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We consider the Gaussian White Noise Model and we study the estimation of a function f in the uniform norm assuming that f belongs to a Hölder anisotropic class. We give the minimax rate of convergence over this class and we determine the minimax exact constant and an asymptotically exact estimator.

Introduction

Let Y t , t ∈ [0, 1] d , be a random process defined by the stochastic differential equation

dY t = f (t)dt + σ √ n dW t , t ∈ [0, 1] d , (1) 
where f is an unknown function, n > 1, σ > 0 is known and W is a standard Brownian sheet in [0, 1] d . We wish to estimate the function f given a realization y = Y t , t ∈ [0, 1] d . This is known as the Gaussian white noise problem and has been studied in several papers starting with [START_REF] Ibragimov | of Applications of Mathematics[END_REF]. We suppose that f belongs to a d-dimensional anisotropic Hölder class Σ( β, L) for β = (β 1 , . . . , β d ) ∈ (0, 1] d and L = (L 1 , . . . , L d ) such that 0 < L i < ∞. This class is defined by :

Σ( β, L) = f : R d → R : |f (x) -f (y)| ≤ L 1 |x 1 -y 1 | β 1 + • • • + L d |x d -y d | β d , x, y ∈ R d ,
where x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ).

In the following P f is the distribution of y under model ( 1) and E f is the corresponding expectation. We denote by β the real number β = ( d i=1 1/β i ) -1 . Let w(u), u ≥ 0, be a continuous non-decreasing function which admits a polynomial majorant w(u) ≤ W 0 (1 + u γ ) with some finite positive constants W 0 , γ and such that w(0) = 0.

Let f n be an estimator of f , i.e. a random function on [0, 1] d with values in R measurable with respect to Y t , t ∈ [0, 1] d . The quality of f n is characterized by the maximal risk in sup-norm

R n ( f n ) = sup f ∈Σ( β,L) E f w f n -f ∞ ψ n ,
where ψ n = log n n β 2β+1 and g ∞ = sup t∈[0,1] d |g(t)|. The normalizing factor ψ n is used here because it is a minimax rate of convergence. For the one-dimensional case, the fact that ψ n is the minimax rate for the sup-norm has been proved by [START_REF] Ibragimov | of Applications of Mathematics[END_REF]. For the multidimensional case, this fact was shown by [START_REF] Stone | Optimal global rates of convergence for nonparametric regression[END_REF] and [START_REF] Nussbaum | On the nonparametric estimation of regression functions that are smooth in a domain in R k[END_REF] for the isotropic setting (β 1 = • • • = β d ), but it has not been shown for the anisotropic setting considered here. Nevertheless there exist results for estimation in L p norm with p < ∞ on anisotropic Besov classes [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multiindex denoising[END_REF] suggesting similar rates but without a logarithmic factor. The case p = 2 has been treated by several authors [START_REF] Neumann | Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra[END_REF], [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]).

Our result implies in particular that ψ n is the minimax rate of convergence for estimation in sup-norm. But we prove a stronger assertion: we find an estimator f * n and determine the minimax exact constant C(β, L, σ 2 ) such that

C(β, L, σ 2 ) = lim n→∞ inf f n R n ( f n ) = lim n→∞ R n (f * n ), (2) 
where inf f n stands for the infimum over all the estimators. Such an estimator f * n will be called asymptotically exact.

The problem of asymptotically exact constants under the sup-norm was first studied in the one-dimensional case by [START_REF] Korostelev | An asymptotically minimax regression estimator in the uniform norm up to a constant[END_REF] for the regression model with fixed equidistant design. Korostelev found the exact constant and an asymptotically exact estimator for this set-up. [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: solution via optimal recovery[END_REF] extended Korostelev's result to the Gaussian white noise model and Hölder classes with β > 1. However asymptotically exact estimators are not available in the explicit form for β > 1, except for β = 2. [START_REF] Korostelev | The asymptotic minimax constant for sup-norm loss in nonparametric density estimation[END_REF] found the exact constant and asymptotically exact estimator for the density model. [START_REF] Lepski | On problems of adaptive estimation in white Gaussian noise[END_REF] studied the exact constant in the case of adaptation for the white noise model. In [START_REF] Bertin | Minimax exact constant in sup-norm for nonparametric regression with random design[END_REF] was found the exact constant and an asymptotically exact estimator for the regression model with random design.

