total curvature of C is given by:

$$
T C_{3 D}(C)=\sum_{p \text { vertex of } C} \beta_{\text {dev }}^{3 D}(p),
$$

where $\beta_{\text {dev }}^{3 D}(p)$ is the deviation angle of C at the vertex p (see Figure 4).

Similarly, for $0 \leq t_{a}<t_{b} \leq 1$ we denote by $T C_{3 D}\left(C, t_{a}, t_{b}\right)$ the total curvature of the curve C restricted to $\left[t_{a}, t_{b}\right]$.

- The tangent total curvature of C with respect to S is defined by

$$
T C_{\text {Tan }}^{S}(C)=\sum_{p \text { vertex of } C} \beta_{\text {dev }}^{T S}(p)
$$

where $\beta_{\text {dev }}^{T S}(p)$ is the deviation angle of $P_{\xi(p)}^{S}(C)$ at the vertex $\xi(p)$ (see Figure 4).
Similarly, for $0 \leq t_{a}<t_{b} \leq 1$ we denote by $T C_{\text {Tan }}^{S}\left(C, t_{a}, t_{b}\right)$ the tangent total curvature of the curve C restricted to $\left[t_{a}, t_{b}\right]$.

Figure 4: Deviation angle of the curve and of its projection

- Let $\sharp C$ be the number of intersections between C and the edges of T. More precisely, if one denotes by E the set of edges of T and $N_{C C}(X)$ the number of connected components of a set X :

$$
\sharp C=\sum_{e \in E} N_{C C}(C([0,1]) \cap e)
$$

Notice that each time C transversally crosses an edge away from a vertex, $\sharp C$ is increased of 1 and each time C crosses a vertex "generically" (that is without following an edge), $\sharp C$ is increased of the vertex valency. If it follows an edge from one vertex to the other, it crosses two vertices but the edge is counted once.
Similarly, for $0 \leq t_{a}<t_{b} \leq 1$ we denote by $\sharp\left(C, t_{a}, t_{b}\right)$ the number of intersections between the curve C restricted to $\left[t_{a}, t_{b}\right]$ and the edges of T.

6.2 Basic lemmas about planes in \mathbb{R}^{3}

In this section, we prove several very usefull basic lemmas.

Lemma 1 There exists $K>0$ such that for every planes Π and Π_{1} and for every vectors u and v of Π, one has:

$$
\left|\angle(u, v)-\angle\left(P_{1}(u), P_{1}(v)\right)\right| \leq K \angle(u, v) \alpha^{2},
$$

and also

$$
\left|\angle(u, v)-\angle\left(P_{1}(u), P_{1}(v)\right)\right| \leq K \angle\left(P_{1}(u), P_{1}(v)\right) \alpha^{2}
$$

where P_{1} is the orthogonal projection onto Π_{1}, and α is the angle between Π and Π_{1}.

Proof

- We put $\theta=\angle(u, v)$ and $\theta_{1}=\angle\left(P_{1}(u), P_{1}(v)\right)$. We clearly have

$$
\left\|P_{1}(u)\right\| \leq\|u\| \leq \frac{1}{\cos \alpha}\left\|P_{1}(u)\right\|
$$

The same inequality holds with v. Furthermore a simple calculus gives

$$
\operatorname{Area}(\Delta)=\frac{1}{\cos \alpha} \operatorname{Area}\left(P_{1}(\Delta)\right)
$$

Now by using the fact that

$$
\sin \theta=\frac{\operatorname{Area}(\Delta)}{2\|u\|\|v\|} \quad \text { and } \quad \sin \theta_{1}=\frac{\operatorname{Area}\left(P_{1}(\Delta)\right)}{2\left\|P_{1}(u)\right\|\left\|P_{1}(v)\right\|}
$$

we have

$$
\cos \alpha \leq \frac{\sin \theta_{1}}{\sin \theta} \leq \frac{1}{\cos \alpha}
$$

and then

$$
\begin{equation*}
\left|\sin \theta-\sin \theta_{1}\right|=O\left(\alpha^{2}\right) \sin \theta=O\left(\alpha^{2}\right) \theta \tag{3}
\end{equation*}
$$

- We put $X=\frac{u}{\|u\|}$ and $Y=\frac{v}{\|v\|}$. Then $\left\|X-P_{1}(X)\right\| \leq \sin \alpha \leq \alpha$. Furthermore we have

$$
\frac{\pi}{2}-\alpha \leq \angle\left(P_{1}(X)-X, Y\right) \leq \frac{\pi}{2}+\alpha
$$

which implies that $\left|<X-P_{1}(X), Y>\right| \leq \alpha^{2}$. Similarly, we also have $\left|<Y-P_{1}(Y), X>\right| \leq \alpha^{2}$ which implies that

$$
\begin{aligned}
\left\|P_{1}(X)\right\|\left\|P_{1}(Y)\right\| \cos \theta_{1} & =<P_{1}(X), P_{1}(Y)> \\
& =<X, Y>+O\left(\alpha^{2}\right) \\
& =\cos \theta+O\left(\alpha^{2}\right)
\end{aligned}
$$

We then have:

$$
\begin{equation*}
\left|\cos \theta-\cos \theta_{1}\right|=O\left(\alpha^{2}\right) \tag{4}
\end{equation*}
$$

- Suppose now that $\theta \in\left[0, \frac{\pi}{4}\right]$. If α is small enough, then Equation (3) implies that $\theta_{p} \in\left[0, \frac{3 \pi}{8}\right]$ and that

$$
\left|\theta_{1}-\theta\right| \leq\left(\sup _{x \in\left[0, \sin \frac{3 \pi}{8}\right]}\left|\arcsin ^{\prime}(x)\right|\right)\left|\sin \theta_{1}-\sin \theta\right|=O\left(\alpha^{2}\right) \theta
$$

Remark that the same results holds if $\theta \in\left[\frac{3 \pi}{4}, \frac{\pi}{2}\right]$.

- Suppose now that $\theta \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$. If α is small enough, then Equation (4) implies that
$\left|\theta_{1}-\theta\right| \leq\left(\sup _{x \in\left[0, \cos \frac{\pi}{8}\right]}\left|\arccos ^{\prime}(x)\right|\right)\left|\cos \theta-\cos \theta_{1}\right|=O\left(\alpha^{2}\right)=O\left(\alpha^{2}\right) \theta$.
The second inequation of Lemma 1 is a direct consequence of the first one (with a larger constant).

Lemma 2 Let u and v be two vectors and $\epsilon>0$ such that $|\|u\|-1| \leq \epsilon$ and $|||v \|-1| \leq \epsilon$. We then have:

$$
2 \sin \frac{\angle(u, v)}{2} \leq \frac{\|u-v\|}{\min (\|u\|,\|v\|)} \leq 2 \sin \frac{\angle(u, v)}{2}+\frac{2 \epsilon}{1-\epsilon} .
$$

Figure 5: Proof of Lemma 2
Proof Suppose that $\|v\| \leq\|u\|$. We then have

$$
\frac{\|u-v\|}{\|v\|} \geq \frac{a}{\|v\|}=2 \sin \frac{\angle(u, v)}{2}
$$

We also have
$\frac{\|u-v\|}{\|v\|} \leq \frac{a+b}{\|v\|}=2 \sin \frac{\angle(u, v)}{2}+\frac{\|u\|-\|v\|}{\|v\|} \leq 2 \sin \frac{\angle(u, v)}{2}+\frac{2 \epsilon}{1-\epsilon}$.

Lemma 3 For some constant K, if P_{1} and P_{2} are the respective projections on two planes Π_{1} and Π_{2} with $\angle\left(\Pi_{1}, \Pi_{2}\right)=\theta \leq \frac{1}{10}$ and if u and v are two unit vectors and $\gamma>0$ a number such that:

- $\angle\left(\Pi_{2}, u\right) \leq \frac{1}{10}$
- $\angle\left(\Pi_{2}, v\right) \leq \frac{1}{10}$
- $\angle\left(\Pi_{1}, u\right) \leq \gamma \leq \frac{1}{10}$
- $\angle\left(\Pi_{1}, v\right) \leq \gamma \leq \frac{1}{10}$,
one has:

$$
\left.\angle\left(P_{2}(u), P_{2}(v)\right) \leq K\left[\angle\left(P_{1}(u)\right), P_{1}(v)\right)+\sin \theta \angle(u, v)+\gamma^{2}\right] .
$$

Proof Let $\delta=v-u$ The affine projection P_{1} induces a corresponding projection between vectors which is also denoted $P_{1} . \delta$ can be splited in $\delta=P_{1}(\delta)+\widetilde{\delta}$ with $P_{1}(\delta)$ and $\widetilde{\delta}$ respectively parallel and orthogonal to Π_{1}, which entails $P_{1}(\delta)=P_{1}\left(\delta_{1}\right)$ and $\|\widetilde{\delta}\| \leq\|\delta\|$. One has $P_{2}(\delta)=$ $P_{2}\left(P_{1}(\delta)\right)+P_{2}(\widetilde{\delta})$ and:

$$
\begin{aligned}
\left\|P_{2}(\delta)\right\| & \leq\left\|P_{2}\left(P_{1}(\delta)\right)\right\|+\left\|P_{2}(\widetilde{\delta})\right\| \\
& \leq\left\|P_{1}(\delta)\right\|+\left\|P_{2}(\widetilde{\delta})\right\| \\
& \leq\left\|P_{1}(\delta)\right\|+\sin \theta\|\widetilde{\delta}\| \\
& \leq\left\|P_{1}(\delta)\right\|+\sin \theta\|\delta\|
\end{aligned}
$$

From $\angle\left(\Pi_{2}, u\right) \leq \frac{1}{10}$ and $\angle\left(\Pi_{2}, v\right) \leq \frac{1}{10}$, one has:

$$
\min \left(\left\|P_{2}(u)\right\|,\left\|P_{2}(v)\right\|\right) \geq \cos \frac{1}{10}
$$

Using twice Lemma 2 we have:

$$
2 \sin \frac{\angle\left(P_{2}(u), P_{2}(v)\right)}{2} \leq \frac{1}{\cos \frac{1}{10}}\left\|P_{2}(\delta)\right\|
$$

and

$$
\left\|P_{1}(\delta)\right\| \leq 2 \sin \frac{\angle\left(P_{1}(u), P_{1}(v)\right)}{2}+O\left(\gamma^{2}\right)
$$

This gives:
$2 \sin \frac{\angle\left(P_{2}(u), P_{2}(v)\right)}{2} \leq \frac{1}{\cos \frac{1}{10}}\left[2 \sin \frac{\angle\left(P_{1}(u), P_{1}(v)\right)}{2}+O\left(\gamma^{2}\right)+\sin \theta\|\delta\|\right]$.
Using that $\|\delta\|=2 \sin \frac{\angle(u, v)}{2}$ and that, for any angle $\beta \in[0, \pi]$ one has $\frac{2}{\pi} \beta \leq 2 \frac{\sin \beta}{2} \leq \beta$ we get the above bound on $\angle\left(P_{2}(u), P_{2}(v)\right)$.

Lemma 4 There exists $K>0$ such that for every planes Π_{1} and Π_{2} and for every unit vectors u and v of \mathbb{R}^{3} such that $\angle\left(u, \Pi_{i}\right) \leq \frac{\pi}{4}$ and $\angle\left(v, \Pi_{i}\right) \leq \frac{\pi}{4}$, we have:

$$
\left|\angle\left(P_{1}(u), P_{1}(v)\right)-\angle\left(P_{2}(u), P_{2}(v)\right)\right| \leq K \gamma
$$

where P_{1} and P_{2} denote the respective projections on Π_{1} and Π_{2}, and γ denotes the angle between Π_{1} and Π_{2}.

