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Introduction

Minimax adaptive estimation of a non-parametric function f from noisy data is the subject of many papers. Assuming that f belongs to a smoothness class Σ β , where β is an unknown smoothness parameter, the aim is to find an estimator of f independent of β and which attains asymptotically optimal behaviour on all the classes Σ β , for β given in a known set B. In this article, we study the problem of adaptive estimation in the Gaussian white noise model in supnorm, assuming that the function f satisfies a Hölder condition. We observe Y t , t ∈ R d , where Y t is a random process defined by the stochastic differential equation

dY t = f (t)dt + σ √ n dW t , t ∈ R d , (1) 
where f is an unknown function, n ∈ N, σ > 0 is known and W is a standard Brownian sheet on [0, 1] d . We want to estimate the function f on R d given a realization y = Y t , t ∈ R d . We suppose that f belongs to a d-dimensional anisotropic Hölder class Σ(β, L) where L = (L 1 , . . . , L d ) ∈ (0, +∞) d is known, β = (β 1 , . . . , β d ) ∈ (0, 1] d is unknown and belongs to a finite set B ⊂ (0, 1] d known. The class Σ(β, L) is defined by

Σ(β, L) = f : R d → R : |f (x) -f (y)| ≤ L 1 |x 1 -y 1 | β 1 + • • • + L d |x d -y d | β d , x, y ∈ R d ,
where x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ). In the following, P f is the distribution of y under the model ( 1) and E f is the corresponding expectation. An estimator θ n of f is a random function on [0, 1] d taking its values in R, measurable with respect to y. We will evaluate the quality of an estimator θ n by the maximal risk in sup-norm on B R n (θ n ) = sup , C β being a constant depending on β. In the nonadaptive case, i.e. when B contains only one vector, it has been proved that ψ n (β) is the minimax rate of convergence for sup-norm estimation: for d = 1, it was done by [START_REF] Ibragimov | of Applications of Mathematics[END_REF]; for multidimensional case, this fact was shown by [START_REF] Stone | Additive regression and other nonparametric models[END_REF] and [START_REF] Nussbaum | On the nonparametric estimation of regression functions that are smooth in a domain in R k[END_REF] for isotropic setting (β 1 = • • • = β d ) and in [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF] for anisotropic setting considered here. In other set-ups, some results on rate of convergence can be found in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Neumann | Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra[END_REF] and [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multiindex denoising[END_REF]. In an adaptive set-up, [START_REF] Lepski | On problems of adaptive estimation in white Gaussian noise[END_REF] proved that ψ n (β) is the adaptive rate of convergence (cf. [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF] for precise definition of adaptive rate of convergence) for the problem considered here when d = 1.

β∈B sup f ∈Σ(β,L) E f θ n -f ∞ ψ n (β) p , (2) 
Our goal is to study the asymptotics of the minimax risk in sup-norm on B (i.e. the adaptive minimax risk), in others words to study the asymptotics of

inf θ n R n (θ n ).
We want to prove that there exist optimal rate adaptive estimators on the scale of classes {Σ(β, L)} β∈B for the L ∞ norm and to find an estimator f n and the constant C β with ψ n (β) =

C β log n n β 2β+1
, such that we have

lim n→∞ inf θn R n (θ n ) = lim n→∞ R n ( f n ) = 1, (3) 
where inf θn stands for the infimum over all the estimators. To obtain that there exist optimal rate adaptive estimators, it is enough to have that there exist an estimator θn and a positive constant C such that lim sup n→∞ R n ( θn ) ≤ C.

An estimator f n that satisfies (3) is called asymptotically exact adaptive estimator on the scale of classes {Σ(β, L)} β∈B for the L ∞ norm, and C β is called exact adaptive constant.

In the non-adaptive case (cf. [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF]), the relation ( 3) is satisfied by a constant C 0 (β) which depends on β, L and σ 2 , and for fβ a kernel estimator with kernel close to the kernel K β . The kernel K β is defined for u = (u 1 , . . . , u d ) ∈ R d by

K β (u 1 , . . . , u d ) = β + 1 α(β)β 2 (1 - d i=1 |u i | β i ) + , with α(β) = 2 d d i=1 Γ( 1 β i ) Γ( 1 β ) d i=1 β i ,
Γ denotes the gamma function and (x) + = max(0, x). The constant C 0 (β) satisfies

C 0 (β) =   σ 2β L * (β) β + 1 α(β)β and L * (β) = d i=1 L 1/β j j β .
In this article, we prove that there exist optimal rate adaptive estimators on {Σ(β, L)} β∈B for the L ∞ norm. We give precise upper and lower bounds for any finite set B. When B contains only two vectors, we improve the upper bound.

