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Asymptotically exact minimax estimation in sup-norm for

anisotropic Hölder classes

KARINE BERTIN

Laboratoire de Probabilité et Modèles Aléatoires, Université Paris 6, 4 place Jussieu, case 188,
75252 Paris Cedex 05, France. Tel 0033-(0)1-44-27-85-10.Email: kbertin@ccr.jussieu.fr

We consider the Gaussian White Noise Model and we study the estimation of a function f in the
uniform norm assuming that f belongs to a Hölder anisotropic class. We give the minimax rate of
convergence over this class and we determine the minimax exact constant and an asymptotically
exact estimator.
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1 Introduction

Let
{
Yt, t ∈ [0, 1]d

}
, be a random process defined by the stochastic differential equation

dYt = f(t)dt +
σ√
n

dWt, t ∈ [0, 1]d, (1)

where f is an unknown function, n > 1, σ > 0 is known and W is a standard Brownian sheet
in [0, 1]d. We wish to estimate the function f given a realization y =

{
Yt, t ∈ [0, 1]d

}
. This is

known as the Gaussian white noise problem and has been studied in several papers starting with
Ibragimov and Hasminskii (1981). We suppose that f belongs to a d-dimensional anisotropic
Hölder class Σ(β̃, L) for β = (β1, . . . , βd) ∈ (0, 1]d and L = (L1, . . . , Ld) such that 0 < Li < ∞.
This class is defined by :

Σ(β̃, L) =
{

f : R
d → R : |f(x) − f(y)| ≤ L1|x1 − y1|β1 + · · · + Ld|xd − yd|βd , x, y ∈ R

d
}

,

where x = (x1, . . . , xd) and y = (y1, . . . , yd).
In the following Pf is the distribution of y under model (1) and Ef is the corresponding

expectation. We denote by β the real number β = (
∑d

i=1 1/βi)
−1. Let w(u), u ≥ 0, be a

continuous non-decreasing function which admits a polynomial majorant w(u) ≤ W0(1 + uγ)
with some finite positive constants W0, γ and such that w(0) = 0.

Let f̂n be an estimator of f , i.e. a random function on [0, 1]d with values in R measurable with
respect to

{
Yt, t ∈ [0, 1]d

}
. The quality of f̂n is characterized by the maximal risk in sup-norm

Rn(f̂n) = sup
f∈Σ(β̃,L)

Efw

(
‖f̂n − f‖∞

ψn

)
,

1
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where ψn =
(

log n
n

) β

2β+1 and ‖g‖∞ = supt∈[0,1]d |g(t)|. The normalizing factor ψn is used here

because it is a minimax rate of convergence. For the one-dimensional case, the fact that ψn is
the minimax rate for the sup-norm has been proved by Ibragimov and Hasminskii (1981). For
the multidimensional case, this fact was shown by Stone (1982) and Nussbaum (1986) for the
isotropic setting (β1 = · · · = βd), but it has not been shown for the anisotropic setting considered
here. Nevertheless there exist results for estimation in Lp norm with p < ∞ on anisotropic Besov
classes Kerkyacharian et al. (2001) suggesting similar rates but without a logarithmic factor. The
case p = 2 has been treated by several authors (Neumann and von Sachs (1997), Barron et al.
(1999)).

Our result implies in particular that ψn is the minimax rate of convergence for estimation
in sup-norm. But we prove a stronger assertion: we find an estimator f∗

n and determine the
minimax exact constant C(β, L, σ2) such that

C(β, L, σ2) = lim
n→∞

inf
f̂n

Rn(f̂n) = lim
n→∞

Rn(f∗
n), (2)

where inf
f̂n

stands for the infimum over all the estimators. Such an estimator f∗
n will be called

asymptotically exact.
The problem of asymptotically exact constants under the sup-norm was first studied in the

one-dimensional case by Korostelev (1993) for the regression model with fixed equidistant de-
sign. Korostelev found the exact constant and an asymptotically exact estimator for this set-up.
Donoho (1994) extended Korostelev’s result to the Gaussian white noise model and Hölder classes
with β > 1. However asymptotically exact estimators are not available in the explicit form for
β > 1, except for β = 2. Korostelev and Nussbaum (1999) found the exact constant and asymp-
totically exact estimator for the density model. Lepski (1992) studied the exact constant in the
case of adaptation for the white noise model. In Bertin (2004) was found the exact constant and
an asymptotically exact estimator for the regression model with random design.