The estimator f * n defined in Section 2 and which will be shown to satisfy (2) is a kernel estimator. For d = 1, the kernel used in our estimator (and defined in (3)) is the one derived by [START_REF] Korostelev | An asymptotically minimax regression estimator in the uniform norm up to a constant[END_REF] and can be viewed as a solution of an optimal recovery problem. This is explained in [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: solution via optimal recovery[END_REF] and [START_REF] Lepski | Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point[END_REF]. For our set-up, i.e. the Gaussian white noise model and d-dimensional anisotropic Hölder class Σ( β, L) for β = (β 1 , . . . , β d ) ∈ (0, 1] d and L ∈ (0, +∞) d , the choice of optimal parameters of the estimator (i.e. kernel, bandwidth) is also related to a solution of optimal recovery problems. In the same way as in [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: solution via optimal recovery[END_REF], the kernel defined in (3) can be expressed, up to a renormalization on the support, as

K(t) = f β (t) R d f β (s)ds
, where f β is the solution of the optimization problem

max f 2 ≤1 f ∈Σ(β,1) f (0),
where we denote f 2 = R d f 2 (t)dt 1/2 and 1 is the vector (1, . . . , 1) in R d .

The anisotropic class of functions in this paper does not turn into a traditional isotropic Lipschitz class in the case β 1 = . . . = β d . For an isotropic class defined as

f : [0, 1] d → R : |f (x) -f (y)| ≤ L x -y β , x, y ∈ [0, 1] d ,
with β ∈ (0, 1], L > 0 and • the Euclidian norm in R d , radial symmetric 'cone-type' kernels should be optimal. Such kernels of the form K(x) = (1x ) + , for x ∈ R d , are studied in [START_REF] Klemelä | Sharp adaptive estimation of linear functionals[END_REF]. We denote (t) + = max(0, t).

In Section 2, we give an asymptotically exact estimator f * n and the exact constant for the Gaussian white noise model. The proofs are given in Sections 3 and 4.

2 The estimator and main result

Consider the kernel K defined for u = (u 1 , . . . , u d ) ∈ [-1, 1] d by K(u 1 , . . . , u d ) = β + 1 αβ 2 (1 -|u| β ) + , (3) 
where

α = 2 d d i=1 Γ( 1 β i ) Γ( 1 β ) d i=1 β i ,
Γ denotes the gamma function and

|u| β = d i=1 |u i | β i . Lemma 1. The kernel K satisfies [-1,1] d K(u)du = 1 and [-1,1] d K 2 (u)du = 2(β + 1) βα(2β + 1)
.

This lemma is a consequence of Lemma 3 in the Appendix. We consider the bandwidth (h 1 , . . . , h d ) where

h i = C 0 L i log n n β/(2β+1) 1/β i , C 0 =   σ 2β L * β + 1 αβ 3 β   1 2β+1 , with L * = d i=1 L 1/β j j β .
Finally, we consider the kernel estimator

f * n (t) = 1 h 1 • • • h d [0,1] d K n (u, t) dY u , (4) 
defined for t = (t 1 , . . . , t d ) ∈ [0, 1] d , where for u = (u 1 , . . . , u d ) ∈ [0, 1] d K n (u, t) = K u 1 -t 1 h 1 , . . . , u d -t d h d d i=1 g(u i , t i , h i ), and 
g(u i , t i , h i ) =        1 if t i ∈ [h i , 1 -h i ] 2I [0,1] u i -t i h i if t i ∈ [0, h i ) 2I [-1,0] u i -t i h i if t i ∈ (1 -h i , 1].
We add the functions g(u i , t i , h i ) to account for the boundary effects. Here and later I A denotes the indicator of the set A. We suppose that n is large enough so that h i < 1/2, for i = 1, . . . , d.