Proof We put $P=P_{1}-P_{2}, \theta=\angle(u, v), \theta_{1}=\angle\left(P_{1}(u), P_{1}(v)\right)$ and $\theta_{2}=\angle\left(P_{2}(u), P_{2}(v)\right)$.
Case 1: $\theta \in\left[\frac{\pi}{10}, \pi-\frac{\pi}{10}\right]$
Let X be a vector of \mathbb{R}^{3}. We put $X_{1}=P_{1}(X)$ and $X_{1}^{\perp}=X-X_{1}$. We then have

$$
\|P(X)\|=\left\|P\left(X_{1}\right)+P\left(X_{1}^{\perp}\right)\right\| \leq\left\|P\left(X_{1}\right)\right\|+\left\|P\left(X_{1}^{\perp}\right)\right\|
$$

On the other hand

$$
\left\|P\left(X_{1}\right)\right\|=\left\|X_{1}-P_{2}\left(X_{1}\right)\right\| \leq \sin \gamma\left\|X_{1}\right\| \leq \gamma\|X\|
$$

and

$$
\left\|P\left(X_{1}^{\perp}\right)\right\|=\left\|P_{2}\left(X_{1}^{\perp}\right)\right\| \leq \sin \gamma\left\|X_{1}^{\perp}\right\| \leq \gamma\|X\|
$$

which implies that $\|P(X)\| \leq 2 \gamma\|X\|$. We then have:
$\left|\left\|P_{1}(u)\right\|-\left\|P_{2}(u)\right\|\right| \leq\|P(u)\| \leq 2 \gamma \quad$ and $\quad \mid\left\|P_{1}(v)\right\|-\left\|P_{2}(v)\right\| \leq 2 \gamma$.
Furthermore, the fact that $\left\|P_{i}(u)\right\| \geq \frac{1}{\sqrt{2}},\left\|P_{i}(v)\right\| \geq \frac{1}{\sqrt{2}}$ and

$$
\cos \theta_{i}=\frac{\left\|P_{i}(u)\right\|^{2}+\left\|P_{i}(v)\right\|^{2}-\left\|P_{i}(u-v)\right\|^{2}}{2\left\|P_{i}(u)\right\|\left\|P_{i}(v)\right\|}
$$

implies that there exists $K>0$ such that

$$
\left|\cos \theta_{1}-\cos \theta_{2}\right| \leq K \gamma
$$

Then there exists $K>0$ such that $\left|\theta_{1}-\theta_{2}\right| \leq K \gamma$.
Case 2: $\theta \in\left[0, \frac{\pi}{10}\right]$
We denote by Δ a triangle with edges u, v and $u-v$ and by θ^{\prime} and $\theta^{\prime \prime}$ the two other angles of Δ. Remark that $\theta^{\prime}=\theta^{\prime \prime} \in\left[\frac{\pi}{2}-\frac{\pi}{20}, \frac{\pi}{2}\right]$. We also denote by θ_{i}^{\prime} and $\theta_{i}^{\prime \prime}$ the two angles of the triangle $P_{i}(\Delta)$. We then have $\left|\theta_{1}^{\prime}-\theta_{2}^{\prime}\right| \leq K \gamma$ and $\left|\theta_{1}^{\prime \prime}-\theta_{2}^{\prime \prime}\right| \leq K \gamma$. Then

$$
\left|\theta_{1}-\theta_{2}\right|=\left|\left(\pi-\theta_{1}^{\prime}-\theta_{1}^{\prime \prime}\right)-\left(\pi-\theta_{2}^{\prime}-\theta_{2}^{\prime \prime}\right)\right| \leq 2 K \gamma
$$

Case 3: $\theta \in\left[\pi-\frac{\pi}{10}, \pi\right]$
Since $\pi-\theta \in\left[0, \frac{\pi}{10}\right]$, we have

$$
\left|\theta_{1}-\theta_{2}\right|=\left|\left(\pi-\theta_{1}\right)-\left(\pi-\theta_{2}\right)\right| \leq K \gamma
$$

6.3 Majoration of the deviation angles of a geodesic

Proposition 3 There exists K_{1}, such that for every n : if C_{n} is a geodesic of T_{n} and p_{n} is a vertex of C_{n}, then we have:

$$
\beta_{\text {dev }}^{3 D}\left(p_{n}\right) \leq K_{1} \alpha_{n}, \quad \text { and } \quad \beta_{d e v}^{T S}\left(p_{n}\right) \leq K_{1} \alpha_{n}^{2}
$$

where α_{n} is the maximal angle between all the triangles of T_{n} containing p_{n} and $\Pi_{\xi\left(p_{n}\right)}^{S}$.

Proof
Case 1: p_{n} is not a vertex of T_{n}
We denote by Δ_{1} and Δ_{2} the two triangles containing p_{n} and by e their common edge. We denote by Π_{1} and Π_{2} the planes containing respectively Δ_{1} and Δ_{2}. We consider the following unit vectors: \vec{V} is colinear to $e ; \overrightarrow{U_{1}}$ and $\overrightarrow{U_{2}}$ are colinear to C_{n} respectively in the planes

Figure 6: Proof of Proposition 3 - Case 1
Π_{1} and Π_{2} and oriented with the orientation of curve $C_{n} ; \vec{V}_{1}$ is the vector in the plane Π_{1} orthogonal to $\vec{V} ; \overrightarrow{V_{2}}$ is the vector in the plane Π_{2} orthogonal to \vec{V} and $\overrightarrow{n_{1}}$ is the vector normal to P_{1}. We denote by $\widetilde{\alpha}$ the angle between Δ_{1} and Δ_{2}, and β is the incident and refracted angle of C_{n} at p_{n} (see Figure 6). One has:

$$
\overrightarrow{V_{2}}=\cos \widetilde{\alpha} \overrightarrow{V_{1}}+\sin \widetilde{\alpha} \overrightarrow{n_{1}}
$$

and

$$
\begin{aligned}
& \overrightarrow{U_{1}}=\cos \beta \vec{V}+\sin \beta \overrightarrow{V_{1}} \\
& \overrightarrow{U_{2}}=\cos \beta \vec{V}+\sin \beta \overrightarrow{V_{2}} .
\end{aligned}
$$

Which gives:

$$
\overrightarrow{U_{2}}-\overrightarrow{U_{1}}=\sin \beta\left((\cos \widetilde{\alpha}-1) \overrightarrow{V_{1}}+\sin \widetilde{\alpha} \overrightarrow{n_{1}}\right)
$$

then

$$
\begin{equation*}
2 \sin \left(\frac{\beta_{d e v}^{3 D}(p)}{2}\right)=\left\|\overrightarrow{U_{2}}-\overrightarrow{U_{1}}\right\| \leq\left(\frac{1}{2} \widetilde{\alpha}^{2}+\widetilde{\alpha}\right) \leq 2 \widetilde{\alpha} \leq 2 \alpha_{n} \tag{5}
\end{equation*}
$$

Then, there exists K_{1} such that

$$
\beta_{d e v}^{3 D}(p) \leq K_{1} \alpha_{n}
$$

Similarly, one has, $P_{\xi\left(p_{n}\right)}^{S}$ being linear:
$P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{U_{2}}\right)-P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{U_{1}}\right)=\sin \beta\left((1-\cos \widetilde{\alpha}) P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{V_{1}}\right)+\sin \widetilde{\alpha} P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{n_{1}}\right)\right)$.

That gives:

$$
\left\|P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{U_{2}}\right)-P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{U_{1}}\right)\right\| \leq \sin \beta\left((1-\cos \widetilde{\alpha})\left\|P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{V_{1}}\right)\right\|+\sin \widetilde{\alpha}\left\|P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{n_{1}}\right)\right\|\right)
$$

We know that:

$$
\left\|P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{n_{1}}\right)\right\| \leq \sin \alpha_{n} \leq \alpha_{n}
$$

Which gives:

$$
\begin{equation*}
\left\|P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{U_{2}}\right)-P_{\xi\left(p_{n}\right)}^{S}\left(\overrightarrow{U_{1}}\right)\right\| \leq\left(\frac{1}{2} \widetilde{\alpha}^{2}+\widetilde{\alpha} \alpha_{n}\right) \leq 2 \alpha_{n}^{2} \tag{6}
\end{equation*}
$$

Lemma 2 then implies:

$$
\beta_{d e v}^{T S}\left(p_{n}\right) \leq K_{1} \alpha_{n}^{2}
$$

Case 2: p_{n} is a vertex of T_{n}

- In this case, the sum of all the angles of T_{n} at p_{n} is necessarily greater

Figure 7: Proof of Proposition 3 - Case 2
than 2π (see Section 2.4). To be more precise, the curve C_{n} separates the set of the triangles of T_{n} containing p_{n} into two connected regions r_{1} and r_{2} (see Figure 7). If one denotes by $\alpha_{p}^{r_{1}}$ the sum of the angles $\alpha_{i}^{r_{1}}$ of the triangles of region r_{1} at p_{n} (resp. by $\alpha_{p}^{r_{2}}$ the angles $\alpha_{i}^{r_{2}}$ of the triangles of region r_{2} at $\left.p_{n}\right)$, since C_{n} is a geodesic, one has:

$$
\alpha_{p_{n}}^{r_{1}} \geq \pi \quad \text { and } \quad \alpha_{p_{n}}^{r_{2}} \geq \pi
$$

By Lemma 1, the angular defect $\left|2 \pi-\left(\alpha_{p}^{r_{1}}+\alpha_{p}^{r_{2}}\right)\right|$ is less than $2 K \pi \alpha_{n}^{2}$. We then have $\pi \leq \alpha_{p}^{r_{1}} \leq \pi+2 K \pi \alpha_{n}^{2}$. Let denote by $\widetilde{\alpha_{i}^{r_{1}}}$ the angle of the projection onto $\Pi_{\xi\left(p_{n}\right)}^{S}$ of $\alpha_{i}^{r_{1}}$. We denote by $\widetilde{\alpha_{p}^{r_{1}}}$ the sum of the $\widetilde{\alpha_{i}^{r_{1}}}$. By using again Lemma 1, we have $\left|\alpha_{p}^{r_{1}}-\widetilde{\alpha_{p}^{r_{1}}}\right| \leq 2 K \pi \alpha_{n}^{2}$ and then

$$
\beta_{d e v}^{T S}\left(p_{n}\right)=\left|\widetilde{\alpha_{p}^{r_{1}}}-\pi\right| \leq\left|\widetilde{\alpha_{p}^{r_{1}}}-\alpha_{p}^{r_{1}}\right|+\left|\alpha_{p}^{r_{1}}-\pi\right| \leq 4 K \pi \alpha_{n}^{2}
$$

- The curve C_{n} is included in the neighborhood of p_{n} in two triangles Δ_{1} and Δ_{2}. We denote by Π_{1} the plane containing Δ_{1} and by P_{1} the orthogonal projection onto Π_{1}. Let $\overrightarrow{U_{1}}$ and $\overrightarrow{U_{2}}$ denote respectively the two unitary vectors colinear to C_{n} in Δ_{1} and in Δ_{2}, oriented with the orientation of curve C_{n}. We put $\overrightarrow{U_{2}} \perp=P_{1}\left(\overrightarrow{U_{2}}\right)-\overrightarrow{U_{2}}$. Similarly as before, by using Lemma 1 and the projection P_{1} onto Π_{1}, we have

$$
\angle\left(P_{1}\left(\overrightarrow{U_{1}}\right), P_{1}\left(\overrightarrow{U_{2}}\right)\right) \leq 4 K \pi \alpha_{n}^{2}
$$

We also have:

$$
\overrightarrow{U_{1}}-\overrightarrow{U_{2}}=\overrightarrow{U_{1}}-P_{1}\left(\overrightarrow{U_{2}}\right)+\overrightarrow{U_{2}}{ }^{\perp}=P_{1}\left(\overrightarrow{U_{1}}\right)-P_{1}\left(\overrightarrow{U_{2}}\right)+\overrightarrow{U_{2}} \perp
$$

