
HAL Id: hal-00160807
https://hal.science/hal-00160807

Submitted on 8 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Formal Verification of Process Model’s
Properties - SimplePDL and TOCL Case Study

Benoit Combemale, Pierre-Loïc Garoche, Xavier Crégut, Xavier Thirioux,
François Vernadat

To cite this version:
Benoit Combemale, Pierre-Loïc Garoche, Xavier Crégut, Xavier Thirioux, François Vernadat. To-
wards a Formal Verification of Process Model’s Properties - SimplePDL and TOCL Case Study. 9th
International Conference on Enterprise Information Systems, Jun 2007, Funchal, Madeira, Portugal.
pp.80-89. �hal-00160807�

https://hal.science/hal-00160807
https://hal.archives-ouvertes.fr

Towards a Formal Verification of Process Model’s Properties
SimplePDL and TOCL Case Study

Benoı̂t Combemale, Pierre-Loı̈c Garoche, Xavier Crégut, Xavier Thirioux
Institut de Recherche en Informatique de Toulouse (CNRS UMR 5505), Toulouse, France

{ first name . last name @ enseeiht.fr }

Francois Vernadat
Laboratoire d’Analyse et d’Architecture des Systemes (CNRS), Toulouse, France

{ last name @ laas.fr }

Keywords: Metamodelling, Properties Validation, Verification, Temporal OCL, Process Model, Petri Nets, LTL, Models

Semantics, Model Transformation

Abstract: More and more, models, through Domain Specific Languages (DSL), tend to be the solution to define complex

systems. Expressing properties specific to these metamodels and checking them appear as an urgent need.

Until now, the only complete industrial solutions that are available consider structural properties such as the

ones that could be expressed in OCL. There are although some attempts on behavioural properties for DSL.

This paper addresses a method to specify and then check temporal properties over models. The case study is

SIMPLEPDL, a process metamodel. We propose a way to use a temporal extension of OCL, TOCL, to express

properties. We specify a models transformation to Petri Nets and LTL formulae for both the process model

and its associated temporal properties. We check these properties using a model checker and enrich the model

with the analysis results. This work is a first step towards a generic framework to specify and effectively check

temporal properties over arbitrary models.

1 Introduction

Domain specific approaches tend to be the next

approach for specifying complex systems, giving the

appropriate abstraction. They can be easily built by

domain experts and can then be integrated in generic

toolkits and frameworks. Nowadays, there exists

a bunch of environments allowing to define DSL

(EMF1, GME2 ...) mainly focusing on abstract and

concrete syntaxes.

Once a metamodel specific to a particular domain

has been defined, one wants to express properties that

have to be verified for models of this DSL. Such ex-

tensions are usually expressed in OCL and describe

structural properties of the model. Initially OCL con-

straints were applied to UML models. Therefore

many works and tools have been designed in order

to verify these constraints. Tools developed for UML

have been adapted to DSL.

However, for behavioural properties, there is a

1http://www.eclipse.org/emf/
2http://www.isis.vanderbilt.edu/projects/

gme/

lack of effective works that define all the steps from

the property specification to its effective verification.

Numerous current projects, such as Topcased3, con-

sider these problematics as a main topic.

The paper introduces a property-driven approach

for specifying and checking temporal properties. The

case study is process engineering. Our approach can

be described as simple steps. We first characterise

the properties. Then process states must be identi-

fied. The DSL metamodel is then extended to repre-

sent these states. We adapt an OCL temporal exten-

sion, formalized using a LTL semantics (Chaki et al.,

2004), to represent our temporal properties. The prop-

erties are then checked in another formalism: Petri

nets. A model transformation to Petri nets is given

and allows to apply model checking on an observa-

tional abstraction of the trace semantics of the given

model with respect to the properties. Finally the re-

sult of the analysis is used to enrich the model with

properties information.

3Toolkit In OPen source for Critical Applications and
SystEms Development, http://www.topcased.org

This paper gives the following contributions:

• we propose a property-driven approach to identify

dynamic states of process models;

• we introduce a temporal extension of OCL based

on process states;

• we translate temporal constraints into LTL con-

straints on the Petri nets;

• we propose an observational trace semantics for

SIMPLEPDL;

• we define SIMPLEPDL denotational semantics

though a mapping to Petri nets;

• we define a front end for the Tina model checker.

This paper is organised as follows: the second

section introduces our DSL, a process metamodel, as

well as the natural expression of the user needs for

models validation. The third section develops our

proposition on our case study. The fourth section con-

siders related works then the last section concludes.

2 Case Study: Process Model

Validation

Our contribution is introduced through a mod-

elling language example on which we would like to

express a set of properties that have to be verified on

all possible models. Our DSL is a simple process de-

scription language: SIMPLEPDL.