Using a change of variables and the symmetry of the function K in each of its variables, i.e. for all u

= (u 1 , . . . , u d ) ∈ R d , K(u 1 , . . . , u d ) = K(. . . , u i-1 , -u i , u i+1 , . . .), we obtain that 1 h 1 • • • h d [0,1] d K n (u, t) du = [-1,1] d K(u)du = 1. (5) 
The main result of the paper is given in the following theorem.

Theorem 1. Under the above assumptions, relation (2) holds for the estimator

f * n defined in (4) with C(β, L, σ 2 ) = w(C 0 ).
Remark. For d = 1 the constant w(C 0 ) coincides with that of [START_REF] Korostelev | An asymptotically minimax regression estimator in the uniform norm up to a constant[END_REF].

We will prove this theorem in two stages. Let 0 < ε < 1/2. In Section 3, we show that f * n satisfies the upper bound

lim sup n→∞ sup f ∈Σ( β,L) E f w f * n -f ∞ ψ -1 n ≤ w (C 0 (1 + ε)) . (6) 
In Section 4, we prove the corresponding lower bound

lim inf n→∞ inf fn sup f ∈Σ( β,L) E f w f n -f ∞ ψ -1 n ≥ w(C 0 (1 -ε)). ( 7 
)
Since ε > 0 in ( 6) and ( 7) can be arbitrarily small and w is a continuous function, this proves Theorem 1.

Upper bound

Define for t ∈ [0, 1] d and f ∈ Σ( β, L) the bias term b n (t, f ) = E f (f * n (t)) -f (t)
and the stochastic term

Z n (t) = f * n (t) -E f (f * n (t)) = σ h 1 • • • h d √ n [0,1] d K n (u, t)dW u .
Note that Z n (t) does not depend on f . Here we prove inequality (6).

Proposition 1. The bias term satisfies

sup f ∈Σ( β,L) ψ -1 n b n (•, f ) ∞ ≤ C 0 2β + 1 . Proof. Let f ∈ Σ( β, L) and t ∈ [0, 1] d . Suppose n large enough such that (5) is satisfied. Then |E f (f * n (t)) -f (t)| = 1 h 1 • • • h d [0,1] d K n (u, t) (f (u) -f (t))du ≤ σ h 1 • • • h d [0,1] d K n (u, t) d i=1 L i |u i -t i | β i du.
Then, using a change of variables and the symmetry of the function K in each of its variables, we have

|E (f * n (t)) -f (t)| ≤ β + 1 αβ 2 d i=1 L i h β i i B i ,
where

B i = [-1,1] d |u i | β i (1 -|u| β ) du = αβ 3 β i (β + 1)(2β + 1) ,
the last equality being obtained from Lemma 3 in the Appendix. Putting these inequalities together, we obtain, for all t

∈ [0, 1] d |b n (t, f )| ≤ C 0 2β + 1 log n n β 2β+1
. Proposition 2. The stochastic term satisfies for any z > 1 and n large enough,

sup f ∈Σ( β,L) P f ψ -1 n Z n ∞ ≥ 2βC 0 z 2β + 1 ≤ D 1 n - (z 2 -1) 2β+1 (log n) 1/2β+1 ,
where D 1 is a finite positive constant.

Proof. The stochastic term is a Gaussian process on [0, 1] d . To prove this proposition, we use a more general lemma about the supremum of a Gaussian process (Lemma 4 in the Appendix.