Since $\left\|P_{1}\left(\overrightarrow{U_{1}}\right)\right\|=1$ and $\left\|P_{1}\left(\overrightarrow{U_{2}}\right)\right\| \geq \cos \alpha_{n}$, by Lemma 2 we have:

$$
\begin{aligned}
2 \sin \frac{\angle\left(\overrightarrow{U_{1}}, \overrightarrow{U_{2}}\right)}{2} & =\left\|\overrightarrow{U_{1}}-\overrightarrow{U_{2}}\right\| \\
& \leq\left\|P_{1}\left(\overrightarrow{U_{1}}\right)-P_{1}\left(\overrightarrow{U_{2}}\right)\right\|+\left\|\overrightarrow{U_{2}} \perp\right\| \\
& \leq 2 \sin \frac{\angle\left(P_{1}\left(\overrightarrow{U_{1}}\right), P_{1}\left(\overrightarrow{U_{2}}\right)\right)}{2}+O\left(\alpha_{n}^{2}\right)+\sin \left(\alpha_{n}\right) \\
& \leq \angle\left(P_{1}\left(\overrightarrow{U_{1}}\right), P_{1}\left(\overrightarrow{U_{2}}\right)\right)+O\left(\alpha_{n}\right) \\
& =O\left(\alpha_{n}\right) .
\end{aligned}
$$

This implies that there exists K_{1} such that

$$
\beta_{d e v}^{3 D}\left(p_{n}\right)=\angle\left(\overrightarrow{U_{1}}, \overrightarrow{U_{2}}\right) \leq K_{1} \alpha_{n}
$$

6.4 Majoration of $\sharp C_{n}$

Figure 8: Projection of C_{n} onto the plane $\Pi_{\xi\left(p_{n}\right)}^{S}$ (Proposition 4 - case 1)

Proposition 4 There exists a constant K_{2}, such that for any curve $C_{n} \in R\left(T_{n}\right)$, one has:

$$
\sharp\left(C_{n}\right) \leq K_{2}\left[1+T C_{T a n}^{T S}\left(C_{n}\right)+2^{n} l\left(C_{n}\right)\right] .
$$

Proof of Proposition 4

If p_{n} is a vertex of T_{n}, let us denote by $\operatorname{Cell}\left(p_{n}\right)$ the set of points of the triangulation T_{n} that are closer to p_{n} than to the other vertices of T_{n}. Let $\eta_{\text {min }}$ denote the length of the smallest edge of T_{n}, and by $\theta_{\text {min }}$ the smallest angle of the triangulation T_{n}. First remark that the smallest altitude is larger than $\eta_{\text {min }} \sin \left(\theta_{\text {min }}\right)$. We put $l_{\text {min }}=\frac{\eta_{\min } \sin \left(\theta_{\min }\right)}{4}$.

- Let us first consider a curve $C_{n} \in \mathcal{R}\left(T_{n}\right)$ that satisfies:

$$
l\left(C_{n}\right) \leq l_{\min } \quad \text { and } \quad T C_{T a n}^{T S}\left(C_{n}\right) \leq \pi
$$

We are going to show that the number $\sharp C_{n}$ of intersections between C_{n} and the edges of T_{n} is bounded by a constant independant of n. Case 1: There exists a vertex p_{n} of T_{n} such that the distance from p_{n} to C_{n} is less than $l_{\text {min }}$.
Since the length of the curve C_{n} is less than $l_{\text {min }}$, every point m of C_{n} is a distance less than $2 l_{\text {min }}$ from the vertex p_{n}. This implies that $C_{n} \subset \operatorname{Cell}\left(p_{n}\right)$.

By definition, the curve C_{n} of $\mathcal{R}\left(T_{n}\right)$ "crosses" every intersected edge. This implies that C_{n} either contains the vertex p_{n} or is turning around the vertex p_{n} without changing the sense (in the clockwise sense or in the counter-clockwise sense).

- If $p_{n} \in C_{n}$, then C_{n} follows 0,1 or 2 edges and only contains the vertex p_{n}. This implies that $\sharp C_{n}$ is less than the valence of p_{n} which is uniformly bounded from above by a constant V (see Remark 1). - If C_{n} is turning around p_{n}, we are going to show that C_{n} cannot intersect three times the same edge e. If C_{n} is intersecting twice the same edge e, then the discrete Gauss-Bonnet formulae of the projecton $P_{\xi\left(p_{n}\right)}^{S}\left(C_{n}\right)$ of the curve C_{n} onto the plane $\Pi_{\xi(p)}^{S}$ implies that (see Figure 8)

$$
T C_{3 D}\left(P_{\xi\left(p_{n}\right)}^{S}\left(C_{n}\right)\right)+\gamma_{1}+\gamma_{2} \geq 2 \pi
$$

where $\gamma_{1} \in[0, \pi]$ and $\gamma_{2} \in[-\pi, 0]$. We the have $\left|\gamma_{1}+\gamma_{2}\right| \leq \pi$ and:

$$
T C_{3 D}\left(P_{\xi\left(p_{n}\right)}^{S}\left(C_{n}\right)\right) \geq 2 \pi-\left(\gamma_{1}+\gamma_{2}\right) \geq \pi
$$

Let us denote by $a_{1}^{n}, \ldots a_{m_{p_{n}}}^{n}$ consecutive vertices of $P_{\xi\left(p_{n}\right)}^{S}\left(C_{n}\right)$ such that a_{1}^{n} and $a_{m_{p_{n}}}^{n}$ belong to the same edge e. Remark that $m_{p_{n}}-1$ is equal to the valency of p_{n} and thus is less than V. Since the angle between $\Pi_{\xi\left(a_{i}^{n}\right)}^{S}$ and $\Pi_{\xi\left(p_{n}\right)}^{S}$ is less than $\frac{1}{2^{n}}$, Lemma 4 implies that:

$$
T C_{T a n}^{T S}\left(C_{n}\right) \geq T C_{3 D}\left(P_{\xi\left(p_{n}\right)}^{S}\left(C_{n}\right)\right)-\frac{K m_{p_{n}}}{2^{n}} \geq \pi-\frac{K V}{2^{n}}
$$

Let us now suppose that C_{n} is intersecting three times an edge e. Then we have that:

$$
T C_{\text {Tan }}^{T S}\left(C_{n}\right) \geq 2 \pi-\frac{2 K V}{2^{n}}>\pi
$$

for n large enough, which contradicts the assumption made on the curve C_{n}. This implies that the number $\sharp C_{n}$ of intersections between C_{n} and T_{n} is bounded from above by twice the valency of p_{n}, which is less than $2 V$. Then $\sharp C_{n}$ is uniformly bounded from above.

Figure 9: Proof of Proposition 4 - case 2
Case 2: The distance between C_{n} and all the vertices of T_{n} is larger than $l_{\text {min }}$.
Let $\Delta_{n}=p_{n} q_{n} r_{n}$ denote a triangle of T_{n} that is intersected by C_{n}. The intersection is a segment $\left[a_{n}, b_{n}\right]$ and we denote by $\theta_{p_{n}}$ the angle at p_{n} (see Figure 9). We can suppose that $p_{n} a_{n} \leq p_{n} b_{n}$ and we have:

$$
a_{n} b_{n} \geq 2 \sin \left(\frac{\theta_{p_{n}}}{2}\right) p_{n} a_{n} \geq 2 \sin \left(\frac{\theta_{\min }}{2}\right) l_{\min }
$$

Then the number $\sharp C_{n}$ of intersection between C_{n} and the edges of T_{n} is less than:

$$
1+\frac{l\left(C_{n}\right)}{2 \sin \left(\frac{\theta_{\min }}{2}\right) l_{\min }} \leq 1+\frac{1}{2 \sin \left(\frac{\theta_{\min }}{2}\right)}
$$

In the two cases, $\sharp C_{n}$ is bounded by a constant independant on n. That implies that there exists a constant \widetilde{K} such that:

$$
\sharp\left(C_{n}\right) \leq \widetilde{K} .
$$

- Let us now consider any curve $C_{n} \in \mathcal{R}\left(T_{n}\right)$. The curve C_{n} can be subdivided in N curves $C_{n}^{1}, \ldots, C_{n}^{N}$ that satisfy:

$$
l\left(C_{n}^{i}\right) \leq l_{\min } \quad \text { and } \quad T C_{T a n}^{T S}\left(C_{n}^{i}\right) \leq \pi
$$

where

$$
N \leq \frac{l\left(C_{n}\right)}{l_{\min }}+\frac{T C_{T a n}^{T S}\left(C_{n}\right)}{\pi}+1
$$

Then there exists a constant K_{2} such that:

$$
\sharp\left(C_{n}\right) \leq N \widetilde{K} \leq K_{2}\left[1+T C_{T a n}^{T S}\left(C_{n}\right)+2^{n} l\left(C_{n}\right)\right] .
$$

6.5 A sufficient condition for the regularity of the limit curve

Proposition 5 Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of polygonal curves C_{n} : $[0,1] \rightarrow \mathbb{R}^{3}$, with uniform parametrization that converges toward a non constant curve C in the sup norm sense. If

$$
\exists k_{1}, k_{2}, \forall t_{a}, t_{b} \in[0,1] \quad T C_{3 D}\left(C_{n}, t_{a}, t_{b}\right) \leq \frac{k_{1}}{2^{n}}+k_{2} l\left(C_{n}, t_{a}, t_{b}\right)
$$

then the curve C has uniform parametrization, is of class $\mathcal{C}^{1,1}$ and has curvature bounded by k_{2}. Moreover $l(C)=\lim _{n \rightarrow \infty} l\left(C_{n}\right)$ and for any $t_{0} \in(0,1):$

$$
\lim _{n \rightarrow \infty} \frac{d C_{n}}{d t^{+}}\left(t_{0}\right)=\frac{d C}{d t}\left(t_{0}\right)
$$

Proof One first proves a few lemmas.
Lemma 5 In the conditions of Proposition 5, for any $\theta>0$, there is an integer number N such that for any $n, m \geq N$ and any $t \in[0,1)$:

$$
\begin{equation*}
\angle\left(\frac{d C_{n}(t)}{d t^{+}}, \frac{d C_{m}(t)}{d t^{+}}\right)<\theta \tag{7}
\end{equation*}
$$

Proof Recall that, because the curves C_{n} have uniform parametrization, $\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|$ is constant on $[0,1]$. And, as C is non constant and $C_{n} \rightarrow C$ in the sup norm sense, let $t<t^{\prime}$ be such that $C\left(t^{\prime}\right) \neq C(t)$. Then, for some $N_{0}, n \geq N_{0} \Rightarrow\left\|C-C_{n}\right\|_{\infty}<\frac{1}{4}\left\|C\left(t^{\prime}\right)-C(t)\right\|$, which entails:

$$
\left\|C_{n}\left(t^{\prime}\right)-C_{n}(t)\right\|>\frac{1}{2}\left\|C\left(t^{\prime}\right)-C(t)\right\|
$$

Therefore, for $\underline{l}=\frac{1}{2}\left\|C\left(t^{\prime}\right)-C(t)\right\|$, for any $n \geq N_{0},\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|>$ $\underline{l}>0$. Let $N \geq N_{0}$ be such that:

$$
\begin{equation*}
\frac{k_{1}}{2^{N}}<\frac{\theta}{16} \tag{8}
\end{equation*}
$$

and:

$$
\begin{equation*}
\forall n \geq N,\left\|C_{n}-C\right\|_{\infty}<\frac{\theta^{2}}{128 k_{2}} \tag{9}
\end{equation*}
$$