The estimator f∗
n defined in Section 2 and which will be shown to satisfy (2) is a kernel esti-

mator. For d = 1, the kernel used in our estimator (and defined in (3)) is the one derived by Ko-
rostelev (1993) and can be viewed as a solution of an optimal recovery problem. This is explained
in Donoho (1994) and Lepski and Tsybakov (2000). For our set-up, i.e. the Gaussian white noise
model and d-dimensional anisotropic Hölder class Σ(β̃, L) for β = (β1, . . . , βd) ∈ (0, 1]d and
L ∈ (0, +∞)d, the choice of optimal parameters of the estimator (i.e. kernel, bandwidth) is also
related to a solution of optimal recovery problems. In the same way as in Donoho (1994), the
kernel defined in (3) can be expressed, up to a renormalization on the support, as

K(t) =
fβ(t)∫

Rd fβ(s)ds
,

where fβ is the solution of the optimization problem

max
‖f‖2≤1

f∈Σ(β,1)

f(0),

where we denote ‖f‖2 =
(∫

Rd f2(t)dt
)1/2

and 1 is the vector (1, . . . , 1) in R
d.

The anisotropic class of functions in this paper does not turn into a traditional isotropic
Lipschitz class in the case β1 = . . . = βd. For an isotropic class defined as

{
f : [0, 1]d → R : |f(x) − f(y)| ≤ L‖x − y‖β, x, y ∈ [0, 1]d

}
,
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with β ∈ (0, 1], L > 0 and ‖ · ‖ the Euclidian norm in R
d, radial symmetric ’cone-type’ kernels

should be optimal. Such kernels of the form K(x) = (1 − ‖x‖)+, for x ∈ R
d, are studied in

Klemelä and Tsybakov (2001). We denote (t)+ = max(0, t).
In Section 2, we give an asymptotically exact estimator f∗

n and the exact constant for the
Gaussian white noise model. The proofs are given in Sections 3 and 4.

2 The estimator and main result

Consider the kernel K defined for u = (u1, . . . , ud) ∈ [−1, 1]d by

K(u1, . . . , ud) =
β + 1

αβ
2 (1 − |u|β)+, (3)

where

α =
2d

∏d
i=1 Γ( 1

βi
)

Γ( 1
β
)
∏d

i=1 βi

,

Γ denotes the gamma function and |u|β =
∑d

i=1 |ui|βi .

Lemma 1. The kernel K satisfies
∫
[−1,1]d K(u)du = 1 and

∫

[−1,1]d
K2(u)du =

2(β + 1)

βα(2β + 1)
.

This lemma is a consequence of Lemma 3 in the Appendix.
We consider the bandwidth (h1, . . . , hd) where

hi =

(
C0

Li

(
log n

n

)β/(2β+1)
)1/βi

, C0 =


σ2βL∗

(
β + 1

αβ
3

)β



1
2β+1

,

with

L∗ =

(
d∏

i=1

L
1/βj

j

)β

.

Finally, we consider the kernel estimator

f∗
n(t) =

1

h1 · · ·hd

∫

[0,1]d
Kn (u, t) dYu, (4)

defined for t = (t1, . . . , td) ∈ [0, 1]d, where for u = (u1, . . . , ud) ∈ [0, 1]d

Kn (u, t) = K

(
u1 − t1

h1
, . . . ,

ud − td
hd

) d∏

i=1

g(ui, ti, hi),
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and

g(ui, ti, hi) =





1 if ti ∈ [hi, 1 − hi]

2I[0,1]

(
ui−ti

hi

)
if ti ∈ [0, hi)

2I[−1,0]

(
ui−ti

hi

)
if ti ∈ (1 − hi, 1].

We add the functions g(ui, ti, hi) to account for the boundary effects. Here and later IA denotes
the indicator of the set A. We suppose that n is large enough so that hi < 1/2, for i = 1, . . . , d.
Using a change of variables and the symmetry of the function K in each of its variables, i.e. for
all u = (u1, . . . , ud) ∈ R

d, K(u1, . . . , ud) = K(. . . , ui−1,−ui, ui+1, . . .), we obtain that

1

h1 · · ·hd

∫

[0,1]d
Kn (u, t) du =

∫

[−1,1]d
K(u)du = 1. (5)

The main result of the paper is given in the following theorem.