We have

P f ψ -1 n Z n ∞ ≥ 2βC 0 z 2β + 1 = P f sup t∈[0,1] d |ξ t | ≥ r 0 , with r 0 = 2βC 0 zψ n √ nh 1 • • • h d σ(2β + 1) and ξ t = 1 √ h 1 • • • h d [0,1] d K n (u, t) dW u .
We will apply Lemma 4 (cf. Appendix) to the process ξ t on the sets ∆ belonging to

S = ∆ = d i=1 ∆ i : ∆ i ∈ {[0, h i ), [h i , 1 -h i ], (1 -h i , 1]} .
Let ∆ ∈ S. The process ξ t on ∆ has the form

ξ t = 1 √ h 1 • • • h d [0,1] d Q u 1 -t 1 h 1 , . . . , u d -t d h d dW u ,
where

Q(u 1 , . . . , u d ) = K(u 1 , . . . , u d ) d i=1 g i (u i ) and g i (u i ) =    1 if ∆ i = [h i , 1 -h i ] 2I [0,1] if ∆ i = [0, h i ) 2I [-1,0] if ∆ i = (1 -h i , 1]. The function Q satisfies Q 2 2 = R d Q 2 = K 2 2 .
Moreover we have the following lemma which will be proved in the Appendix.

Lemma 2. There exists a constant

D 2 > 0 such that, for all t ∈ [-1, 1] d R d (Q(t + u) -Q(u)) 2 du ≤ D 2 d i=1 |t i | min(1/2,β i ) 2 . ( 8 
)
The process ξ t satisfies the conditions of Lemma 4 and in particular satisfies condition (12) of that lemma with α i = min(1/2, β i ) in view of Lemma 2. We have by Lemma 3

h = d i=1 h i = C 1/β 0 L 1/β * log n n 1/(2β+1) , r 2 0 2 K 2 2 = z 2 log n 2β + 1 .
The condition r 0 > c 2

| log h| 1/2 is then satisfied for n large enough. We obtain for n large enough that the quantity N (h) (cf. Lemma 4) satisfies

N (h) ≤ D 3 h | log h| 1/2 1/β+1/2 ≤ D 3 n 1 2β+1 (log n) 1/2β+1 ,
where D 3 is a finite positive constant. Moreover the quantity r 0

| log h| 1/2 is well defined and bounded independently of n, for n large enough. Then there exists D 4 > 0 such that

P f sup t∈∆ |ξ t | ≥ r 0 ≤ D 4 n - (z 2 -1) 2β+1 (log n) 1/2β+1
and we obtain Proposition 2 by noting that card(S) = 3 d .

We can now complete our proof of inequality (6

). Let ∆ n,f = ψ -1 n f * n -f ∞ for f ∈ Σ( β, L). We have, since w is non-decreasing, E f (w (∆ n,f )) = E f w (∆ n,f ) I {∆ n,f ≤(1+ε)C 0 } + E f w (∆ n,f ) I {∆ n,f >(1+ε)C 0 } ≤ w((1 + ε)C 0 ) + E f w 2 (∆ n,f ) 1 2 (P f [∆ n,f > (1 + ε)C 0 ]) 1 2 .
Therefore to prove inequality (6), it is enough to prove the following two relations (i)

lim n→∞ sup f ∈Σ( β,L) P f [∆ n,f > (1 + ε)C 0 ] = 0, (ii) there exists a constant D 5 such that lim sup n→∞ sup f ∈Σ( β,L) E f w 2 (∆ n,f ) ≤ D 5 .
Let f ∈ Σ( β, L). To prove (i), note that, for n large enough

P f [∆ n,f > (1 + ε)C 0 ] ≤ P f ψ -1 n Z n ∞ > 2βC 0 (1 + ε) 2β + 1 ,
which is a consequence of Proposition 1. By Proposition 2 with z = 1 + ε, the right-hand side of this inequality tends to 0 as n → ∞.

Let us prove (ii). The assumptions on w imply that there exist constants D 6 and D 7 such that

E f w 2 (∆ n,f ) ≤ D 6 + D 7 E f ψ -1 n Z n ∞ 2γ + ψ -1 n b n (•, f ) ∞ 2γ .
Using the fact that

E f ψ -1 n Z n ∞ 2γ = +∞ 0 P f (ψ -1 n Z n ∞ ) 2γ > t dt,
and Proposition 2, we prove that lim sup n→∞

E f ψ -1 n Z n ∞ 2γ < ∞.
This and Proposition 1 entail (ii).