Notice that if Lemma 5 holds for $\theta<\min \left(\frac{\pi}{2}, k_{2} \underline{l}\right)$, it holds in general. We proceed by contradiction. Let us assume that the assertion of the lemma does not hold for some $t \in\left[0, \frac{1}{2}\right]$, and $\theta<\min \left(\frac{\pi}{2}, k_{2} \underline{l}\right)$. More precisely, let us assume that, for some $t \in\left[0, \frac{1}{2}\right]$ and $n, m \geq N$, one has:

$$
\begin{equation*}
\angle\left(\frac{d C_{n}(t)}{d t^{+}}, \frac{d C_{m}(t)}{d t^{+}}\right) \geq \theta \tag{10}
\end{equation*}
$$

Without loss of generality, one can assume that:

$$
\begin{equation*}
\left\|\frac{d C_{n}}{d t^{+}}(t)\right\| \geq\left\|\frac{d C_{m}}{d t^{+}}(t)\right\| \tag{11}
\end{equation*}
$$

We consider:

$$
t^{\prime}=t+\frac{\theta}{16 k_{2}\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|}
$$

Notice that $\theta<k_{2} \underline{l}$ entails $t^{\prime}<1$. One has $l\left(C_{n}, t, t^{\prime}\right) \leq \frac{\theta}{16 k_{2}}$ which gives, with the assumption in Proposition 5 together with inequation (8):

$$
T C_{3 D}\left(C_{n}, t, t^{\prime}\right) \leq \frac{k_{1}}{2^{n}}+k_{2} l\left(C_{n}, t, t^{\prime}\right) \leq \frac{\theta}{8} .
$$

Therefore, one has, for any $\tau \in\left[t, t^{\prime}\right]$:

$$
\left\|\frac{d C_{n}}{d t^{+}}(\tau)-\frac{d C_{n}}{d t^{+}}(t)\right\| \leq 2 \sin \left(\frac{\theta}{16}\right)\left\|\frac{d C_{n}}{d t^{+}}\right\|,
$$

and:

$$
\begin{aligned}
\left\|\int_{t}^{t^{\prime}} \frac{d C_{n}}{d t^{+}}(\tau) d \tau-\left(t^{\prime}-t\right) \frac{d C_{n}}{d t^{+}}(t)\right\| & =\int_{t}^{t^{\prime}}\left(\frac{d C_{n}}{d t^{+}}(\tau)-\frac{d C_{n}}{d t^{+}}(t)\right) \\
& \leq\left(t^{\prime}-t\right)\left\|\frac{d C_{n}}{d t^{+}}(\tau)-\frac{d C_{n}}{d t^{+}}(t)\right\| \\
& \leq\left(t^{\prime}-t\right) 2 \sin \left(\frac{\theta}{16}\right)\left\|\frac{d C_{n}}{d t^{+}}\right\| \\
& =2 \sin \left(\frac{\theta}{16}\right) \frac{\theta}{8 k_{2}}
\end{aligned}
$$

Which gives:

$$
\begin{equation*}
\left\|\int_{t}^{t^{\prime}} \frac{d C_{n}}{d t^{+}}(\tau) d \tau-\left(t^{\prime}-t\right) \frac{d C_{n}}{d t^{+}}(t)\right\| \leq \frac{\theta^{2}}{64 k_{2}} \tag{12}
\end{equation*}
$$

And similarly, using inequation (11), one has:

$$
\begin{equation*}
\left\|\int_{t}^{t^{\prime}} \frac{d C_{m}}{d t^{+}}(\tau) d \tau-\left(t^{\prime}-t\right) \frac{d C_{m}}{d t^{+}}(t)\right\| \leq \frac{\theta^{2}}{64 k_{2}} \tag{13}
\end{equation*}
$$

On another hand, inequations (11) and (10) entail:

$$
\left\|\left(t^{\prime}-t\right) \frac{d C_{n}}{d t^{+}}(t)-\left(t^{\prime}-t\right) \frac{d C_{m}}{d t^{+}}(t)\right\| \geq \sin \theta\left\|\left(t^{\prime}-t\right) \frac{d C_{n}}{d t^{+}}(t)\right\|
$$

which gives:

$$
\begin{equation*}
\left\|\left(t^{\prime}-t\right) \frac{d C_{n}}{d t^{+}}(t)-\left(t^{\prime}-t\right) \frac{d C_{m}}{d t^{+}}(t)\right\| \geq \sin \theta \frac{\theta}{8 k_{2}}>\frac{\theta^{2}}{16 k_{2}} \tag{14}
\end{equation*}
$$

But:

$$
\begin{aligned}
\left\|\int_{t}^{t^{\prime}} \frac{d C_{n}}{d t^{+}}(\tau) d \tau-\int_{t}^{t^{\prime}} \frac{d C_{m}}{d t^{+}}(\tau) d \tau\right\| & =\left\|C_{n}\left(t^{\prime}\right)-C_{n}(t)-C_{m}\left(t^{\prime}\right)+C_{m}(t)\right\| \\
& \leq 2\left\|C_{n}-C\right\|_{\infty}
\end{aligned}
$$

which gives, using (9):

$$
\left\|\int_{t}^{t^{\prime}} \frac{d C_{n}}{d t^{+}}(\tau) d \tau-\int_{t}^{t^{\prime}} \frac{d C_{m}}{d t^{+}}(\tau) d \tau\right\| \leq \frac{\theta^{2}}{32 k_{2}}
$$

This last equation can not hold together with inequations (14), (12) and (13). Therefore, inequation (10) does not hold and the lemma is proved for $t \in\left[0, \frac{1}{2}\right]$. By reparametrizattion of the curves by $t \mapsto 1-t$, one gets the same property for $t \in\left[\frac{1}{2}, 1\right]$ but expressed with the left derivatives. However, in the condition of the lemma, the left and right derivatives satisfy:

$$
\forall n, \forall t,\left\|\frac{d C_{n}}{d t^{-}}(t)-\frac{d C_{n}}{d t^{+}}(t)\right\| \leq \frac{k_{1}}{2^{n}}
$$

This entails, using that $\forall n \geq N_{0},\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|>\underline{l}>0$ that both have same uniform limit angle.

Lemma 5 gives a Cauchy sequence condition on the angle allows to derive the following lemma on Cauchy sequence conditions on right derivatives.

Lemma 6 In the conditions of Proposition 5, the sequence of $\frac{d C_{n}}{d t^{+}}(t)$ is bounded by some number \tilde{l}. Moreover, it is a Cauchy sequence, that is, for any $\epsilon>0$, there is an integer number N such that for any $n, m \geq N$ and any $t \in[0,1)$:

$$
\begin{equation*}
\left\|\frac{d C_{n}(t)}{d t^{+}}-\frac{d C_{m}(t)}{d t^{+}}\right\|<\epsilon \tag{15}
\end{equation*}
$$

Proof We first claim that, for any $\beta>0$, there is N such that, for any $n, m \geq N$ and $t \in\left[0, \frac{1}{2}\right]$, one has:

$$
\begin{equation*}
\left\|\frac{d C_{n}(t)}{d t^{+}}\right\|-\left\|\frac{d C_{m}(t)}{d t^{+}}\right\| \| \leq \beta \max \left(\left\|\frac{d C_{n}(t)}{d t^{+}}\right\|,\left\|\frac{d C_{m}(t)}{d t^{+}}\right\|\right) \tag{16}
\end{equation*}
$$

As in the proof of Lemma 5 , we consider N_{0} and $\underline{l}>0$ such that $\forall n \geq N_{0},\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|>\underline{l}>0$. We consider $\theta<\min \left(\frac{\pi}{2}, k_{2} \underline{l}\right)$ such that $(1-\cos \theta)<\frac{\beta}{2}$ and $N_{1} \geq N_{0}$ such that

$$
\begin{equation*}
\frac{k_{1}}{2^{N_{1}}}<\frac{\theta}{2} \tag{17}
\end{equation*}
$$

We consider again $N \geq N_{1}$, using Lemma 5, such that, $\forall n, m \geq N$:

$$
\begin{equation*}
\angle\left(\frac{d C_{n}(t)}{d t^{+}}, \frac{d C_{m}(t)}{d t^{+}}\right)<\theta \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|C_{n}-C_{m}\right\|_{\infty} \leq \frac{\theta \beta}{8 k_{2}} \tag{19}
\end{equation*}
$$

We consider some $t \in\left[0, \frac{1}{2}\right]$ and $n, m \geq N$, and we will prove that (16) holds. Without loss of generality, one can assume that $\left\|\frac{d C_{n}(t)}{d t^{+}}\right\| \geq$ $\left\|\frac{d C_{m}(t)}{d t^{+}}\right\|$. As in the proof of Lemma 5 , we consider the interval $\left[t, t^{\prime}\right]$:

$$
\begin{equation*}
t^{\prime}=t+\frac{\theta}{2 k_{2}\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|} \tag{20}
\end{equation*}
$$

which gives $\left(t^{\prime}-t\right)\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|=\frac{\theta}{2 k_{2}}$ and we get from (17) that, $\forall \tau \in$ $\left[t, t^{\prime}\right]$:

$$
\begin{equation*}
\angle\left(\frac{d C_{n}}{d t^{+}}(\tau), \frac{d C_{n}}{d t^{+}}(t)\right) \leq \theta \tag{21}
\end{equation*}
$$

We consider the unitary vector $\mathbf{e}=\frac{\frac{d C_{n}}{d t^{+}}(t)}{\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|}$. One has, using Inequality (21):

$$
\begin{aligned}
<\mathbf{e}, C_{n}\left(t^{\prime}\right)-C_{n}(t)> & =<\mathbf{e}, \int_{t}^{t^{\prime}} \frac{d C_{n}}{d t^{+}}(\tau) d \tau> \\
& =\int_{t}^{t^{\prime}}<\mathbf{e}, \frac{d C_{n}}{d t^{+}}(\tau)>d \tau \\
& \geq \cos \theta \quad\left(t^{\prime}-t\right)\left\|\frac{d C_{n}}{d t^{+}}\right\|
\end{aligned}
$$

Similarly, using (18) and (21), one gets:

$$
\begin{aligned}
<\mathbf{e}, C_{m}\left(t^{\prime}\right)-C_{m}(t)> & =<\mathbf{e}, \int_{t}^{t^{\prime}} \frac{d C_{m}}{d t^{+}}(\tau) d \tau> \\
& =\int_{t}^{t^{\prime}}<\mathbf{e}, \frac{d C_{m}}{d t^{+}}(\tau)>d \tau \\
& \leq\left(t^{\prime}-t\right)\left\|\frac{d C_{m}}{d t^{+}}\right\|
\end{aligned}
$$

Using (19) we get:

$$
\left|<\mathbf{e}, C_{n}\left(t^{\prime}\right)-C_{n}(t)>-<\mathbf{e}, C_{m}\left(t^{\prime}\right)-C_{m}(t)>\right| \leq \frac{\theta \beta}{4 k_{2}}
$$

and the three last inequalities sum up in:

$$
\cos \theta \quad\left(t^{\prime}-t\right)\left\|\frac{d C_{n}}{d t^{+}}\right\| \leq\left(t^{\prime}-t\right)\left\|\frac{d C_{m}}{d t^{+}}\right\|+\frac{\theta \beta}{4 k_{2}}
$$

Dividing both terms by $\left(t^{\prime}-t\right)=\frac{\theta}{2 k_{2}\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|}$ gives:

$$
\cos \theta \quad\left\|\frac{d C_{n}}{d t^{+}}(t)\right\| \leq\left\|\frac{d C_{m}}{d t^{+}}\right\|+\frac{\beta}{2}\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|,
$$

which gives:

$$
\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|-\left\|\frac{d C_{m}}{d t^{+}}\right\| \leq\left(\frac{\beta}{2}+1-\cos \theta\right)\left\|\frac{d C_{n}}{d t^{+}}(t)\right\| .
$$

The fact that $(1-\cos \theta)<\frac{\beta}{2}$ proves (16).
Property (16) easily proves the lemma. Indeed, taking $\beta=\frac{1}{2}$ gives that, for some N :
$n \geq N \Rightarrow\left|\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|-\left\|\frac{d C_{N}}{d t^{+}}(t)\right\|\right| \leq \frac{1}{2} \max \left(\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|,\left\|\frac{d C_{N}}{d t^{+}}(t)\right\|\right)$,
which entails:

$$
n \geq N \Rightarrow\left\|\frac{d C_{n}}{d t^{+}}(t)\right\| \leq 2\left\|\frac{d C_{N}}{d t^{+}}(t)\right\| .
$$

Therefore, the sequence of $\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|$ is bounded by some number \tilde{l} and (16) entails that, for any $\beta>0$, one has:

$$
n \geq N \Rightarrow\left|\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|-\left\|\frac{d C_{N}}{d t^{+}}(t)\right\|\right| \leq \beta \tilde{l}
$$

This implies that $\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|$ is a Cauchy sequence. This fact, combined with Lemma 5 , implies that $\frac{d C_{n}}{d t}(t)$ is a Cauchy sequence.