We first introduce the domain concepts of SIM-

PLEPDL and then the kind of properties we want to

check on models. The properties we are interested in

are properties specific to our DSL that must be satis-

fied for every model of our metamodel. In fact, our

approach of verification is driven by those properties.

Properties allows to caracterise SIMPLEPDL models

states and then refine the metamodel to capture them.

2.1 SIMPLEPDL

SIMPLEPDL is an experimental language for speci-

fying processes. The SPEM standard (Software Pro-

cess Engineering Metamodel) (omg, 2005) proposed

by the OMG inspires our work4, but we also take

ideas from the UMA metamodel (Unified Method Ar-

chitecture) used in the EPF Eclipse plug-in5 (Eclipse

Process Framework), dedicated to process modelling.

It is simplified to keep the presentation simple.

4We propose an analysis of the SPEM 1.1 standard
in (Combemale et al., 2006a)

5http://www.eclipse.org/epf/

The SIMPLEPDL metamodel is given in Figure 1.

It defines the process concept (Process) composed of

a set of work definitions (WorkDefinition) represent-

ing the activities to be performed during the devel-

opment. One workdefinition may depend upon an-

other (WorkSequence). In such a case, an ordering

constraint (linkType) on the second workdefinition is

specified, using the enumeration WorkSequenceType.

For example, two workdefinitions WD1 and WD2

linked by a precedence relation of kind finishToStart

specify that WD2 will be able to start only when WD1

is finished (and respectively for startToStart, start-

ToFinish and finishToFinish). SIMPLEPDL does also

allow to explicitly represent resources (Resource) that

are needed in order to perform one workdefinition

(designer, computer, server, . . .) and also time con-

straints (min time and max time on WorkDefinition

and Process) to specify the minimum (resp. maxi-

mum) time allowed to perform the workdefinition or

the whole process.

One can remark that, for the sake of brevity, some

concepts are not presented here such as products

(WorkProduct) that workdefinitions handle, or roles

(Role) that can be assimilated to resources.

2.2 Properties

We now present the different kinds of properties spe-

cific to the proposed metamodel: structural ones, tem-

poral ones and quantitative ones. We will particularly

develop the second kind as a core concept for the rest

of the paper.

Structural properties: The expressivity of meta-

modelling languages (i.e. meta-metamodels) does not

allow to formally capture the whole set of the lan-

guage properties, i.e. the axiomatic semantics. They

mainly capture the cardinalities constraints

In programming languages, the axiomatic seman-

tics is usually based on mathematical logics and ex-

presses a proof method for some construction prop-

erties of a language (Cousot, 1990). It can be very

general, such as Hoare triples or restricted to ensure

construction consistency (e.g. typing).

In a modelling language, this second kind of use

is expressed using well formedness rules at the meta-

model level. Such rules have to be realised by all

models that are conform to this metamodel. One can

check these rules by static analysis on models.

In order to express the rules, the OMG advocates

the use of OCL (omg, 2003; Warmer and Kleppe,

2003). Applied at the metamodel level, OCL can add

properties, mostly structural, that could not have been

captured by the metamodel definition. It is a mean to

Figure 1: SIMPLEPDL metamodel

precise the metamodel semantics by limiting possible

conforming models.

There is an example of such a constraint:

One Worksequence could not have the same

Workdefinition as source and target.

That can be formalised as

context WorkSequence inv :

self.predecessor <> self.successor

In order to check that a particular model satis-

fies these constraints, one can use an OCL checker

such as USE (Richters and Gogolla, 2000), OSLO6,

or EMFT7.

Temporal properties: Many properties have to be

satisfied in every model execution. The expert of the

domain will formalise them when defining the meta-

model. In our process metamodel, any workdefinition

can be started and then be finished. One can then ask,

and therefore check, whether a given process model

effectively terminates, i.e. that every workdefinition

in it finishes. Taking into account time and resources,

some new properties appear that are independent of

any model. For a given set of resources, described in

the model, does the process terminate ? Is it possible

to satisfy every real time constraints expressed on the

workdefinition (attributes min time and max time) ?

We could also express temporal properties depending

on the capability for a workdefinition to suspend its

work and free its resources to share them temporarily

with other workdefinitions.

6Open Source Library for OCL, http:

//oslo-project.berlios.de.
7The Eclipse Modeling Framework Technology project,

http://www.eclipse.org/emft/

Quantitative properties: The aim of such proper-

ties is to describe or compute critical paths of exe-

cutions in terms of minimal or maximal resource con-

sumption. WCET8 or schedulability are typical exam-

ples of quantitative properties. For instance, time and

memory are standard resources the usage of which

one would wish to measure. In this respect, a con-

sumption (and production) model has first to be set.