Lower bound

Before proving inequality (7), we need to introduce some notation and preliminary facts. We write

h = C 1 β 0 log n n 1 2β+1 , h i = C 0 L i 1 β i log n n β β i (2β+1) . Let m i = 1 2h i (2 1/β +1)
-1 with [x] the integer part of x and M = d i=1 m i . Consider the points a(l 1 , . . . , l d ) ∈ [0, 1] d for l i ∈ {1, . . . , m i } and i ∈ {1, . . . , d} such that:

a(l 1 , . . . , l d ) = 2(2 1 β + 1) (h 1 l 1 , . . . , h d l d ) .
To simplify the notation, we denote these points a 1 , . . . , a M and each a j takes the form:

a j = (a j,1 , . . . , a j,d ). Let θ = (θ 1 , . . . , θ M ) ∈ [-1, 1] M . Denote by f (•, θ) the function defined for t ∈ [0, 1] d by f (t, θ) = M j=1 θ j f j (t), where f j (t) = h β 1 - d i=1 t i -a j,i h i β i + .
Define the set 1), and denote P f (•,θ) = P θ . Consider the statistics: 1).

Σ ′ = f (•, θ) : θ ∈ [-1, 1] M . For all θ ∈ [-1, 1] M , f (•, θ) ∈ Σ( β, L), therefore Σ ′ ⊂ Σ( β, L). Suppose that f (•) = f (•, θ), with θ ∈ [-1, 1] M , in model (
y j = [0,1] d f j (t)dY t [0,1] d f 2 j (t)dt , j ∈ {1, . . . , M }. Proposition 3. Let f = f (•, θ) in model (
(i) For all j ∈ {1, . . . , M }, y j is a Gaussian variable with mean θ j and variance equal to

v 2 n = 2β + 1 2 log n .
(ii) Moreover, P θ is absolutely continuous with respect to P 0 and

dP θ dP 0 (y) = M j=1 ϕ vn (y j -θ j ) ϕ vn (y j ) ,
where ϕ vn is the density of N (0, v 2 n ) and P 0 = P (0,...,0) . Proof. (i). Let j ∈ {1, . . . , M }. Since the functions f j have disjoint supports, the statistic y j is equal to

y j = θ j + σ √ n [0,1] d f j (t)dW t [0,1] d f 2 j (t)dt
.

Since (W t ) is a standard Brownian sheet, y j is gaussian with mean θ j and variance

v 2 n = σ 2 n [0,1] d f 2 j (t)dt = σ 2 nh 2β h 1 • • • h d I (9)
where (see Lemma 3))

I = [-1,1] d 1 - d i=1 |t i | β i 2 + dt = 2αβ 3 (β + 1)(2β + 1) . ( 10 
)
Therefore

v 2 n = σ 2 L 1/β * IC 2β+1 β 0 log n .
Using the definition of C 0 , we obtain (9). (ii). Using the Girsanov's theorem (see [START_REF] Gihman | The theory of stochastic processes[END_REF], Chap. VII, Section 4)), since the functions f (•, θ) belong to L 2 [0, 1] d , P θ is absolutely continuous with respect to P 0 and we have

dP θ dP 0 (y) = exp √ n σ f (t, θ)dW t - n 2σ 2 f 2 (t, θ)dt .
Since the functions f j have disjoint supports

dP θ dP 0 (y) = exp    1 v 2 n M j=1 θ j y j - 1 2v 2 n M j=1 θ 2 j    = M j=1 ϕ vn (y j -θ j ) ϕ v n (y j ) .
With these preliminaries, we can now prove inequality (7). For any f ∈ Σ( β, L) and for any estimator f n , using the monotonicity of w and the Markov inequality, we obtain that