The fact that for every $t \in(0,1)$, one has $l\left(C_{n}\right)=\left\|\frac{d C_{n}}{d t^{+}}(t)\right\|$, implies by Lemma 6 , that the sequence of lengths $l\left(C_{n}\right)$ is converging to L. For two points a and $b, d(a, b)$ denotes the euclidean distance between a and b. First one proves the following:

Lemma 7 In the conditions of Proposition 5, for any ϵ with $0<\epsilon<$ $\frac{1}{10}$, there is η and an integer number N such that if $0<t_{b}-t_{a} \leq \eta$, then for any t, t^{\prime} such that $t_{a} \leq t<t^{\prime} \leq t_{b}$ and for any $n \geq N$:

$$
\begin{equation*}
\left\|\frac{C_{n}\left(t^{\prime}\right)-C_{n}(t)}{t^{\prime}-t}-\frac{C_{n}\left(t_{b}\right)-C_{n}\left(t_{a}\right)}{t_{b}-t_{a}}\right\| \leq \epsilon\left\|\frac{C_{n}\left(t_{b}\right)-C_{n}\left(t_{a}\right)}{t_{b}-t_{a}}\right\| \tag{22}
\end{equation*}
$$

and:

$$
\begin{equation*}
l\left(C_{n}\right)\left(t_{b}-t_{a}\right)\left(1-\epsilon^{2}\right) \leq d\left(C_{n}\left(t_{a}\right), C_{n}\left(t_{b}\right)\right) \leq l\left(C_{n}\right)\left(t_{b}-t_{a}\right) \tag{23}
\end{equation*}
$$

Proof of Lemma 7
We put $\eta=\frac{\epsilon}{4 k_{2} l}$ and N such that $\frac{k_{1}}{2^{N}} \leq \frac{\epsilon}{4}$. If $0<t_{b}-t_{a} \leq \eta$, we then have:

$$
l\left(C_{n}, t_{a}, t_{b}\right)=l\left(C_{n}\right)\left(t_{b}-t_{a}\right) \leq \tilde{l} \frac{\epsilon}{4 k_{2} \tilde{l}}=\frac{\epsilon}{4 k_{2}}
$$

We then have

$$
T C_{3 D}\left(C_{n}, t_{a}, t_{b}\right) \leq \frac{k_{1}}{2^{n}}+k_{2} l\left(C_{n}, t_{a}, t_{b}\right) \leq \frac{\epsilon}{4}+\frac{\epsilon}{4}=\frac{\epsilon}{2}
$$

First remark that the right derivative of C_{n} exists everywhere. In the following, we denote it by $\frac{d C_{n}}{d t^{+}}$. Furthermore, since C_{n} is differentiable almost everywhere, the Lebesgues integral of its derivative is equal to the Lebesgues integral of $\frac{d C_{n}}{d t^{+}}$. For any $t_{1}, t_{2} \in\left[t_{a}, t_{b}\right]$, one has:

$$
\angle\left(\frac{d C_{n}}{d t^{+}}\left(t_{1}\right), \frac{d C_{n}}{d t^{+}}\left(t_{2}\right)\right) \leq \frac{\epsilon}{2}
$$

Then, since C_{n} has uniform parametrization, one has:

$$
\forall t_{1} \in[0,1]\left\|\frac{d C_{n}}{d t^{+}}\left(t_{1}\right)\right\|=l\left(C_{n}\right)
$$

and therefore, for any $t_{1}, t_{2} \in\left[t_{a}, t_{b}\right]$, one has:

$$
\left\|\frac{d C_{n}}{d t^{+}}\left(t_{2}\right)-\frac{d C_{n}}{d t^{+}}\left(t_{1}\right)\right\| \leq 2 l\left(C_{n}\right) \sin \frac{\epsilon}{4} .
$$

That implies that for any $t_{1} \in\left[t_{a}, t_{b}\right]$ and t, t^{\prime} with $t_{a} \leq t<t^{\prime} \leq t_{b}$:

$$
\begin{aligned}
\left\|\frac{C_{n}\left(t^{\prime}\right)-C_{n}(t)}{t^{\prime}-t}-\frac{d C_{n}}{d t^{+}}\left(t_{1}\right)\right\| & =\left\|\frac{1}{t^{\prime}-t} \int_{t}^{t^{\prime}}\left(\frac{d C_{n}}{d t^{+}}(\tau)-\frac{d C_{n}}{d t^{+}}\left(t_{1}\right)\right) d \tau\right\| \\
& \leq 2 l\left(C_{n}\right) \sin \frac{\epsilon}{4}
\end{aligned}
$$

Again:

$$
\begin{align*}
\left\|\frac{C_{n}\left(t^{\prime}\right)-C_{n}(t)}{t^{\prime}-t}-\frac{C_{n}\left(t_{b}\right)-C_{n}\left(t_{a}\right)}{t_{b}-t_{a}}\right\| & =\left\|\frac{1}{t_{b}-t_{a}} \int_{t_{a}}^{t_{b}}\left(\frac{C_{n}\left(t^{\prime}\right)-C_{n}(t)}{t^{\prime}-t}-\frac{d C_{n}}{d t^{+}}(\tau)\right) d \tau\right\| \\
& \leq \frac{1}{t_{b}-t_{a}} \int_{t_{a}}^{t_{b}}\left\|\frac{C_{n}\left(t^{\prime}\right)-C_{n}(t)}{t^{\prime}-t}-\frac{d C_{n}}{d t^{+}}\left(t_{1}\right)\right\| d \tau \\
& \leq 2 l\left(C_{n}\right) \sin \frac{\epsilon}{4} \tag{24}
\end{align*}
$$

On the other hand:

$$
\begin{aligned}
\left\|\frac{C_{n}\left(t_{b}\right)-C_{n}\left(t_{a}\right)}{t_{b}-t_{a}}\right\|^{2} & =\left(\frac{1}{t_{b}-t_{a}} \int_{t_{a}}^{t_{b}} \frac{d C_{n}}{d t^{+}}(\tau) d \tau\right) \cdot\left(\frac{1}{t_{b}-t_{a}} \int_{t_{a}}^{t_{b}} \frac{d C_{n}}{d t^{+}}(\tau) d \tau\right) \\
& =\frac{1}{\left(t_{b}-t_{a}\right)^{2}} \int_{t_{a}}^{t_{b}} \int_{t_{a}}^{t_{b}} \frac{d C_{n}}{d t^{+}}\left(\tau_{1}\right) \cdot \frac{d C_{n}}{d t^{+}}\left(\tau_{2}\right) d \tau_{2} d \tau_{1} .
\end{aligned}
$$

This gives

$$
l\left(C_{n}\right)^{2} \cos \frac{\epsilon}{2} \leq\left\|\frac{C_{n}\left(t_{b}\right)-C_{n}\left(t_{a}\right)}{t_{b}-t_{a}}\right\|^{2} \leq l\left(C_{n}\right)^{2}
$$

and

$$
\begin{equation*}
l\left(C_{n}\right) \sqrt{\cos \frac{\epsilon}{2}} \leq\left\|\frac{C_{n}\left(t_{b}\right)-C_{n}\left(t_{a}\right)}{t_{b}-t_{a}}\right\| \leq l\left(C_{n}\right) \tag{25}
\end{equation*}
$$

Using $\epsilon<\frac{1}{10}$, Equations (24) and (25) imply Equation (22); Equation (25) proves Equation (23).

We recall that $L=\lim \sup _{n \rightarrow \infty} l\left(C_{n}\right)$. Now, by using the fact that $\left\|C_{n}-C\right\|_{\infty} \rightarrow 0$, Lemma 7 gives that, for any ϵ with $0<\epsilon<\frac{1}{10}$, there is η such that, if $0<t_{b}-t_{a} \leq \eta$:

$$
\left\|\frac{C\left(t^{\prime}\right)-C(t)}{t^{\prime}-t}-\frac{C\left(t_{b}\right)-C\left(t_{a}\right)}{t_{b}-t_{a}}\right\| \leq \epsilon\left\|\frac{C\left(t_{b}\right)-C\left(t_{a}\right)}{t_{b}-t_{a}}\right\|
$$

Remark that:

$$
\left\|\frac{C_{n}\left(t_{b}\right)-C_{n}\left(t_{a}\right)}{t_{b}-t_{a}}\right\| \leq l\left(C_{n}\right)
$$

Which entails, by taking the limit of both sides as $n \rightarrow \infty$:

$$
\left\|\frac{C\left(t_{b}\right)-C\left(t_{a}\right)}{t_{b}-t_{a}}\right\| \leq L
$$

We have then:

$$
\begin{equation*}
\left\|\frac{C\left(t^{\prime}\right)-C(t)}{t^{\prime}-t}-\frac{C\left(t_{b}\right)-C\left(t_{a}\right)}{t_{b}-t_{a}}\right\| \leq \epsilon L \tag{26}
\end{equation*}
$$

For a given real number $t_{0} \in[0,1]$, and an integer number $j \geq 1$ we introduce the closed subset $K_{j}\left(t_{0}\right)$ as:
$K_{j}\left(t_{0}\right)=$ Closure $\left[\left\{\frac{C\left(t^{\prime}\right)-C(t)}{t^{\prime}-t} \left\lvert\, \max \left(0, t_{0}-\frac{1}{j}\right) \leq t<t^{\prime} \leq \min \left(1, t_{0}+\frac{1}{j}\right)\right.\right\}\right]$.
From Equation (26) $K_{j}\left(t_{0}\right)$ is bounded for j large enough, and therefore compact. It is obviously not empty and decreasing for the inclusion: $K_{j}\left(t_{0}\right) \supset K_{j+1}\left(t_{0}\right)$. From compactness, the set $K\left(t_{0}\right)=$ $\cap_{j \geq 1} K_{j}\left(t_{0}\right)$ is not empty and Equation (26) entails that it must be contained in a ball of radius ϵL for arbitrarily small ϵ which entail that $K\left(t_{0}\right)$ is a single point:

$$
K\left(t_{0}\right)=\left\{\psi\left(t_{0}\right)\right\} .
$$

Again, Equation (26) entails:

$$
\begin{aligned}
& \forall \epsilon>0, \exists h>0 \\
& \max \left(0, t_{0}-h\right) \leq t<t^{\prime} \leq \min \left(1, t_{0}+h\right) \Rightarrow\left\|\frac{C\left(t^{\prime}\right)-C(t)}{t^{\prime}-t}-\psi\left(t_{0}\right)\right\|<\epsilon
\end{aligned}
$$

Therefore, for $0<t_{0}<1, \psi\left(t_{0}\right)$ is the derivative of C at t_{0}. In fact, the expression above is stronger: it states that C is strictly differentiable (see [4] page 30), which entails that the derivative function is continuous. For $t_{0}=0$ (resp. $t_{0}=1$) this shows that C has a right (resp. left) derivative at 0 (resp. 1). We have proven so far that C is of class \mathcal{C}^{1}.