In simple situations, a discrete and finite model may

fit the needs, as it is the case when we focus on a

single kind of resource, with a fixed and finite num-

ber of instances. Memory requirements alone usually

fall in this simple class and could be checked with

off-the-shelf model-checking techniques for discrete

models, nevertheless with possible minor adaptations.

Yet, for more involved models and resources, in order

to precisely represent what is happening, we may find

it mandatory to write down quite general arithmetical

constraints or to handle continuous quantities (as in

real-time systems specifications for instance). As dis-

cussions about relevance of such models and their ver-

ification issues are quite complex and out of the scope

of this present work, we choose for the time being to

simply rule out quantitative properties and postpone

their introduction for future works. Thus, we stick to

the presentation of the overall methodology without

delving upon details.

2.3 Dynamic Informations &

Property-Driven Approach

Expressing temporal properties that have to be

checked on each model execution implies the exis-

tence of an operational semantics that is not expressed

8Worst Case Execution Time

within a metamodelling language such as the MOF.

In our case, the execution of a process model con-

sists in performing the different work definitions of

the process. When executing a model, every work

definition must be started and the overall process must

finally reach a state where all of them are in the state

finished.

The real semantics can be arbitrary complex, and

sometimes non computer-representable in case of

complex continuous systems.

Our previous works have investigated the use of

operational semantics (Combemale et al., 2006b) and

translational semantics (Combemale et al., 2007). In

this paper we present a generic approach to define the

abstract dynamic semantics, a semantics of observ-

able events, built upon the properties expressed at the

metamodel level.

The temporal properties expressed for every

model conform to the metamodel are built over a

notion of states. The formal semantics associated

to the system can be seen as the set of maximal fi-

nite traces which elements are model states. If the

metamodel has a well defined operational semantics,

it can be easily expressed as a modification of in-

stances’ attributes or a modification of the topology

(dynamically creating or killing instances). On the

contrary, if the associated semantics is not formally

defined, the states characterised by properties allow to

define an observable operational semantics. Follow-

ing this idea, if state properties rely on notions that

cannot be directly expressed in the model (classical

OCL queries), then the metamodel must be enriched

to express these notions. The dynamic operational se-

mantics, i.e. the Kripke structure that allows to build

trace semantics, must then be approximated by defin-

ing transition between characterised states. It is the

work of the domain expert to describe them.

This approach has mainly three advantages:

• it gives a method to define a formal semantics for

metamodel that could not always initially describe

it;

• this approach is incremental: the domain expert

can specify a property, that characterises new

states. Then he will extend the metamodel to rep-

resent this new dynamic information. The expert

can then introduce another property and extend

again the metamodel.

• it allows to easily define an “observable” approxi-

mation of the trace semantics. One such approach

allows to check the properties defined, because the

semantics were defined depending on the needs

expressed by these properties. It can also help in

defining a minimal abstract semantics that gives

access to formal tools allowing to check proper-

ties on a reasonably-sized state space.

3 An Approach to Validation

through Petri Nets and LTL

In this section, we will follow all the steps that

allow us to express temporal constraints on our SIM-

PLEPDL metamodel.

3.1 Characterising Properties

This first step must be realised by the expert. As

expert of processes, we say that every SIMPLEPDL

model must verify the following properties. We sep-

arate them in two classes: universal properties that

have to be satisfied by every execution and existential

properties that must be true in at least one execution.

Our universal properties are:

• every workdefinition must start,

• all started workdefinitions must finish,

• once a workdefinition is finished, it has to stay in

this state,

• a workdefinition is able to start depending on

worksequences constraints. All workdefinitions

that are linked to it using a startToStart workse-

quence are started. Reciprocally all workdefini-

tions that are linked to it using a finishedToStart

worksequence are finished.

The same kind of properties apply for finishing

each workdefinition.

Our existential properties are:

• every workdefinition must take more than

min time and less than max time to be performed,

• the overall process is able to finish, i.e. when all

workdefinitions are finished in a good state (i.e.

between min time and max time).

3.2 Characterising States

The second step consists in characterising different

states for the metamodel elements from the proper-

ties. From the aforementioned temporal properties,

we can identify two orthogonal ideas for the workdef-

inition element. First, a workdefinition can be not

started, started and finally finished. Secondly, there is

a notion of time and clock associated to each workdef-

inition; but this time is only relevant for transition

enabling conditions (in our case transitions that start

and finish a workdefinition) and is not explicit in state

properties. Thus it can be represented into the finite

set of states { tooEarly, ok , tooLate }. This second

orthogonal idea is only relevant when the progress is

finished. Therefore we add a fourth state: notFin-

ished.