E f w ψ -1 n f n -f ∞ ≥w(C 0 (1 -ε))P f ψ -1 n f n -f ∞ ≥ C 0 (1 -ε) . Since Σ ′ ⊂ Σ( β, L), it is enough to prove that lim n→∞ Λ n = 1, where Λ n = inf fn sup f ∈Σ ′ P f ψ -1 n f n -f ∞ ≥ C 0 (1 -ε) . We have max j=1,...,M | f n (a j ) -f (a j )| ≤ f n -f ∞ . Setting θj = f n (a j )C 0 ψ n and using the fact that f (a j , θ) = C 0 ψ n θ j for θ ∈ [-1, 1] M , we see that Λ n ≥ inf θ∈R M sup θ∈[-1,1] M P θ (C n ),
where C n = max j=1,...,M | θjθ j | ≥ 1ε and θ = ( θ1 , . . . , θM ) ∈ R M is measurable with respect to y = {Y t , t ∈ [0, 1] d }. We have

Λ n ≥ inf θ∈R M {-(1-ε),1-ε} M P θ (C n )π(dθ),
where π is the prior distribution on θ, π(dθ) = M j=1 π j (dθ j ), where π j is the Bernoulli distribution on {-(1ε), 1 -ε} that assigns probability 1/2 to -(1ε) and to (1ε). Since P θ is absolutely continuous with respect to P 0 (see Proposition 3), we have

Λ n ≥ inf θ∈R M E 0 I Cn dP θ dP 0 π(dθ) = inf θ∈R M E 0   I C n M j=1 ϕ vn (y j -θ j ) ϕ v n (y j )   π(dθ).
By the Fubini and Fatou theorems, we can write

Λ n ≥1 -sup θ∈R M 1 M j=1 ϕ v n (y j )   M j=1 I {|θ j -θj |<1-ε} ϕ vn (y j -θ j )π j (dθ j )   dP 0 ≥1 - 1 M j=1 ϕ vn (y j )   M j=1 sup θj ∈R I {|θ j -θj |<1-ε} ϕ vn (y j -θ j ) π j (dθ j )   dP 0 .
It is not hard to prove that the maximization problem

max θj ∈R I {| θj -θ j |<1-ε} ϕ vn (y j -θ j ) π j (dθ j )
admits the solution θ j (y j ) = (1ε)I {y j ≥0} -(1ε)I {y j <0} . By simple algebra, we obtain

I {| θ j -θ j |<1-ε} ϕ vn (y j -θ j )π j (dθ j ) = 1 2 ϕ vn (y j -(1 -ε))I {y j ≥0} + ϕ vn (y j + (1 -ε))I {y j <0} .
Under P 0 , the random variables y j are i.i.d. Gaussian N (0, v 2 n ). Thus

Λ n ≥1 - M j=1 1 2 R ϕ vn (y j -(1 -ε))I {y j ≥0} + ϕ vn (y j + (1 -ε))I {y j <0} dy j ≥1 - +∞ 0 ϕ vn (y -(1 -ε))dy M ≥1 -1 -Φ - (1 -ε) v n M
where Φ is the standard normal cdf. Using the relation

Φ(-z) ∼ 1 z √ 2π exp -z 2 /2
for z → +∞ and the definition of v n , we have

Φ - (1 -ε) v n = v n √ 2π(1 -ε) n - (1-ε) 2 2β+1 (1 + o(1)). Now M ≥ C ′ n log n 1 2β+1 , for some constant C ′ > 0, therefore lim n→∞ M Φ -(1-ε) vn = +∞ and lim n→∞ 1 -Φ - (1 -ε) v n M = 0,
which completes the proof of the lower bound.

Appendix

Proof of Lemma 2.