Theorem 1. Under the above assumptions, relation (2) holds for the estimator f∗
n defined in (4)

with
C(β, L, σ2) = w(C0).

Remark. For d = 1 the constant w(C0) coincides with that of Korostelev (1993).

We will prove this theorem in two stages. Let 0 < ε < 1/2. In Section 3, we show that f∗
n

satisfies the upper bound

lim sup
n→∞

sup
f∈Σ(β̃,L)

Ef

[
w

(
‖f∗

n − f‖∞ψ−1
n

)]
≤ w (C0 (1 + ε)) . (6)

In Section 4, we prove the corresponding lower bound

lim inf
n→∞

inf
f̂n

sup
f∈Σ(β̃,L)

Ef

[
w

(
‖f̂n − f‖∞ψ−1

n

)]
≥ w(C0(1 − ε)). (7)

Since ε > 0 in (6) and (7) can be arbitrarily small and w is a continuous function, this proves
Theorem 1.

3 Upper bound

Define for t ∈ [0, 1]d and f ∈ Σ(β̃, L) the bias term

bn(t, f) = Ef (f∗
n(t)) − f(t)

and the stochastic term

Zn(t) = f∗
n(t) − Ef (f∗

n(t)) =
σ

h1 · · ·hd
√

n

∫

[0,1]d
Kn(u, t)dWu.

Note that Zn(t) does not depend on f . Here we prove inequality (6).

Proposition 1. The bias term satisfies

sup
f∈Σ(β̃,L)

ψ−1
n ‖bn(·, f)‖∞ ≤ C0

2β + 1
.
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Proof. Let f ∈ Σ(β̃, L) and t ∈ [0, 1]d. Suppose n large enough such that (5) is satisfied. Then

|Ef (f∗
n(t)) − f(t)| =

∣∣∣∣∣
1

h1 · · ·hd

∫

[0,1]d
Kn (u, t) (f(u) − f(t))du

∣∣∣∣∣

≤ σ

h1 · · ·hd

∫

[0,1]d
Kn (u, t)

(
d∑

i=1

Li|ui − ti|βi

)
du.

Then, using a change of variables and the symmetry of the function K in each of its variables,
we have

|E (f∗
n(t)) − f(t)| ≤ β + 1

αβ
2

d∑

i=1

Lih
βi
i Bi,

where

Bi =

∫

[−1,1]d
|ui|βi (1 − |u|β) du =

αβ
3

βi(β + 1)(2β + 1)
,

the last equality being obtained from Lemma 3 in the Appendix. Putting these inequalities
together, we obtain, for all t ∈ [0, 1]d

|bn(t, f)| ≤ C0

2β + 1

(
log n

n

) β

2β+1

.

Proposition 2. The stochastic term satisfies for any z > 1 and n large enough,

sup
f∈Σ(β̃,L)

Pf

[
ψ−1

n ‖Zn‖∞ ≥ 2βC0z

2β + 1

]
≤ D1n

−
(z2

−1)

2β+1 (log n)1/2β+1,

where D1 is a finite positive constant.

Proof. The stochastic term is a Gaussian process on [0, 1]d. To prove this proposition, we use
a more general lemma about the supremum of a Gaussian process (Lemma 4 in the Appendix.
We have

Pf

[
ψ−1

n ‖Zn‖∞ ≥ 2βC0z

2β + 1

]
= Pf

[
sup

t∈[0,1]d
|ξt| ≥ r0

]
,

with

r0 =
2βC0zψn

√
nh1 · · ·hd

σ(2β + 1)

and

ξt =
1√

h1 · · ·hd

∫

[0,1]d
Kn (u, t) dWu.

We will apply Lemma 4 (cf. Appendix) to the process ξt on the sets ∆ belonging to

S =

{
∆ =

d∏

i=1

∆i : ∆i ∈ {[0, hi), [hi, 1 − hi], (1 − hi, 1]}
}

.
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Let ∆ ∈ S. The process ξt on ∆ has the form

ξt =
1√

h1 · · ·hd

∫

[0,1]d
Q

(
u1 − t1

h1
, . . . ,

ud − td
hd

)
dWu,

where Q(u1, . . . , ud) = K(u1, . . . , ud)
∏d

i=1 gi(ui) and

gi(ui) =





1 if ∆i = [hi, 1 − hi]
2I[0,1] if ∆i = [0, hi)

2I[−1,0] if ∆i = (1 − hi, 1].