Lemma 8 The sequence of right derivatives $\frac{d C_{n}}{d t^{+}}$uniformly converges to $\frac{d C}{d t}$. In other words, for every $\epsilon>$, there exists $N \in \mathbb{N}$ such that:

$$
n>N \Rightarrow \forall t \in(0,1)\left\|\frac{d C_{n}}{d t^{+}}(t)-\frac{d C}{d t}(t)\right\| \leq \epsilon
$$

Proof Proof of Lemma 8
We know by Lemma 6 that $\frac{d C_{n}}{d t^{+}}$uniformly converges. We only have to show that $\frac{d C_{n}}{d t^{+}}\left(t_{0}\right)$ converges to $\frac{d C}{d t}\left(t_{0}\right)$ for any $t_{0} \in(0,1)$. From

Lemma 7 , for any ϵ such that $0<\epsilon<\frac{1}{10}$, there is $h_{0}>0$ and an integer number N such that, for $n \geq N$ and $h \leq h_{0}$, one has:

$$
\left\|\frac{C_{n}\left(t_{0}+h\right)-C_{n}\left(t_{0}-h\right)}{2 h}-\frac{d C_{n}}{d t^{+}}\left(t_{0}\right)\right\| \leq \epsilon
$$

Since C is of class \mathcal{C}^{1}, we can take h small enough to have:

$$
\left\|\frac{C\left(t_{0}+h\right)-C\left(t_{0}-h\right)}{2 h}-\frac{d C}{d t}\left(t_{0}\right)\right\| \leq \epsilon
$$

and let $\widetilde{N} \geq N$ be such that $n \geq \widetilde{N} \Rightarrow\left\|C_{n}-C\right\|_{\infty} \leq \epsilon$. One gets:

$$
\left\|\frac{C_{n}\left(t_{0}+h\right)-C_{n}\left(t_{0}-h\right)}{2 h}-\frac{C\left(t_{0}+h\right)-C\left(t_{0}-h\right)}{2 h}\right\| \leq \frac{2 \epsilon h}{2 h}=\epsilon
$$

which gives, for any $n \geq \widetilde{N}$:

$$
\left\|\frac{d C_{n}}{d t^{+}}\left(t_{0}\right)-\frac{d C}{d t}\left(t_{0}\right)\right\| \leq 3 \epsilon
$$

This is true for arbitrary small ϵ which proves the claim.
Lemma 8 allows to apply Lebesgues' dominated convergence theorem which entails that, for $0 \leq t_{a}<t_{b} \leq 1$:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} l\left(C_{n}, t_{a}, t_{b}\right)=l\left(C, t_{a}, t_{b}\right) \tag{27}
\end{equation*}
$$

and in particular:

$$
\lim _{n \rightarrow \infty} l\left(C_{n}\right)=L=l(C)
$$

The assumptions of Proposition 5 entail that:

$$
\forall t_{a}, t_{b} \in[0,1] \quad \angle\left(\frac{d C_{n}}{d t^{+}}\left(t_{a}\right), \frac{d C_{n}}{d t^{+}}\left(t_{b}\right)\right) \leq \frac{k_{1}}{2^{n}}+k_{2} l\left(C_{n}, t_{a}, t_{b}\right)
$$

This, together with Lemma 8 and Equation (27) entail:

$$
\forall t_{a}, t_{b} \in[0,1] \quad \angle\left(\frac{d C}{d t}\left(t_{a}\right), \frac{d C}{d t}\left(t_{b}\right)\right) \leq k_{2} l\left(C, t_{a}, t_{b}\right)
$$

which proves that k_{2} bounds the curvature of C. Moreover, Lemma 8 entails that, for any t_{0} with $0<t_{0}<1$:

$$
\left\|\frac{d C}{d t}\left(t_{0}\right)\right\|=L=l(C)
$$

It follows that C has uniform parametrization and $\frac{d C}{d t}$ is K-Lipschitz with $K=L^{2} k_{2}$.

6.6 Proof of Theorem 1

First recall that $l\left(C_{n}\right)$ is bounded by a constant \tilde{l} and that C_{n} is piecewise linear. Let $n \geq 0$. We denote by α_{n} the maximal angle between $C_{n} \subset T_{n}$ and $S:$

$$
\alpha_{n}=\sup _{p \in C_{n}} \sup _{\text {triangle }} \Delta \ni p<\left(\Delta, \Pi_{\xi(p)}^{S}\right) .
$$

Step 1: By assumption, we have:

$$
\alpha_{n} \leq \frac{K}{2^{n}}
$$

Let us consider a given interval $\left[t_{a}, t_{b}\right] \subset[0,1]$. By definition, we have:

$$
T C_{\text {Tan }}^{T S}\left(C_{n}, t_{a}, t_{b}\right)=\sum_{p \text { vertex of } C_{n}\left(\left[t_{a}, t_{b}\right]\right)} \beta_{\text {dev }}^{T S}(p) .
$$

Propositions 3 and 4 imply that:

$$
\begin{align*}
T C_{\text {Tan }}^{T S}\left(C_{n}, t_{a}, t_{b}\right) & \leq K_{1} \alpha_{n}^{2} \sharp\left(C_{n}, t_{a}, t_{b}\right) \tag{byProp.3}\\
& \leq K_{1} K_{2} \alpha_{n}^{2}\left[1+T C_{\text {Tan }}^{T S}\left(C_{n}, t_{a}, t_{b}\right)+2^{n} l\left(C_{n}, t_{a}, t_{b}\right)\right] \tag{byProp.4}\\
& \leq \frac{2 K^{2}}{4^{n}} K_{1} K_{2}\left[1+T C_{T a n}^{T S}\left(C_{n}, t_{a}, t_{b}\right)+2^{n} \widetilde{l} \cdot\left(t_{b}-t_{a}\right)\right] \\
& =2 K^{2} K_{1} K_{2}\left[\frac{\tilde{l} \cdot\left(t_{b}-t_{a}\right)}{2^{n}}+\frac{T C_{\text {Tan }}^{T S}\left(C_{n}, t_{a}, t_{b}\right)}{4^{n}}+\frac{1}{4^{n}}\right] .
\end{align*}
$$

Therefore, for some constants K_{3} and K_{4} independant of t_{a} and t_{b}, one has:

$$
\begin{equation*}
T C_{T a n}^{T S}\left(C_{n}, t_{a}, t_{b}\right) \leq \frac{K_{3}}{2^{n}}\left(t_{b}-t_{a}\right)+\frac{K_{4}}{4^{n}} . \tag{28}
\end{equation*}
$$

In particular, we have:

$$
\lim _{n \rightarrow \infty} T C_{T a n}^{T S}\left(C_{n}\right)=0
$$

Step 2: We have:

$$
\begin{array}{rlrl}
T C_{3 D}\left(C_{n}, t_{a}, t_{b}\right) & =\sum_{p \text { vertex of } C_{n}\left(t_{a}, t_{b}\right)} \beta_{d e v}^{3 D}(p) & \\
& \leq K_{1} \alpha_{n} \sharp\left(C_{n}, t_{a}, t_{b}\right) & & \\
& \leq K_{1} K_{2} \alpha_{n}\left[1+T C_{T a n}^{T S}\left(C_{n}, t_{a}, t_{b}\right)+2^{n} l\left(C_{n}, t_{a}, t_{b}\right)\right] & \text { (By Prop. 3) } \\
& \leq \frac{2 K K_{1} K_{2}}{2^{n}}\left[1+T C_{\text {Tan }}^{T S}\left(C_{n}, t_{a}, t_{b}\right)+2^{n} l\left(C_{n}, t_{a}, t_{b}\right)\right] . &
\end{array}
$$

From the uniform convergence $C_{n} \rightarrow C$ and the definition of length of rectifiable curves, one gets:

$$
\liminf _{n \rightarrow \infty} l\left(C_{n}\right) \geq l(C)
$$

If we exclude the case where C is constant, in which case it is a degenerate case of geodesic, C has a positive length $l(C)>0$ and therefore, for some N, if $n \geq N$, the lengths $l\left(C_{n}\right)$ are lower bounded by
$K_{l}>0$, and, because the C_{n} have uniform parametrization, we have $l\left(C_{n}, t_{a}, t_{b}\right) \geq K_{l}\left(t_{b}-t_{a}\right)$ and then:

$$
\begin{aligned}
T C_{\text {Tan }}^{T S}\left(C_{n}, t_{a}, t_{b}\right) & \leq \frac{K_{3}}{2^{n}}\left(t_{b}-t_{a}\right)+\frac{K_{4}}{4^{n}} \\
& \leq \frac{K_{3}}{K_{1} 2^{n}} l\left(C_{n}, t_{a}, t_{b}\right)+\frac{K_{4}}{4^{n}},
\end{aligned}
$$

which gives for some constant K and K^{\prime} :

$$
\begin{equation*}
T C_{3 D}\left(C_{n}, t_{a}, t_{b}\right) \leq K l\left(C_{n}, t_{a}, t_{b}\right)+K^{\prime} \frac{1}{2^{n}}, \tag{29}
\end{equation*}
$$

and Proposition 5 then implies that the curve C is of class $\mathcal{C}^{1,1}$.
Step 3
We consider a point $p_{0}=C\left(t_{0}\right)$ and we recall that $P_{p_{0}}^{S}$ denotes the projection on the plane $\Pi_{p_{0}}^{S}$ tangent to S at p_{0}. In this step, we are are going to prove the following lemma:
Lemma 9 For any $t_{0} \in(0,1)$, the projection $P_{C\left(t_{0}\right)}^{S} \circ C$ of C on the plane tangent to S at $C\left(t_{0}\right)$ is twice derivable at t_{0} and:

$$
\left.\frac{d^{2}\left(P_{C\left(t_{0}\right)}^{S} \circ C\right)}{d t^{2}}\right|_{t=t_{0}}=0
$$

Proof of Lemma 9
Let α be such that $0<\alpha<1$ and let $r>0$ be the reach of the surface S. We recall the following proposition (see [11] page 435):
Proposition 6 In the ball $B\left(p_{0}, \alpha r\right)$, the map ξ is $\frac{1}{1-\alpha}-$ Lipschitz.
Let s be such that $s \widetilde{l}=\frac{\alpha r}{2}$. Using the fact that C_{n} has uniform parametrization and length upper bounded by \widetilde{l}, the respective lengths of the arcs $C_{n}\left(\left[t_{0}-s, t_{0}\right]\right)$ and $C_{n}\left(\left[t_{0}, t_{0}+s\right]\right)$ are smaller than $\frac{\alpha r}{2}$ and therefore one has:

$$
C_{n}\left(\left[t_{0}-s, t_{0}+s\right]\right) \subset B\left(C_{n}\left(t_{0}\right), \frac{\alpha r}{2}\right) .
$$

Let us now take n large enough such that $\left\|C_{n}-C\right\|_{\infty} \leq \frac{\alpha r}{2}$. We then have:

$$
C_{n}\left(\left[t_{0}-s, t_{0}+s\right]\right) \subset B\left(p_{0}, \alpha r\right) .
$$

Using Proposition 6 , it follows that the curves $\xi \circ C_{n}\left(\left[t_{0}-s, t_{0}\right]\right)$ and $\xi \circ C_{n}\left(\left[t_{0}, t_{0}+s\right]\right)$ have length bounded by $\frac{\alpha r}{1-\alpha}$. Therefore, since the curvature of S is bounded by $\frac{1}{r}$, if one denotes by $\Pi_{\xi\left(C_{n}(t)\right)}^{S}$ the tangent planes to S at the point $\xi\left(C_{n}(t)\right)$, one has, for any $t \in\left[t_{0}-s, t_{0}+s\right]$:

$$
\begin{equation*}
2 \sin \frac{\angle\left(\Pi_{\xi\left(C_{n}(t)\right)}^{S}, \Pi_{\xi\left(C_{n}\left(t_{0}\right)\right)}^{S}\right)}{2} \leq \frac{\alpha}{1-\alpha} . \tag{30}
\end{equation*}
$$

We consider now the sequence of curves \widetilde{C}_{n} which are the projections $P_{p_{0}}^{S}\left(C_{n}\right)$ and which converge toward the projection $P_{p_{0}}^{S} \circ C$ of the curve C on the plane $\Pi_{p_{0}}^{S}$.