Let t ∈ [-1, 1] d and u ∈ R d . We have Q(t+u)-Q(u) = D 8 Q(t + u) -Q(u) ,
where

Q(u) = (1 -|u| β ) + d i=1 I G i (u i ), with G i ∈ {[0, 1], [-1, 1], [-1, 0]
} and D 8 is a positive constant. We have:

• If |t + u| β ≥ 1 and |u| β ≥ 1, then Q(t + u) -Q(u) = 0. • If |t + u| β ≤ 1 and |u| β ≥ 1, then 0 ≤ Q(t + u) -Q(u) = 1 -|t + u| β ≤ |u| β -|t + u| β ≤ |t| β . • If |t + u| β ≥ 1 and |u| β ≤ 1, then for the same reason | Q(t + u) -Q(u)| ≤ |t| β .
Thus to prove (8), it is enough to bound from above the integral

I(t) = Q(t + u) -Q(u) 2 I A t du,
where

A t = {u ∈ R : |t + u| β ≤ 1, |u| β ≤ 1}. We have I(t) = B 1 (t) + B 2 (t)
where

B 1 (t) = Q(t + u) -Q(u) 2 I At∩ At du, B 2 (t) = Q(t + u) -Q(u) 2 I At∩ A C t du, A t = u ∈ R : Q(u) = 0, Q(t + u) = 0 .
We have 

B 1 (t) ≤ 2 d (|t| β ) 2 ≤ 2 d i=1 |t i | min(β i ,1/2) 2 , since mes{u ∈ R : |u| β ≤ 1} ≤ 2,
|t i | ≤ D 9 d i=1 |t i | min(β i ,1/2) 2
with D 9 a positive constant. This completes the proof.

Lemma 3. (Gradshteyn and Ryzhik, 1965, formula 4.635.2) For a continuous function f : ∆ 0 → R, we have

∆ 0 f x β 1 1 + • • • + x β d d x p 1 -1 1 • • • x p d -1 d dx 1 • • • dx d = 1 β 1 • • • β d Γ p 1 β 1 • • • Γ p d β d Γ p 1 β 1 + • • • + p d β d 1 0 f (x)x p 1 β 1 +•••+ p d β d -1 dx where ∆ 0 = (x 1 , . . . , x d ) ∈ [0, 1] d : x β 1 1 + • • • + x β d d ≤
1 and the β i and p i are positive numbers.

Lemma 4. Let Q : R d → R be a function such that Q 2 2 = R d Q 2 < ∞, ∆ be a compact set ∆ = d i=1 ∆ i with ∆ i intervals of [0, +∞
) of length T i > 0 and W be the standard Brownian sheet on ∆. Let h 1 , . . . , h d be arbitrary positive numbers and we write h = d i=1 h i . We consider the gaussian process defined for t = (t 1 , . . . , t d ) ∈ ∆:

X t = 1 √ h 1 • • • h d R d Q u 1 -t 1 h 1 , . . . , u d -t d h d dW u , (11) 
with u = (u 1 , . . . , u d ). Let (α 1 , . . . , α d ) ∈ (0, ∞) d and let α be the number such that 1/α = d i=1 1/α i . Let T = d i=1 T i . We suppose that there exists 0

< c 1 < ∞ such that, for t ∈ [-1, 1] d , R d (Q(t + u) -Q(u)) 2 du ≤ c 1 d i=1 |t i | α i 2 . ( 12 
)
Then there exists a constant c 2 > 0, such that for b ≥ c 2 /| log h| 1/2 and h small enough,

P sup t∈∆ |X t | ≥ b ≤ N (h) exp - b 2 2 Q 2 2 exp c 2 b Q 2 2 | log h| 1/2 , ( 13 
)
where c 2 = c 3 (c 4 + 1/ √ α), c 3 and c 4 do not depend on h 1 , . . . , h d , T and α, P denotes the distribution of {X t , t ∈ ∆} and

N (h) = 2 d i=1 T i h i c 1 d| log h| 1/2 1/α i + 1 . Note that if the h i /T i → 0, then for h i /T i small enough N (h) ≤ 2 d+1 T h c 1 d| log h| 1/2 1/α .
This lemma is close to various results on the supremum of Gaussian processes (see [START_REF] Adler | An introduction to continuity, extrema, and related topics for general Gaussian processes[END_REF], [START_REF] Lifshits | of Mathematics and its Applications[END_REF], [START_REF] Piterbarg | Asymptotic methods in the theory of Gaussian processes and fields[END_REF]). The closest result is Theorem 8-1 of [START_REF] Piterbarg | Asymptotic methods in the theory of Gaussian processes and fields[END_REF] which, however, cannot be used directly since there is no explicit expression for the constants that in our case depend on h and T and may tend to 0 or ∞. Also the explicit dependence of the constants on α is given here. This can be useful for the purpose of adaptive estimation.