The function Q satisfies ‖Q‖2
2 =

∫
Rd Q2 = ‖K‖2

2. Moreover we have the following lemma which
will be proved in the Appendix.

Lemma 2. There exists a constant D2 > 0 such that, for all t ∈ [−1, 1]d

∫

Rd

(Q(t + u) − Q(u))2du ≤ D2

(
d∑

i=1

|ti|min(1/2,βi)

)2

. (8)

The process ξt satisfies the conditions of Lemma 4 and in particular satisfies condition (12)
of that lemma with αi = min(1/2, βi) in view of Lemma 2. We have by Lemma 3

h =
d∏

i=1

hi =
C

1/β
0

L
1/β
∗

(
log n

n

)1/(2β+1)

,
r2
0

2‖K‖2
2

=
z2 log n

2β + 1
.

The condition r0 > c2
| log h|1/2 is then satisfied for n large enough. We obtain for n large enough

that the quantity N(h) (cf. Lemma 4) satisfies

N(h) ≤ D3

h

(
| log h|1/2

)1/β+1/2

≤ D3n
1

2β+1 (log n)1/2β+1,

where D3 is a finite positive constant. Moreover the quantity r0

| log h|1/2 is well defined and bounded

independently of n, for n large enough. Then there exists D4 > 0 such that

Pf

[
sup
t∈∆

|ξt| ≥ r0

]
≤ D4n

−
(z2

−1)

2β+1 (log n)1/2β+1

and we obtain Proposition 2 by noting that card(S) = 3d.

We can now complete our proof of inequality (6). Let ∆n,f = ψ−1
n ‖f∗

n −f‖∞ for f ∈ Σ(β̃, L).
We have, since w is non-decreasing,

Ef (w (∆n,f )) = Ef

(
w (∆n,f ) I{∆n,f≤(1+ε)C0}

)
+ Ef

(
w (∆n,f ) I{∆n,f >(1+ε)C0}

)

≤ w((1 + ε)C0) +
(
Ef

(
w2(∆n,f )

)) 1
2 (Pf [∆n,f > (1 + ε)C0])

1
2 .
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Therefore to prove inequality (6), it is enough to prove the following two relations
(i) limn→∞ sup

f∈Σ(β̃,L)
Pf [∆n,f > (1 + ε)C0] = 0,

(ii) there exists a constant D5 such that lim supn→∞ sup
f∈Σ(β̃,L)

Ef

(
w2 (∆n,f )

)
≤ D5.

Let f ∈ Σ(β̃, L). To prove (i), note that, for n large enough

Pf [∆n,f > (1 + ε)C0] ≤ Pf

[
ψ−1

n ‖Zn‖∞ >
2βC0(1 + ε)

2β + 1

]
,

which is a consequence of Proposition 1. By Proposition 2 with z = 1 + ε, the right-hand side of
this inequality tends to 0 as n → ∞.

Let us prove (ii). The assumptions on w imply that there exist constants D6 and D7 such
that

Ef

(
w2 (∆n,f )

)
≤ D6 + D7

[
Ef

((
ψ−1

n ‖Zn‖∞
)2γ

)
+

(
ψ−1

n ‖bn(·, f)‖∞
)2γ

]
.

Using the fact that

Ef

((
ψ−1

n ‖Zn‖∞
)2γ

)
=

∫ +∞

0
Pf

[
(ψ−1

n ‖Zn‖∞)2γ > t
]
dt,

and Proposition 2, we prove that lim supn→∞ Ef

[(
ψ−1

n ‖Zn‖∞
)2γ

]
< ∞. This and Proposition 1

entail (ii).

4 Lower bound

Before proving inequality (7), we need to introduce some notation and preliminary facts. We
write

h = C
1
β

0

(
log n

n

) 1
2β+1

, hi =

(
C0

Li

) 1
βi

(
log n

n

) β

βi(2β+1)

.