3.3 Extending the Metamodel to

Represent Dynamic Information

We now have to express these states by extending

the WorkDefinition elements in order to introduce at-

tributes that reflect dynamic information, i.e. the state

of the current workdefinition. We choose to add three

variables: state ∈ {notStarted, started, f inished},

time state ∈ {notFinished, tooEarly, ok, tooLate}
and clock ∈ R

+.

An observational abstraction of the operational se-

mantics of our processes with respect to our proper-

ties can now be defined.

The expert has again to formalise the initial states

and the transition relation. In our case, it is quite

natural: the initial states are the singleton {w 7→
(notStarted,notFinished)| w ∈ W D}. We define the

transition relation for one workdefinition in W D in

Figure 2.

3.4 Expressing Temporal Properties :

Temporal OCL

A few temporal extensions of OCL have already been

proposed in a UML context (see related works sec-

tion). We have chosen the proposal of (Ziemann and

Gogolla, 2002) for two main reasons:

1. The semantics of the temporal expressions is for-

mally defined on a trace semantics. Such traces

are finite sequences of system states, describing a

snapshot of the running system. Even if this work

was initially defined on UML models, the trace se-

mantics can be easily generalised to arbitrary state

sequences while keeping the original semantics of

temporal operators.

2. The syntax of this OCL extension is quite natural.

It introduces usual future-oriented temporal oper-

ators such as next, existsNext, always, sometimes

as well as their past-oriented duals. We will only

use the future-oriented ones because we intend to

effectively check properties using the Tina model

checker (Berthomieu et al., 2004), which does not

support past-oriented operators.

Let us go back to our process example to intro-

duce our generalisation. A snapshot of our process

has to describe precisely the state of each workdefini-

tion. We take as given a finite set S of such states. Let

W D be the set of workdefinitions of the model. Let

Σ be the set of the process state: Σ = W D 7→ S .

A trace σ̂ of the process is a maximal finite se-

quence of process states 〈σ0, . . . ,σn〉,σi ∈ Σ, where

σ0 denotes the initial process state. Semantically,

we have two kinds of transitions. First, continuous

time-passing transitions that are here unobservable

and consist in incrementing all workdefinition clocks

by a quantity dt simultaneously. Second, event-based

transitions that change the states of workdefinitions as

defined by the expert above. Two consecutive events

in a sequence are related through a combination of the

time-passing transition followed by an event-based

transition.

In order to ease the definition of our properties we

introduce the new operator precedes. Such an opera-

tor can be described using the previous ones:

e1 precedes e2 = always!(e2) until e1

Expressions of our TOCL extension are now OCL

expressions over the model elements using these tem-

poral operators. We also allow these expressions to be

built over state names defined in the aforementioned

set S . The universal temporal properties can now be

expressed as:

always (notStarted =⇒ sometime started)
always (started =⇒ sometime finished)
finished =⇒ always finished

always ((predss.state = started &&

pred f .state = finished &&

notStarted) =⇒ sometime started)

The existential ones have to be rewritten in order

to be checked: we will verify the negation of each for-

mula. If the analysis gives a correct answer, there is

no trace satisfying the property. On the contrary, if

the analysis gives a negative answer with a counter-

example, the existential property is verified and the

counter-example is one of the traces satisfying the

temporal property. We only give here the first exis-

tential property.

always (not wd.time state = ok)
≡ always (wd.time state = tooEarly

||wd.time state = tooLate)

We have given the textual concrete syntax and the as-

sociated semantics of our extension of TOCL. In or-

der to integrate it into a metamodelling approach (i.e.

defining properties at the metamodel level), it is nec-

essary to define, at the MOF level, the OCL abstract

syntax and its temporal extension. To give the abil-

ity for any DSL to use TOCL, we start from the OCL

metamodel defined in (Richters and Gogolla, 1999)

and promote it at the MOF level (omg, 2006) (fig.

Let w be the considered Work Definition.

∀ws = w.predecessor,(ws.linkType = startToStart&&ws.linkToPredecessor.state = started)
||(ws.linkType = f inishedToStart&&ws.linkToPredecessor.state = f inished)

notStarted,notFinished,clock → started,notFinished,0

∀ws = w.predecessor,(ws.linkType = startToFinished&&ws.linkToPredecessor.state = started)
||(ws.linkType = f inishedToFinished&&ws.linkToPredecessor.state = f inished)

started,notFinished,clock < min time → f inished, tooEarly,clock
started,notFinished,clock ∈ [min time,max time] → f inished,ok,clock
started,notFinished,clock > max time → f inished, tooLate,clock

Figure 2: Event-based Transition Relation for WorkDefinitions

MOF::Core::Basic

Type

Property

constrainedElement

1..*

properties

0..*

OCL::Expression

OclExpression
body

0..1

TOCL

ToclOperator

arguments

1..2

{ordered}

Figure 3: Temporal OCL integration to MOF

3). We also add the set of temporal operators defined

in (Ziemann and Gogolla, 2002) and in the aforemen-

tioned extension (fig. 3).