We consider the arc curve $P_{p_{0}}^{S}\left(C\left(\left[t_{0}-s, t_{0}+s\right]\right)\right)$ in the plane $\Pi_{p_{0}}^{S}$, for $s=\frac{\alpha r}{\tilde{l}}$. Let t_{i}^{n} be the parameter of the $i^{\text {th }}$ vertex $p_{i}^{n}=C_{n}\left(t_{i}^{n}\right)$ of C_{n}. We apply Lemma 3, taking the unit vectors along $\frac{d C_{n}}{d t}$ just before and just after the vertex p_{i}^{n} for the vector u and v of the proposition, and the projections $P_{\xi\left(p_{i}^{n}\right)}^{S}$ and $P_{p_{0}}^{S}$ respectively for the projections P_{1} and P_{2} of the proposition.
If $\beta_{\text {dev }}^{3 D}\left(p_{i}^{n}\right), \beta_{\text {dev }}^{T S}\left(p_{i}^{n}\right)$ and $\beta_{i}^{\Pi_{0}}$ are respectively the 3 D deviation angle of C_{n} at the vertex $C_{n}\left(t_{i}^{n}\right)$, the 2D deviation angle of $P_{\xi\left(p_{i}^{n}\right)}^{S}\left(C_{n}\left(\left[t_{0}-s, t_{0}+s\right]\right)\right)$ at $\xi\left(p_{i}^{n}\right)$ and the 2D deviation angle of $P_{p_{0}}^{S}\left(C_{n}\left(\left[t_{0}-s, t_{0}+s\right]\right)\right)$ at $P_{p_{0}}\left(p_{i}^{n}\right)$, Lemma 3 gives, that for some constant K :

$$
\beta_{i}^{\Pi_{0}} \leq K\left[\beta_{d e v}^{T S}\left(p_{i}^{n}\right)+\sin \theta \beta_{d e v}^{3 D}\left(p_{i}^{n}\right)+\frac{1}{4^{n}}\right]
$$

where θ is the angle between the planes $\Pi_{\xi\left(p_{i}^{n}\right)}^{S}$ and $\Pi_{p_{0}}^{S}$ and satisfies $\sin \theta \leq 2 \sin \frac{\theta}{2} \leq \frac{\alpha}{1-\alpha}$ from Equation 30. One has then:

$$
\beta_{i}^{\Pi_{0}} \leq K\left[\beta_{d e v}^{T S}\left(p_{i}^{n}\right)+\frac{\alpha}{1-\alpha} \beta_{d e v}^{3 D}\left(p_{i}^{n}\right)+\frac{1}{4^{n}}\right] .
$$

Therefore, by summing over all the vertices p_{i}^{n}, one has:

$$
\begin{aligned}
& T C_{3 D}\left(P_{p_{0}}^{S} \circ C_{n}, t_{0}-s, t_{0}+s\right) \\
& \leq K^{\prime}\left[T C_{T a n}^{T S}\left(C_{n}, t_{0}-s, t_{0}+s\right)+\frac{\sharp\left(C_{n}, t_{0}-s, t_{0}+s\right)}{4^{n}}\right. \\
& \left.\quad+\frac{\alpha}{1-\alpha} T C_{3 D}\left(C_{n}, t_{0}-s, t_{0}+s\right)\right] .
\end{aligned}
$$

Equation (28) gives:

$$
T C_{T a n}^{T S}\left(C_{n}, t_{0}-s, t_{0}+s\right) \leq \frac{K_{3} 2 s}{2^{n}}+\frac{K_{4}}{4^{n}}
$$

Equation (29) implies:

$$
T C_{3 D}\left(C_{n}, t_{0}-s, t_{0}+s\right) \leq K 2 s \tilde{l}+K^{\prime} \frac{1}{2^{n}}
$$

Proposition 4 implies that:

$$
\sharp\left(C_{n}, t_{0}-s, t_{0}+s\right) \leq K_{2}\left[1+T C_{T a n}^{T S}\left(C_{n}, t_{0}-s, t_{0}+s\right)+2^{n} 2 s \tau l\right] .
$$

Then, by combining all these results and using the fact that $\alpha=\frac{\widetilde{l}_{s}}{r}$, we have, for some constant K_{5}, K_{6} and K_{7} :

$$
T C_{3 D}\left(P_{p_{0}}^{S} \circ C_{n}, t_{0}-s, t_{0}+s\right) \leq \frac{K_{5}}{4^{n}}+K_{6} \frac{s}{2^{n}}+K_{7} s^{2}
$$

Let $t \in\left[t_{0}-s, t_{0}+s\right]$. Lemma 2 implies that there exists K_{8} such that:

$$
\left\|\frac{d\left(P_{p_{0}}^{S} \circ C_{n}\right)}{d t}(t)-\frac{d\left(P_{p_{0}}^{S} \circ C_{n}\right)}{d t}\left(t_{0}\right)\right\| \leq T C_{3 D}\left(P_{p_{0}}^{S} \circ C_{n}, t_{0}-s, t_{0}+s\right)+\frac{K_{8}}{2^{n}} .
$$

We finally have:

$$
\begin{equation*}
\left\|\frac{d\left(P_{p_{0}}^{S} \circ C_{n}\right)}{d t}(t)-\frac{d\left(P_{p_{0}}^{S} \circ C_{n}\right)}{d t}\left(t_{0}\right)\right\| \leq \frac{K_{5}}{4^{n}}+K_{6} \frac{s}{2^{n}}+K_{7} s^{2}+\frac{K_{8}}{2^{n}} \tag{31}
\end{equation*}
$$

Let $\epsilon>0$. By Lemma 8, there exists N such that for every $n>N$ and for every $u \in(0,1)$:

$$
\left\|\frac{d C}{d t}(u)-\frac{d C_{n}}{d t^{+}}(u)\right\|<\epsilon .
$$

We then have for every $u \in(0,1)$:

$$
\left\|\frac{d\left(P_{p_{0}}^{S} \circ C\right)}{d t}(u)-\frac{d\left(P_{p_{0}}^{S} \circ C_{n}\right)}{d t^{+}}(u)\right\| \leq\left\|\frac{d C}{d t}(u)-\frac{d C_{n}}{d t^{+}}(u)\right\|<\epsilon
$$

By using Equation (31), we have:

$$
\left\|\frac{d\left(P_{p_{0}}^{S} \circ C\right)}{d t}(t)-\frac{d\left(P_{p_{0}}^{S} \circ C\right)}{d t}\left(t_{0}\right)\right\| \quad \leq 2 \epsilon+\left\|\frac{d\left(P_{p_{0}}^{S} \circ C_{n}\right)}{d t}(t)-\frac{d\left(P_{p_{0}}^{S} \circ C_{n}\right)}{d t}\left(t_{0}\right)\right\| .
$$

We finally get:

$$
\forall t \in\left[t_{0}-s, t_{0}+s\right],\left\|\frac{d\left(P_{p_{0}}^{S} \circ C\right)}{d t}(t)-\frac{d\left(P_{p_{0}}^{S} \circ C\right)}{d t}\left(t_{0}\right)\right\| \leq K_{7} s^{2}
$$

This allows to conclude the proof.
Step 4
$\overline{\text { Let } t_{0}} \in(0,1)$. In a neighborhood of $C\left(t_{0}\right)$, the surface S can be parametrized by its tangent plane at $C\left(t_{0}\right)$: in an appropriated frame with origin $C\left(t_{0}\right)$, the surface is parametrized by $(x, y) \in U_{0} \mapsto(x, y, f(x, y))$, where U_{0} is a neighborhood of $(0,0), f$ is a function of class \mathcal{C}^{2} that satisfies $f(0,0)=0$ and $D f(0,0)=0$. For every t close enough to t_{0}, we put $\gamma(t)=P_{C\left(t_{0}\right)}^{S}(C(t))$. The function γ is of class $\mathcal{C}^{1,1}$, and by Lemma 9 , we know that it is twice differentiable in t_{0} and that $\gamma^{\prime \prime}\left(t_{0}\right)=0$. We have in a neighborhood of t_{0},

$$
C(t)=\binom{\gamma(t)}{f(\gamma(t))} .
$$

The function C is then twice differentiable in t_{0} and we have

$$
C^{\prime \prime}\left(t_{0}\right)=\binom{\gamma^{\prime \prime}\left(t_{0}\right)}{D^{2} f\left(\gamma\left(t_{0}\right)\right) \cdot\left(\gamma^{\prime}\left(t_{0}\right), \gamma^{\prime}\left(t_{0}\right)\right)+D f\left(\gamma\left(t_{0}\right) \cdot \gamma^{\prime \prime}\left(t_{0}\right)\right.} .
$$

The vector $C^{\prime}\left(t_{0}\right)$ belongs to the tangent plane of S at $C\left(t_{0}\right)$. Furthermore, the fact that $D f(0,0)=0$ implies that

$$
D^{2} f\left(\gamma\left(t_{0}\right)\right) \cdot\left(\gamma^{\prime}\left(t_{0}\right), \gamma^{\prime}\left(t_{0}\right)\right)=I I_{C\left(t_{0}\right)}\left(C^{\prime}\left(t_{0}\right)\right)
$$

where $I I_{C\left(t_{0}\right)}$ is the second fundamental form of S at the point $C\left(t_{0}\right)$ [7]. We then have

$$
C^{\prime \prime}\left(t_{0}\right)=I I_{C\left(t_{0}\right)}\left(C^{\prime}\left(t_{0}\right)\right) N_{C\left(t_{0}\right)}^{S}
$$

In this expression, $C^{\prime \prime}\left(t_{0}\right)$ depends continuously on t_{0}. That implies that C is of class \mathcal{C}^{2} in t_{0}. The function C is then of class \mathcal{C}^{2}. Lemma 9 then implies that C has zero geodesic curvature, and then is a geodesic [7].