Let mi =
[

1

2hi(21/β+1)
− 1

]
with [x] the integer part of x and M =

∏d
i=1 mi. Consider the points

a(l1, . . . , ld) ∈ [0, 1]d for li ∈ {1, . . . ,mi} and i ∈ {1, . . . , d} such that:

a(l1, . . . , ld) = 2(2
1
β + 1) (h1l1, . . . , hdld) .

To simplify the notation, we denote these points a1, . . . , aM and each aj takes the form:

aj = (aj,1, . . . , aj,d).

Let θ = (θ1, . . . , θM ) ∈ [−1, 1]M . Denote by f(·, θ) the function defined for t ∈ [0, 1]d by

f(t, θ) =

M∑

j=1

θjfj(t),

where

fj(t) = hβ

(
1 −

d∑

i=1

∣∣∣∣
ti − aj,i

hi

∣∣∣∣
βi

)

+

.
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Define the set
Σ′ =

{
f(·, θ) : θ ∈ [−1, 1]M

}
.

For all θ ∈ [−1, 1]M , f(·, θ) ∈ Σ(β̃, L), therefore Σ′ ⊂ Σ(β̃, L).

Suppose that f(·) = f(·, θ), with θ ∈ [−1, 1]M , in model (1), and denote Pf(·,θ) = Pθ.
Consider the statistics:

yj =

∫
[0,1]d fj(t)dYt∫
[0,1]d f2

j (t)dt
, j ∈ {1, . . . , M}.

Proposition 3. Let f = f(·, θ) in model (1).

(i) For all j ∈ {1, . . . , M}, yj is a Gaussian variable with mean θj and variance equal to

v2
n =

2β + 1

2 log n
.

(ii) Moreover, Pθ is absolutely continuous with respect to P0 and

dPθ

dP0
(y) =

M∏

j=1

ϕvn (yj − θj)

ϕvn (yj)
,

where ϕvn is the density of N (0, v2
n) and P0 = P(0,...,0).

Proof. (i). Let j ∈ {1, . . . , M}. Since the functions fj have disjoint supports, the statistic yj is
equal to

yj = θj +
σ√
n

∫
[0,1]d fj(t)dWt∫
[0,1]d f2

j (t)dt
.

Since (Wt) is a standard Brownian sheet, yj is gaussian with mean θj and variance

v2
n =

σ2

n
∫
[0,1]d f2

j (t)dt
=

σ2

nh2βh1 · · ·hdI
(9)

where (see Lemma 3))

I =

∫

[−1,1]d

(
1 −

d∑

i=1

|ti|βi

)2

+

dt =
2αβ

3

(β + 1)(2β + 1)
. (10)

Therefore

v2
n =

σ2L
1/β
∗

IC
2β+1

β

0 log n

.

Using the definition of C0, we obtain (9).
(ii). Using the Girsanov’s theorem (see (Gihman and Skorohod, 1974, Chap. VII, Section

4)), since the functions f(·, θ) belong to L2
(
[0, 1]d

)
, Pθ is absolutely continuous with respect to

P0 and we have
dPθ

dP0
(y) = exp

{√
n

σ

∫
f(t, θ)dWt −

n

2σ2

∫
f2(t, θ)dt

}
.
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Since the functions fj have disjoint supports

dPθ

dP0
(y) = exp





1

v2
n

M∑

j=1

θjyj −
1

2v2
n

M∑

j=1

θ2
j



 =

M∏

j=1

ϕvn (yj − θj)

ϕvn (yj)
.

With these preliminaries, we can now prove inequality (7). For any f ∈ Σ(β̃, L) and for any
estimator f̂n, using the monotonicity of w and the Markov inequality, we obtain that

Ef

[
w

(
ψ−1

n ‖f̂n − f‖∞
)]

≥w(C0(1 − ε))Pf

[
ψ−1

n ‖f̂n − f‖∞ ≥ C0(1 − ε)
]
.

Since Σ′ ⊂ Σ(β̃, L), it is enough to prove that limn→∞ Λn = 1, where

Λn = inf
f̂n

sup
f∈Σ′

Pf

[
ψ−1

n ‖f̂n − f‖∞ ≥ C0(1 − ε)
]
.