We have now introduced the concrete and abstract

syntax and semantics of our temporal OCL extension.

With these temporal constraints we are now able to

express complex properties on the behaviour of the

model to be checked. One immediate application of

these constraints is the transformation of every invari-

ant as defined in OCL as the first kind of properties.

We now consider executing models and each invariant

has to be checked in every process state of all possible

traces. Therefore, we rename invariant expressions e

to always e.

The next part introduces how these model states

can be built using OCL over model attributes.

3.5 Denotational Semantics to Petri Net

and LTL

In this study, we choose to use the technical space

of Petri nets as the target representation for formally

expressing our process models. We also choose to ex-

press our temporal formulae as LTL formaluae (Lin-

ear Temporal Logic) over the Petri net associated to

a process model. Then we manipulate Petri nets and

LTL formulae within the Tina9 toolkit.

TINA (TIme Petri Net Analyser) is a software en-

vironment to edit and analyse Petri nets and timed

9http://www.laas.fr/tina/

nets (Berthomieu et al., 2004). The different tools

constituting the environment can be used alone or to-

gether. Some of these tools will be used in this study:

• nd (NetDraw) : nd is an editing tool for automatas

and timed networks, under a textual or graphi-

cal form. It integrates a “step by step” simulator

(graphical or textual) for the timed networks and

allows to call other tools without leaving the edi-

tor.

• Tina : this tool builds the state space of a Petri

net, timed or not. Tina can perform classical con-

structs (marking graphs, covering trees) and also

allows abstract state space construction, based on

partial order techniques. Tina proposes, for timed

networks, all quotient graph constructions dis-

cussed in (Berthomieu and Vernadat, 2006).

• selt: usually, it is necessary to check more specific

properties than the ones dedicated to general ac-

cessibility alone, such as boundedness, deadlocks,

pseudo liveness and liveness already checked by

tina. The selt tool is a model-checker for for-

mulae of an extension of temporal logic seltl

(State/Event LT L) of (Chaki et al., 2004). In case

of non satisfiability, selt is able to build a read-

able counter-example sequence or in a more com-

pressed form usable by the TINA simulator, in or-

der to execute it step by step.

3.5.1 Denotational Semantics of SIMPLEPDL

PetriNet In this case study, we use timed Petri nets

as a paradigm to express the semantics of our pro-

cesses, models of SIMPLEPDL. The semantics is now

a denotational one defined as a mapping from SIM-

PLEPDL to Petri nets. The Petri nets metamodel is

given in Figure 4. A Petri net (PetriNet) is com-

posed of nodes (Node) that denote places (Place) or

transitions (Transition). Nodes are linked together by

arcs (Arc). Arcs can be normal ones or read-arcs (Ar-

cKind). The attribute tokensNb specifies the number

of tokens consumed in the source place or produced

Figure 4: Petri Nets Metamodel

in the target one (in case of a read-arc, it is only used

to check whether the source place contains at least the

specified number of tokens). Petri nets markings are

defined by the tokensNb attributes of places. Finally,

a time interval can be expressed on transitions.

Mapping The translation schema that trans-

forms a process model into a Petri nets model

(SIMPLEPDL2PETRINET) is given in Figure 5. Each

workdefinition is translated into four places charac-

terising its state (NotStarted, Started, InProgress or

Finished). A WorkSequence becomes a read-arc from

one place of the source workdefinition to a transition

of the target workdefinition. The state Started records

that the workdefinition has been started.

We also add five places that will define a local

clock. The clock will be in state TooEarly when the

workdefinition ends before min time and in the state

TooLate when the workdefinition ends after max time.

Our transformation has been written in ATL, AT-

LAS Transformation Language (Jouault and Kurtev,

2005). A first rule expresses one workdefinition in

terms of places and transitions. A second one trans-

lates a work sequence into a read-arc between the ad-

equate place of the source workdefinition and the ap-

propriate transition of the target workdefinition. Fi-

nally a third rule considers the whole process and

builds the associated Petri net.

In order to manipulate the obtained Petri net in-

side a dedicated tool such as Tina, we have com-

posed the preceding transformation with a transfor-

mation PETRINET2TINA that translates a PetriNet

model into the textual syntax of the Tina tool.

Traceability The set of translation choices (i.e. the

mapping) defined in the SIMPLEPDL2PETRINET

transformation is captured in the ATL source code.