Proof. Let λ > 0 and N 1 (λ, S) be the minimal number of hyperrectangles with edges of length

h 1 λ c 1 d 1/α 1 ,. . . ,h d λ c 1 d 1/α d that cover a set S ⊂ ∆. We have N 1 (λ, ∆) ≤ d i=1 T i h i c 1 d λ 1/α i + 1 ,
where [x] denotes the integer part of the real x. Denote by B 1 ,. . . ,B N 1 (λ,∆) such hyperrectangles that cover ∆ and choose λ = | log h| -1/2 , well defined for h < 1. We have, for b ≥ 0,

P sup t∈∆ |X t | ≥ b ≤ N 1 (λ,∆) j=1 P sup t∈B j |X t | ≥ b ≤ 2 N 1 (λ,∆) j=1 P sup t∈B j X t ≥ b . ( 14 
)
Let j ∈ {1, . . . , N 1 (λ, ∆)}. Using Corollary 14.2 of [START_REF] Lifshits | of Mathematics and its Applications[END_REF], we obtain for b ≥ 4 √ 2D(B j , σ j /2)

P sup t∈B j X t ≥ b ≤ exp - 1 2σ 2 j b -4 √ 2D(B j , σ j /2) 2 , ( 15 
)
where σ 2 j = sup t∈B j E(X 2 t ),

D(B j , σ j /2) = σ/2 0 log N B j (u) 1/2 du,
where N B j (u) is the minimal number of ρ-balls of radius u necessary to cover B j and ρ is the semi-metric defined by ρ(s, t) = E (X s -X t ) 2 1/2 , s, t ∈ ∆,

where E is the expectation with respect to P. Let us evaluate σ 2 j . We have, by a change of variables,

σ 2 j = sup t∈B j 1 h 1 • • • h d ∆ Q 2 u 1 -t 1 h 1 , . . . , u d -t d h d du ≤ Q 2 2 . ( 16 
)
Let s, t ∈ B j . For h small enough, we have s i -t i h i < 1 and, using ( 12) and a change of variables, we obtain

ρ(s, t) ≤ c 1 d i=1 s i -t i h i α i . ( 17 
)
In view of ( 17), we have a rough bound for h small enough N B j (u) ≤ N 1 (u, B j ) ≤ du.

Here

1 0 log 1 + u -1/α i 1/2 du = 1 0 log 1 + u 1/α i - 1 α i log u 1/2 du ≤ log 2 + 1 √ α i 1 0 | log x| 1/2 dx.
Then we have for j ∈ {1, . . . , N 1 (λ, ∆)}

4 √ 2D(B j , σ j /2) ≤ λc 3 (c 4 + 1/ √ α) = c 2 λ, (18) 
where c 3 and c 4 are positive constants independent of j, T , h and α. Substituting (15), ( 16) and (18) into inequality (14), we obtain, for b ≥ c 2 λ and for h small enough,

P sup t∈∆ |X t | ≥ b ≤2N 1 (λ, ∆) exp - 1 2 Q 2 2 (b -c 2 λ) 2 , ≤N (h) exp - b 2 2 Q 2 2 exp c 2 λb Q 2 2 .
Then for b ≥ c 2

| log h| 1/2 and for h small enough, we obtain (13).

  where mes(•) denotes the Lebesgue measure. Moreover we have mes(A t ∩ A C t ) ≤ 2 d i=1 |t i | and then
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	B 2 (t) ≤ 2 d	i=1