We have maxj=1,...,M |f̂n(aj)− f(aj)| ≤ ‖f̂n − f‖∞. Setting θ̂j = f̂n(aj)C0ψn and using the fact
that f(aj , θ) = C0ψnθj for θ ∈ [−1, 1]M , we see that

Λn ≥ inf
θ̂∈RM

sup
θ∈[−1,1]M

Pθ(Cn),

where Cn =
{

maxj=1,...,M |θ̂j − θj | ≥ 1 − ε
}

and θ̂ = (θ̂1, . . . , θ̂M ) ∈ R
M is measurable with

respect to y = {Yt, t ∈ [0, 1]d}. We have

Λn ≥ inf
θ̂∈RM

∫

{−(1−ε),1−ε}M

Pθ(Cn)π(dθ),

where π is the prior distribution on θ, π(dθ) =
∏M

j=1 πj(dθj), where πj is the Bernoulli distri-
bution on {−(1 − ε), 1 − ε} that assigns probability 1/2 to −(1 − ε) and to (1 − ε). Since Pθ is
absolutely continuous with respect to P0 (see Proposition 3), we have

Λn ≥ inf
θ̂∈RM

∫
E0

(
ICn

dPθ

dP0

)
π(dθ)

= inf
θ̂∈RM

∫
E0


ICn

M∏

j=1

ϕvn(yj − θj)

ϕvn(yj)


π(dθ).

By the Fubini and Fatou theorems, we can write

Λn ≥1 − sup
θ̂∈RM

∫
1

∏M
j=1 ϕvn(yj)




∫ M∏

j=1

I{|θj−θ̂j |<1−ε}ϕvn(yj − θj)πj(dθj)


 dP0

≥1 −
∫

1
∏M

j=1 ϕvn (yj)




M∏

j=1

sup
θ̂j∈R

∫
I{|θj−θ̂j |<1−ε}ϕvn (yj − θj)πj(dθj)


 dP0.



Exact estimation in sup-norm for anisotropic classes 10

It is not hard to prove that the maximization problem

max
θ̂j∈R

∫
I{|θ̂j−θj |<1−ε}ϕvn (yj − θj)πj(dθj)

admits the solution θ̃j (yj) = (1 − ε)I{yj≥0} − (1 − ε)I{yj<0}. By simple algebra, we obtain

∫
I
{|θ̃j−θj |<1−ε}

ϕvn(yj − θj)πj(dθj) =
1

2

(
ϕvn(yj − (1 − ε))I{yj≥0} + ϕvn(yj + (1 − ε))I{yj<0}

)
.

Under P0, the random variables yj are i.i.d. Gaussian N (0, v2
n). Thus

Λn ≥1 −
M∏

j=1

1

2

∫

R

(
ϕvn(yj − (1 − ε))I{yj≥0} + ϕvn(yj + (1 − ε))I{yj<0}

)
dyj

≥1 −
(∫ +∞

0
ϕvn(y − (1 − ε))dy

)M

≥1 −
(

1 − Φ

(
−(1 − ε)

vn

))M

where Φ is the standard normal cdf. Using the relation

Φ(−z) ∼ 1

z
√

2π
exp

(
−z2/2

)

for z → +∞ and the definition of vn, we have

Φ

(
−(1 − ε)

vn

)
=

vn√
2π(1 − ε)

n
−

(1−ε)2

2β+1 (1 + o(1)).

Now M ≥ C ′
(

n
log n

) 1
2β+1 , for some constant C ′ > 0, therefore limn→∞ MΦ

(
− (1−ε)

vn

)
= +∞ and

lim
n→∞

(
1 − Φ

(
−(1 − ε)

vn

))M

= 0,

which completes the proof of the lower bound.

5 Appendix

Proof of Lemma 2. Let t ∈ [−1, 1]d and u ∈ R
d. We have Q(t+u)−Q(u) = D8

(
Q̃(t + u) − Q̃(u)

)
,

where Q̃(u) = (1 − |u|β)+
∏d

i=1 IGi(ui), with Gi ∈ {[0, 1], [−1, 1], [−1, 0]} and D8 is a positive
constant. We have:

• If |t + u|β ≥ 1 and |u|β ≥ 1, then Q̃(t + u) − Q̃(u) = 0.