The benefit of this language is that it is itself defined

as a metamodel. It allows to obtain a model (conform

to the ATL metamodel) corresponding to the trans-

formation. This transformation model can be reused

as an entry model for another transformation (Higher

Order Transformation). We can remark that it is pos-

sible to enrich traceability information as proposed

by (Jouault, 2005).

3.5.2 Denotational Semantics of TOCL

The transformation model defined during the trans-

lation to Petri nets is used to instantiate a generic

transformation that defines LTL properties from the

initial metamodel properties, instantiated relatively to

the initial process model.

Our experiments show a lack in current MDE

technology that does not allow to parameterise a

model transformation. The use of a programming lan-

guage such as Java, as well as a specific library such

as EMF, is necessary to handle such a transformation.

3.6 Models Validation and Feedback

Model checking results have to be interpreted at the

SIMPLEPDL model level in order to provide a com-

plete front-end to the end-user. Properties verified in

the Petri net correspond to a double instantiation of

the properties expressed at the metamodel level. The

interpretation of the results must be the conjunction

of the results obtained for the different instantiations

of a metamodel property.

The feedback of properties results (catching in a

first time the truth value of the property) in the model,

can be automatically computed using the transfor-

mation model defined during the translation SIM-

PLEPDL2PETRINET. This translation captures the

set of choices that have been done during the transfor-

mation (i.e. the mapping table). This technique uses a

Higher Order Transformation that takes a transforma-

tion model and allows to trace back the model checker

interpretation into the DSL model.

In a first time, we only handle the boolean value

returned by the Tina analyser. When the LTL proper-

ties associated to one SIMPLEPDL properties are sat-

isfied, the property is satisfied. In the other case, the

transformation model allows to identify in the model

the faulty element and to update its dynamic informa-

tion in order to visualise the state in which the prop-

erty failed. We have to take care of the kind (universal

or existential) of temporal properties expressed. In

case of an existential one, the negation of the result

has to be returned.

The next step consists in handling counter-

examples. Such counter-examples generated by the

model checker could be expressed on the model and

be then injected in the model animator (in our case,

 <<WorkDefinition>>

Conception

temps_min = 10
temps_max = 16

<<Ressource>>

Machine

nbOccurence = 4

2

 <<WorkSequence>>

ws

wd1_started wd2_start

ws.linkType = startToStart
wd1_finished wd2_start

ws.linkType = finishToStart

wd1_started wd2_finish

ws.linkType = startToFinish
wd1_finished wd2_finish

ws.linkType = finishToFinish

Figure 5: Translation schema from SIMPLEPDL to PetriNet

the one defined on SIMPLEPDL) defined in the Top-

cased project.

4 Related Works

4.1 Models Semantics

The formal semantics definition of modelling lan-

guages is an active research field in the MDE commu-

nity. Beside our previous works presented in (Combe-

male et al., 2006b) and (Combemale et al., 2007), we

have identified other projects that consider this impor-

tant subject.

The ISIS laboratory of the Vanderbilt University

focuses on MDE for many years. They proposed

the MIC approach (Model-Integrated Computing), in

which models are at the heart of the integrated soft-

ware development. Recently, they propose, in (Chen

et al., 2005), a semantics anchored to a model of for-

mal semantics built upon ASM (Abstract State Ma-

chine) (Gurevich, 2001), using the transformation

language GReAT (Graph Rewriting And Transforma-

tion language) (Agrawal et al., 2005).

Xactium10 is a company created in 2003. Its ob-

jectives are to provide practical solutions for the de-

velopment of systems based on MDE principles. It

developed the XMF-Mosaic tool (Clark et al., 2004)

that allows to define a DSL, to simulate and to vali-

date models using a extension of the OCL language

named xOCL (eXecutable OCL). XMF-Mosaic also

provides means to transform models and to define

translations to other technical spaces.

These works are very near to the objectives of the

TOPCASED environment, i.e. to propose a modular

modelling environment based on a modular genera-

tive approach (like GME, XMF), as well as a formal

semantics that provides simulation and model valida-

tion tools. Our works based on Kermeta follow an ap-

proach similar to the ones of xOCL inside the XMF-

Mosaic tool.

The semantics anchoring proposed by the ISIS

laboratory is similar to the denotational semantics

such as the mapping to Petri nets we propose. The

main difference is that we want to give more flexibil-

ity in the choice of the semantics model and to allow

easier feedbacks from simulations or verifications in-

side a particular model. However, they do not propose

10http://www.xactium.com

the use of models rewriting rules to define the opera-

tional semantics.

4.2 Models verification

Verification of UML models In order to specify

structural properties on UML models, OCL was in-

troduced. It is therefore accepted as the standard lan-

guage to express structural properties on UML mod-

els. There also exists a bunch of tools to check OCL

properties for any model.

As for temporal properties, some recent works in-

tend to extend the usual OCL syntax and semantics

to give the capability to express temporal constraints.