6.7 Proof of Corollary 1

We first need to check that the assumptions a) to e) of Theorem 1 are satisfied. The uniform convergence of P_{n} to f clearly implies assumption a). Now, since the map ξ realises the distance to S, for every $m=P_{n}(u, v) \in P_{n}$, one has $\|\xi(m)-m\| \leq\left\|f(u, v)-P_{n}(u, v)\right\|$ which implies assumption b).
By using the regularity of f and by compacity, we have that:

$$
m=\min _{(u, v) \in[0,1]^{2}}\left(\frac{\partial f}{\partial u}(u, v), \frac{\partial f}{\partial v}(u, v), \frac{\partial f}{\partial u}(u, v)+\frac{\partial f}{\partial v}(u, v)\right)>0
$$

and

$$
m=\max _{(u, v) \in[0,1]^{2}}\left(\frac{\partial f}{\partial u}(u, v), \frac{\partial f}{\partial v}(u, v), \frac{\partial f}{\partial u}(u, v)+\frac{\partial f}{\partial v}(u, v)\right)<\infty
$$

Let Δ_{n} be a triangle of P_{n}. The vertices of Δ_{n} are for example of the form
$p_{n}=P_{n}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right) \quad q_{n}=P_{n}\left(\frac{i+1}{2^{n}}, \frac{j}{2^{n}}\right) \quad$ and $\quad r_{n}=P_{n}\left(\frac{i+1}{2^{n}}, \frac{j+1}{2^{n}}\right)$.
Now the fact that $\left(P_{n}\right)_{n \in \mathbb{N}}$ uniformly converges in derivative to f implies that there exists N and K such that for every $n>N$, the lengths of $p_{n} q_{n}, p_{n} r_{n}$ and $q_{n} r_{n}$ are greater than $\frac{1}{2^{n}}\left(m-\frac{K}{2^{n}}\right)$ and less than $\frac{1}{2^{n}}\left(M+\frac{K}{2^{n}}\right)$. If N is large enough we then have:

$$
\begin{align*}
& \frac{1}{2^{n}} \frac{m}{2} \leq p_{n} q_{n} \leq \frac{1}{2^{n}} 2 M, \tag{32}\\
& \frac{1}{2^{n}} \frac{m}{2} \leq p_{n} r_{n} \leq \frac{1}{2^{n}} 2 M, \\
& \frac{1}{2^{n}} \frac{m}{2} \leq r_{n} q_{n} \leq \frac{1}{2^{n}} 2 M,
\end{align*}
$$

In particular, assumption d) is proved.
The fact that P_{n} uniformly converges in derivative to f also implies that there exists N and K such that for every $n>N$:

$$
\begin{equation*}
\left\|4^{n} \overrightarrow{q_{n} r_{n}} \wedge \overrightarrow{q_{n} p_{n}}-\frac{\partial f}{\partial u} \wedge \frac{\partial f}{\partial v}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right\| \leq \frac{K}{2^{n}} \tag{33}
\end{equation*}
$$

If we take N such that $\frac{K}{2^{n}} \leq \frac{m}{2}$, we then have

$$
\left\|4^{n} \overrightarrow{q_{n} r_{n}} \wedge \overrightarrow{q_{n} p_{n}}\right\| \geq m-\frac{K}{2^{n}} \geq \frac{m}{2} .
$$

Together with Equation (32), that implies that

$$
\sin \angle\left(\overrightarrow{q_{n} p_{n}}, \overrightarrow{q_{n} r_{n}}\right)=\frac{\left\|\overrightarrow{q_{n} p_{n}} \wedge \overrightarrow{q_{n} r_{n}}\right\|}{q_{n} p_{n} q_{n} r_{n}} \geq \frac{\frac{m}{2} \frac{1}{4^{n}}}{\left(\frac{1}{2^{n}} 2 M\right)^{2}}=\frac{m}{8 M}>0
$$

The angle $\angle\left(\overrightarrow{q_{n} p_{n}}, \overrightarrow{q_{n} r_{n}}\right)$ is then lower bounded by a constant independant on n. The same result holds with the other angles of T_{n}, which proves assumption e).
We now denote by $N_{q_{n}}^{T_{n}}$ a unitary normal of the triangle $p_{n} q_{n} r_{n}$ and $N_{i, j}^{S}$ the normal of S at $f\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)$. By using Equation (33) and Lemma 2 , we have:

$$
\begin{aligned}
2 \sin \frac{\angle\left(N_{q_{n}}^{T_{n}}, N_{i, j}^{S}\right)}{2} & \left.\leq \frac{\left\|4^{n} \overrightarrow{q_{n} r_{n}} \wedge \overrightarrow{q_{n} \overrightarrow{p_{n}}}-\frac{\partial f}{\partial u} \wedge \frac{\partial f}{\partial u}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right\|}{\min \left(4^{n} \| \overrightarrow{q_{n} r_{n}}\right.} \wedge \overrightarrow{q_{n} \overrightarrow{p_{n}}}\|,\| \frac{\partial f}{\partial u}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right) \|\right) \\
& \leq \frac{\frac{K}{2^{n}}}{\min \left(\left(\frac{m}{2}\right)^{2} \sin \theta_{m i n}, m\right)} .
\end{aligned}
$$

Let now $m_{n} \in \Delta_{n}$. Then we need to bound the angle $\angle\left(N_{q_{n}}^{T_{n}}, N_{\xi\left(m_{n}\right)}^{S}\right)$. There exists \tilde{K} such that

$$
\begin{aligned}
&\left\|\xi\left(m_{n}\right)-f\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right\| \\
& \leq\left\|\xi\left(m_{n}\right)-m_{n}\right\|+\left\|m_{n}-P_{n}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right\|+\left\|P_{n}\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)-f\left(\frac{i}{2^{n}}, \frac{j}{2^{n}}\right)\right\| \\
& \leq \frac{\tilde{K}}{2^{n}} .
\end{aligned}
$$

Then, by using Proposition 6, we have:

$$
\left\|N_{\xi\left(m_{n}\right)}^{S}-N_{i, j}^{S}\right\| \leq \rho \frac{1}{1-\frac{\tilde{K}}{2^{n}}} \frac{\tilde{K}}{2^{n}}
$$

which implies that there exists k such that:

$$
\angle\left(N_{q_{n}}^{T_{n}}, N_{\xi\left(m_{n}\right)}^{S}\right) \leq \angle\left(N_{q_{n}}^{T_{n}}, N_{i, j}^{S}\right)+\angle\left(N_{\xi\left(m_{n}\right)}^{S}, N_{i, j}^{S}\right) \leq \frac{k}{2^{n}}
$$

This result holds for all the triangles of T_{n}. Assumption c) is then proved.
We now only need to prove that $\xi\left(C_{n}\right)$ is interior to S for n large enough: the curve C is interior to S. The compacity of S and C implies that the distance from C to the boundary of S is more than $\eta>0$. The curve $\xi\left(C_{n}\right)$ clearly tends to C. That implies that for n large enough $\xi\left(C_{n}\right)$ is an interior curve.

7 Acknowledgements

We acknowledge Cédric Gérot for his advises concerning subdivision surfaces.

8 Conclusion and future works

The main result of this work gives sufficient conditions for a sequence of geodesics on PL-surfaces to converge toward a geodesic on a smooth
limit surface. We believe this is a significant step toward an effective notion of geodesic: indeed, the usual definition of geodesic is not effective because it relies on the notions of smooth curves and surfaces and on the pointwise curvature which can not be exactly represented on computers. Our main theorem states that the usual notion of geodesic coincides with the limit of a sequence of PL-curves that can be represented (at least if one restricts ourselves to PL-surfaces with rational vertices coordinates). Therefore, by using our result, a realistic algorithm can output a sequence of curves whose limit is a geodesic of a smooth surface. Notice that, given a smooth surface with bounded curvature, there exists a sequence of PL-surfaces converging to it (and that matches the conditions of our theorem). However, in order to completely get the effective notion of geodesic, one still has to quantify the rate of convergence of this sequence of curves.

We also believe that our result could be improved by relaxing the condition on the edge lengths: indeed, in the counter-example the lengths decrease with the order $\frac{1}{4^{n}}$ with respect to a decrease rate of $\frac{1}{2^{n}}$ of the angular convergence. We believe that it is possible to improve the theorem between the $\frac{K}{2^{n}}$ condition of the theorem and the $\frac{1}{4^{n}}$ of the counter-example.

Another possible improvement of the result is to suppose that the limit surface is of class $\mathcal{C}^{1,1}$ (instead of \mathcal{C}^{2}). Notice that such a generalisation would be very usefull for some subdivision surfaces with extraordinary points. Indeed, at extraordinary points, the limit surface of some subdivision surfaces is only of class $\mathcal{C}^{1,1}$. We proved (for example for the Catmull-Clark scheme) that if the limit curve of a sequence of geodesics does not contain extraordinary points, then it is a geodesic. We believe that the result still holds if the limit curve contains extraordinary points.

References

[1] F. Blais and F. Chazal, Modélisation de déviateurs CRT : empilement du fil et tassage, research report for Thomson-Multimdia, 46 pages, ref. 102.02.CC-YKE, 01/07/02.
[2] D. Bouche and F. Molinet, Méthodes asymptotiques en électromagnétisme (French) Mathématiques \& Applications (Berlin), 16. Springer-Verlag, Paris, 1994. xviii+416 pp.
[3] E. Catmull and J. Clark, Recursively generated B-spline surfaces on arbitrary topological surfaces, Computer-Aided Design 10(6):350-355, November 1978.
[4] F.H. Clarke, Optimization and NonSmooth Analysis, WileyInterscience, New-York, 1983.
[5] R. Dessarce, Calculs par lancer de rayons, PhD thesis, université Joseph Fourier, 1996.
[6] J. Dieudonné, Éléments d'analyse. Tome I: Fondements de l'analyse moderne(French). Cahiers Scientifiques, Fasc. XXVIII Gauthier-Villars, Éditeur, Paris 1968 xxi +390 pp.
[7] M. P. Do Carmo, Differential geometry of curves and surfaces (Translated from the Portuguese, Prentice-Hall Inc., Englewood Cliffs, N.J., 1976).
[8] N. Dyn, Subdivision schemes in CAGD, in: Advances in Numerical Analysis, Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions ed. W. A. Light, Oxford University Press, 1992, pp. 36-104.
[9] N. Dyn and D. Levin, Subdivision schemes in geometric modelling. Acta Numerica, 11:73-144, 2002.
[10] G. Farin, Curves and surfaces for computer aided geometric design, a practical guide, Academic Press, Boston,London, Sydney (1988).
[11] H. Federer, Curvature measures, Trans. Amer. Math. Soc 93 (1959) 418-491.
[12] K. Hildebrandt, K. Polthier, M. Wardetzky, On the Convergence of Metric and Geometric Properties of Polyedral Surfaces. To appear in Geometria Dedicata, 2007.
[13] R. Kimmel, A. Amir and A.M. Bruckstein, Finding shortest paths on surfaces, in Curves and Surfaces in Geometric Design, eds P.J. laurent, A. LeMéhauté and L.L. Schumaker (A.K. Peters, Wellesley, MA, 1994), pp 259-268.
[14] R. Kimmel and J. Sethian, Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci 95 (15), 8431-8435.
[15] T. Maekawa, Computation of shortest paths on free-form parametric surfaces, J. Mechanical Design 118 (1996) 499-508.
[16] F. Memoli, G. Sapiro, Distance functions and geodesics on submanifolds of \mathbb{R}^{d} and point clouds. SIAM J. APPL. MATH. Vol 65, No 4, pp 1227-1260.
[17] A. Mourad, Description topologique de l'architecture fibreuse et modélisation mécanique du myocarde. PhD thesis, Institut National Polytechnique de Grenoble, 2003.
[18] J.-M. Morvan and B. Thibert, Unfolding Of Surfaces. Discrete and Computational Geometry, vol $36 / 3 \mathrm{pp} 393-418,2006$.
[19] G. Peyré and L. Cohen, Geodesic Computations for Fast and Accurate Suface Remeshing and Parametrization. Progess in Nonlinear Differential Equations and Their Applications, Vol 63, 157171.
[20] V. Pham-Trong, L. Biard and N. Szafran, Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes. Numer. Algorithms, 26 (4), 305315, 2001.
[21] D.D. Streeter, Jr Gross morphology and fiber geometry of the heart. In: Berne R.M., Sperelakis N., eds. Handbook of physiology section 2. The Heart (American Physiology Society). Baltimore: Williams and Wilkins, 1979:61-112.
[22] J. Warren and H. Weimer, Subdivision Methods for Geometric Design: A constructive Approach.

[^0]: *Dassault Systemes, Aix-en-Provence, and Lab. Jean Kuntzmann, Grenoble, France.
 ${ }^{\dagger}$ Laboratoire Jean Kuntzmann, Grenoble, France.