• If |t + u|β ≤ 1 and |u|β ≥ 1, then

0 ≤ Q̃(t + u) − Q̃(u) = 1 − |t + u|β ≤ |u|β − |t + u|β ≤ |t|β .
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• If |t + u|β ≥ 1 and |u|β ≤ 1, then for the same reason |Q̃(t + u) − Q̃(u)| ≤ |t|β .

Thus to prove (8), it is enough to bound from above the integral

I(t) =

∫ (
Q̃(t + u) − Q̃(u)

)2
IAtdu,

where At = {u ∈ R : |t + u|β ≤ 1, |u|β ≤ 1}. We have I(t) = B1(t) + B2(t) where

B1(t) =

∫ (
Q̃(t + u) − Q̃(u)

)2
I
At∩Ãt

du,

B2(t) =

∫ (
Q̃(t + u) − Q̃(u)

)2
I
At∩ÃC

t
du,

Ãt =
{

u ∈ R : Q̃(u) 6= 0, Q̃(t + u) 6= 0
}

.

We have

B1(t) ≤ 2d (|t|β)2 ≤ 2

(
d∑

i=1

|ti|min(βi,1/2)

)2

,

since mes{u ∈ R : |u|β ≤ 1} ≤ 2, where mes(·) denotes the Lebesgue measure. Moreover we

have mes(At ∩ ÃC
t ) ≤ 2

∑d
i=1 |ti| and then

B2(t) ≤ 2d
d∑

i=1

|ti| ≤ D9

(
d∑

i=1

|ti|min(βi,1/2)

)2

with D9 a positive constant. This completes the proof.

Lemma 3. (Gradshteyn and Ryzhik, 1965, formula 4.635.2) For a continuous function f : ∆0 →
R, we have ∫

∆0

f
(
xβ1

1 + · · · + xβd
d

)
xp1−1

1 · · ·xpd−1
d dx1 · · · dxd

=
1

β1 · · ·βd

Γ
(

p1

β1

)
· · ·Γ

(
pd
βd

)

Γ
(

p1

β1
+ · · · + pd

βd

)
∫ 1

0
f(x)x

p1
β1

+···+
pd
βd

−1
dx

where
∆0 =

{
(x1, . . . , xd) ∈ [0, 1]d : xβ1

1 + · · · + xβd
d ≤ 1

}

and the βi and pi are positive numbers.

Lemma 4. Let Q : R
d → R be a function such that ‖Q‖2

2 =
∫

Rd Q2 < ∞, ∆ be a compact set

∆ =
∏d

i=1 ∆i with ∆i intervals of [0, +∞) of length Ti > 0 and W be the standard Brownian

sheet on ∆. Let h1, . . . , hd be arbitrary positive numbers and we write h =
∏d

i=1 hi. We consider
the gaussian process defined for t = (t1, . . . , td) ∈ ∆:

Xt =
1√

h1 · · ·hd

∫

Rd

Q

(
u1 − t1

h1
, . . . ,

ud − td
hd

)
dWu, (11)
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with u = (u1, . . . , ud). Let (α1, . . . , αd) ∈ (0,∞)d and let α be the number such that 1/α =∑d
i=1 1/αi. Let T =

∏d
i=1 Ti. We suppose that there exists 0 < c1 < ∞ such that, for t ∈ [−1, 1]d,

∫

Rd

(Q(t + u) − Q(u))2du ≤
(

c1

d∑

i=1

|ti|αi

)2

. (12)

Then there exists a constant c2 > 0, such that for b ≥ c2/| log h|1/2 and h small enough,

P

[
sup
t∈∆

|Xt| ≥ b

]
≤ N(h) exp

(
− b2

2‖Q‖2
2

)
exp

(
c2b

‖Q‖2
2| log h|1/2

)
, (13)

where c2 = c3(c4 + 1/
√

α), c3 and c4 do not depend on h1, . . . , hd, T and α, P denotes the
distribution of {Xt, t ∈ ∆} and

N(h) = 2
d∏

i=1

(
Ti

hi

(
c1d| log h|1/2

)1/αi

+ 1

)
.

Note that if the hi/Ti → 0, then for the hi/Ti small enough

N(h) ≤ 2d+1 T

h

(
c1d| log h|1/2

)1/α
.