All these works address OCL extensions in an UML

context. They do not address how the transition sys-

tem is derived from the model.

The aforementioned work of (Ziemann and

Gogolla, 2002) proposed to extend OCL with usual

temporal operators and defined their semantics on the

trace semantics of the UML model. This work is a

first step towards the simulation of temporal proper-

ties over traces using the USE tool.

Some works, such as (Flake, 2003) and (Flake

and Mueller, 2003), are focused on the expression of

real time constraints while keeping the original OCL

syntax. They relied on StateChart states to express

the dynamic constraints of the system. Then, they

mapped their constraints into Clocked-CTL.

(Cengarle and Knapp, 2002) proposed to express

real time constraints using two new classes Time and

Events. A new OCL template is introduced and the

usual ones (pre-post, inv and action) are translated in

it. The semantics is also defined as a trace semantics.

In (Distefano et al., 2000), the authors expressed

non temporal OCL constraints into their object-

oriented version of CTL. They defined formally what

is a state of the UML model. They are able to check

whether a property expressed in OCL can be checked

in every reachable state.

The work of (Bradfield et al., 2002) intro-

duced new OCL templates. They mapped them

into Oµ(OCL)-calculus, an observational µ-calculus,

which expressions are OCL expressions. The seman-

tics of their Oµ(OCL)-calculus is defined over the

states of (Distefano et al., 2000). Using model check-

ing tools, the author intends to check the property on

a CCS term modelling their UML system.

All the previous works only specify the way OCL

must be extended to deal with temporal formulae in

order to verify or simulate them later but do not reach

this last step, at least not in an automatic manner. For

instance, the point of generating the transition system

from the initial UML is not solved.

Verification of DSL models OCL was initially de-

fined on UML but was quickly defined for every meta-

model. It is the main tool to express structural prop-

erties in DSL. Existing OCL checkers are also model

independent.

5 Conclusion & Future Works

The context of this article was to integrate formal

methods for refining DSL semantics. DSL semantics

is usually restricted to structural properties and dy-

namic aspects are often only informally described or

are even implicit. As our aim is to express and vali-

date behavioural and operational properties within a

metamodelling framework, the first step was to in-

troduce and handle an operational semantics, instan-

tiated in this article to our process metamodel SIM-

PLEPDL. This semantics is introduced with respect

to properties of interest, given by an expert of the do-

main. First, a notion of state is introduced, followed

by the definition of transitions and executions. Tem-

poral operators, forming temporal properties, are also

introduced. In order to check these properties, first a

denotational semantics is provided as a mapping from

SIMPLEPDL processes to Petri nets, second a front

end to the Tina model-checker is defined.

Few things still remain to be done. In particular,

the current presentation is focused on SIMPLEPDL,

it still needs to be abstracted away to get a more gen-

eral approach. The formal connection between the

observational operational semantics and the denota-

tional semantics induced by the ATL transformation

have to be validated.

Currently, we are implementing a prototype al-

lowing us to define metaproperties through an Ecore

modelling language extension given by the Eclipse

EMF plugin. The expression of temporal properties

uses an extension of OCL metamodel provided by the

EMFT plugin on which we add the set of temporal

operators described above, in the article. An interface

associated to the TOCL textual concrete syntax will

be integrated using generators such as Sintaks (Muller

et al., 2006) or TCS (Jouault et al., 2006). Our pro-

totype must also integrate the set of ATL transforma-

tions and provide a front end to Petri nets using the

Tina toolkit, through the SIMPLEPDL language. We

still have, in case of a negative answer from the model

checker, for a given property, to retrieve the gener-

ated counter-example. It can then be injected within

both the model animator currently developed with

the TOPCASED project and the SIMPLEPDL model

graphical editor defined with TOPCASED.

REFERENCES

(2003). UML Object Constraint Language (OCL) 2.0 Spec-
ification. Object Management Group, Inc. Final
Adopted Specification.

(2005). Software Process Engineering Metamodel (SPEM)
1.1 Specification. Object Management Group, Inc.
formal/05-01-06.

(2006). Meta Object Facility (MOF) 2.0 Core Specifica-
tion. Object Management Group, Inc. Final Adopted
Specification.

Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F.,
and Vizhanyo, A. (2005). The design of a language
for model transformations. Technical report, Institute
for Software Integrated Systems, Vanderbilt Univer-
sity, Nashville, TN 37235, USA.

Berthomieu, B., Ribet, P.-O., and Vernadat, F. (2004). The
tool TINA – construction of abstract state spaces for
Petri nets and time Petri nets. International Journal of
Production Research, 42(14):2741–2756.

Berthomieu, B. and Vernadat, F. (2006). Réseaux de Petri
temporels : méthodes d’analyse et vérification avec
TINA. Traité IC2.