This lemma is close to various results on the supremum of Gaussian processes (see Adler
(1990), Lifshits (1995), Piterbarg (1996)). The closest result is Theorem 8-1 of Piterbarg (1996)
which, however, cannot be used directly since there is no explicit expression for the constants
that in our case depend on h and T and may tend to 0 or ∞. Also the explicit dependence of
the constants on α is given here. This can be useful for the purpose of adaptive estimation.

Proof. Let λ > 0 and N1(λ, S) be the minimal number of hyperrectangles with edges of length

h1

(
λ

c1d

)1/α1

,. . . ,hd

(
λ

c1d

)1/αd

that cover a set S ⊂ ∆. We have

N1(λ,∆) ≤
d∏

i=1

([
Ti

hi

(
c1d

λ

)1/αi
]

+ 1

)
,

where [x] denotes the integer part of the real x. Denote by B1,. . . ,BN1(λ,∆) such hyperrectangles

that cover ∆ and choose λ = | log h|−1/2, well defined for h < 1. We have, for b ≥ 0,

P

[
sup
t∈∆

|Xt| ≥ b

]
≤

N1(λ,∆)∑

j=1

P

[
sup
t∈Bj

|Xt| ≥ b

]
≤ 2

N1(λ,∆)∑

j=1

P

[
sup
t∈Bj

Xt ≥ b

]
. (14)

Let j ∈ {1, . . . , N1(λ,∆)}. Using Corollary 14.2 of Lifshits (1995), we obtain for b ≥ 4
√

2D(Bj , σj/2)

P

[
sup
t∈Bj

Xt ≥ b

]
≤ exp

(
− 1

2σ2
j

(
b − 4

√
2D(Bj , σj/2)

)2
)

, (15)

where σ2
j = supt∈Bj

E(X2
t ),

D(Bj , σj/2) =

∫ σ/2

0

(
log NBj (u)

)1/2
du,
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where NBj (u) is the minimal number of ρ-balls of radius u necessary to cover Bj and ρ is the
semi-metric defined by

ρ(s, t) =
(
E

[
(Xs − Xt)

2
])1/2

, s, t ∈ ∆,

where E is the expectation with respect to P. Let us evaluate σ2
j . We have, by a change of

variables,

σ2
j = sup

t∈Bj

1

h1 · · ·hd

∫

∆
Q2

(
u1 − t1

h1
, . . . ,

ud − td
hd

)
du ≤ ‖Q‖2

2. (16)

Let s, t ∈ Bj . For h small enough, we have
∣∣∣ si−ti

hi

∣∣∣ < 1 and, using (12) and a change of variables,

we obtain

ρ(s, t) ≤ c1

d∑

i=1

∣∣∣∣
si − ti

hi

∣∣∣∣
αi

. (17)

In view of (17), we have a rough bound for h small enough

NBj (u) ≤ N1(u,Bj) ≤
d∏

i=1

(
1 +

[(
λ

u

)1/αi
])

.

Thus for h small enough

4
√

2D(Bj , σj/2) ≤ 4
√

2

∫ λ

0
[log (N1 (u,Bj))]

1/2 du ≤ 4λ
√

2

∫ 1

0

[
d∑

i=1

log
(
1 + u−1/αi

)]1/2

du

≤ 4λ
√

2
d∑

i=1

∫ 1

0

[
log

(
1 + u−1/αi

)]1/2
du.

Here
∫ 1

0

[
log

(
1 + u−1/αi

)]1/2
du =

∫ 1

0

[
log

(
1 + u1/αi

)
− 1

αi
log u

]1/2

du

≤
√

log 2 +
1√
αi

∫ 1

0
| log x|1/2dx.

Then we have for j ∈ {1, . . . , N1(λ, ∆)}

4
√

2D(Bj , σj/2) ≤ λc3(c4 + 1/
√

α) = c2λ, (18)

where c3 and c4 are positive constants independent of j, T , h and α. Substituting (15), (16) and
(18) into inequality (14), we obtain, for b ≥ c2λ and for h small enough,

P

[
sup
t∈∆

|Xt| ≥ b

]
≤2N1(λ,∆) exp

(
− 1

2‖Q‖2
2

(b − c2λ)2
)

,

≤N(h) exp

(
− b2

2‖Q‖2
2

)
exp

(
c2λb

‖Q‖2
2

)
.

Then for b ≥ c2
| log h|1/2 and for h small enough, we obtain (13).
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