Bradfield, J. C., Filipe, J. K., and Stevens, P. (2002). En-
riching OCL using observational mu-calculus. In Fun-
damental Approaches to Software Engineering, pages
203–217.

Cengarle, M. V. and Knapp, A. (2002). Towards OCL/RT.
In International Symposium of Formal Methods Eu-
rope on Formal Methods (FME) - Getting IT Right,
pages 390–409, London, UK. Springer-Verlag.

Chaki, S., E, M., Clarke, Ouaknine, J., Sharygina, N., and
Sinha, N. (2004). State/event-based software model
checking. In 4th International Conference on Inte-
grated Formal Methods (IFM), volume 2999 of LNCS,
pages 128–147.

Chen, K., Sztipanovits, J., Abdelwalhed, S., and Jackson, E.
(2005). Semantic anchoring with model transforma-
tions. In Model Driven Architecture - Foundations and
Applications, First European Conference (ECMDA-
FA), volume 3748 of LNCS, pages 115–129.

Clark, T., Evans, A., Sammut, P., and Willans, J. (2004).
Applied metamodelling - a foundation for language
driven development. version 0.1.

Combemale, B., Crégut, X., Berthomieu, B., and Verna-
dat, F. (2007). SimplePDL2Tina : Mise en oeuvre
d’une Validation de Modèles de Processus. In 3ieme
journées sur l’Ingénierie Dirigée par les Modèles
(IDM), Toulouse, France.

Combemale, B., Crégut, X., Ober, I., and Percebois,
C. (2006a). Evaluation du standard SPEM de
représentation des processus. Génie Logiciel, Modèles
et Processus de développement, 77:25–30.

Combemale, B., Rougemaille, S., Crégut, X., Migeon, F.,
Pantel, M., Maurel, C., and Coulette, B. (2006b). To-
wards a rigorous metamodeling. In 2nd International
Workshop on Model-Driven Enterprise Information
Systems (MDEIS), Paphos, Cyprus. INSTICC.

Cousot, P. (1990). Methods and logics for proving pro-
grams. In Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Sematics (B),
pages 841–994.

Distefano, D., Katoen, J.-P., and Rensink, A. (2000). To-
wards model checking OCL. In ECOOP Workshop on
Dening a Precise Semantics for UML.

Flake, S. (2003). Temporal OCL extensions for specifica-
tion of real-time constraints. In Workshop Specifica-
tion and Validation of UML models for Real Time and
Embedded Systems (SVERTS) at UML’03, San Fran-
cisco, CA, USA.

Flake, S. and Mueller, W. (2003). Formal semantics of static
and temporal state-oriented OCL constraints. Journal
on Software and System Modeling (SoSyM), 2(3).

Gurevich, Y. (2001). The abstract state machine paradigm:
What is in and what is out. In Ershov Memorial Con-
ference.

Jouault, F. (2005). Loosely Coupled Traceability for ATL.
In Proceedings of the European Conference on Model
Driven Architecture (ECMDA) workshop on trace-
ability, Nuremberg, Germany.

Jouault, F., Bézivin, J., and Kurtev, I. (2006). TCS: a DSL
for the Specification of Textual Concrete Syntaxes in
Model Engineering. In Proceedings of the fifth inter-
national conference on Generative programming and
Component Engineering (GPCE), Portland, Oregon.

Jouault, F. and Kurtev, I. (2005). Transforming models with
ATL. In Proceedings of the Model Transformations
in Practice Workshop at MoDELS, Montego Bay, Ja-
maica.

Muller, P.-A., Fleurey, F., Fondement, F., michel Hassen-
forder, Schneckenburger, R., Gérard, S., and Jézéquel,
J.-M. (2006). Model-driven analysis and synthesis of
concrete syntax. In 9th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS), volume 4199 of LNCS, Genova, Italy.

Richters, M. and Gogolla, M. (1999). A metamodel for
OCL. In France, R. and Rumpe, B., editors, UML’99
- The Unified Modeling Language. Beyond the Stan-
dard. Second International Conference, Fort Collins.,
volume 1723 of LNCS, pages 156–171, USA.

Richters, M. and Gogolla, M. (2000). Validating UML
models and OCL constraints. In UML 2000 - The
Unified Modeling Language. Advancing the Stan-
dard. Third International Conference, volume 1939 of
LNCS, pages 265–277, York, UK.

Warmer, J. and Kleppe, A. (2003). The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley Longman Publishing Co., Inc.

Ziemann, P. and Gogolla, M. (2002). An extension of OCL
with temporal logic. In Critical Systems Development
with UML – Proceedings of the UML’02 workshop,
volume TUM-I0208, pages 53–62.