For particular forms of the set B (including sets B of isotropic classes), we prove it exist an estimator fn and a constant C β satisfying (3). The constant C β we have found is equal to the constant C 0 (β)(which was the solution of (3) in [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF]) multiplied by a constant larger than 1, depending on the set B and p. As a consequence, for this case, we lose efficiency in the constant under adaptation. We will see that the estimator satisfying (3) is obtained using the Lepski method. This method is introduced in [START_REF] Lepski | On problems of adaptive estimation in white Gaussian noise[END_REF] for the problem considered here with d = 1 and it has been studied by many authors. In particular, for d > 1, [START_REF] Klemelä | Sharp adaptive estimation of linear functionals[END_REF] have used it for the estimation of linear functionals in isotropic settings. [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF] used this method to study pointwise and sup-norm estimation on Sobolev classes.

For more general forms of the set B, we construct optimal rate adaptive estimators using o generalization of the Lepski method proposed in [START_REF] Lepski | Adaptive minimax estimation of infinitely differentiable functions[END_REF].

Main results

In this section, we introduce the notation and the assumptions about the set B, we define three families of estimators and we give our results.

The set B

We suppose that the set B = β (1) , . . . , β (l) contains l vectors belonging to (0, 1] d . The coordinates of β (i) are denoted by β (i) j , j = 1, . . . , d:

β (i) = (β (i) 1 , . . . , β (i) d ) ∈ (0, 1] d . (4) 
We define the real β (i) by

β (i) =   d j=1 1 β (i) j   -1
(5)

and we denote by B the set: l) .

B = β (1) , . . . , β ( 
We suppose that β (i) = β (j) for all i, j ∈ {1, . . . , l} such that i = j. As a consequence, a β ∈ B is matched to a unique β ∈ B via the relations (4) and (5). We define the following relation of order in B: the vectors β and γ satisfy

β ≤ γ if and only if β ≤ γ.
This is a relation of total order in B, thus the notion of maximum and minimum in B are welldefined. We denote

β max = max{β (i) , i = 1, • • • , l} (respectively β min = min{β (i) , i = 1, • • • , l})
and β max (respectively β min ) the associated real number in B via (5).

Remark. In the isotropic setting (i.e. for all β = (β 1 , . . . ,

β d ) ∈ B, β 1 = • • • = β d ), this order is the order β = (β 1 , . . . , β d ) ≤ γ = (γ 1 , . . . , γ d ) if and only if β 1 ≤ γ 1 .

Three families of estimators

Here we define three families of kernel estimators ( fβ,1 ) β∈B , ( fβ,2 ) β∈B and ( fβ,3 ) β∈B . They are close to the asymptotically exact estimator of [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF], but the kernel is somewhat different at the boundary. This is a consequence of the fact that the observations here are for t ∈ R d whereas they were for t ∈ [0, 1] d in [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF]. The estimators are defined in the following way. For β ∈ B and j ∈ {1, 2, 3},

fβ,j (t) = R d K β,j (t -u) dY u , defined for t = (t 1 , . . . , t d ) ∈ [0, 1] d , where for u = (u 1 , . . . , u d ) ∈ R d K β,j (u) = 1 h 1,j (β) • • • h d,j (β) K β u 1 h 1,j (β) , . . . , u d h d,j (β)
.

For j ∈ {1, 2, 3}, the bandwidth

h j = (h 1,j (β), . . . , h d,j (β)) satisfies for i ∈ {1, . . . , d} h i,j (β) = C β λ j (β) L i log n n β/(2β+1) 1/β i , where λ j (β) =          1 for j = 1, 2 -2β 2β+1 c 2 (β) c 1 (β) β 2β+1 for j = 2, 2 -2β 2β+1 for j = 3, C β =   σ 2β L * (β) c 1 (β)(β + 1) α(β)β 3 β   1 2β+1 , (6) 
c 1 (β) = 1 + p(β max -β) 2β max + 1 , c 2 (β) = 1 + pµ(β)(2β + 1)
and

µ(β) = max λ>β λ 2λ + 1 - min γ<λ,i=1,...,d γ 2γ + 1 , λ i γ γ i (2γ + 1)
,

where the maximum is taken for λ = (λ 1 , . . . , λ d ) ∈ B, and the minimum for γ = (γ 1 , . . . , γ d ) ∈ B.

Lemma 1. The kernel

K β satisfies [-1,1] d K β (u)du = 1 and [-1,1] d K 2 β (u)du = 2(β+1) βα(β)(2β+1) .
This a consequence of formula of Gradshteyn and Ryzhik (1965) (cf Appendix of Bertin ( 2004)) For t ∈ [0, 1] d , j ∈ {1, 2, 3} and for a function f belonging to one of the classes Σ(β, L), define the bias of fβ,j b β,j (t, f

) = E f ( fβ,j (t)) -f (t) = K β,j * f (t) -f (t)
and the stochastic term of the error

Z β,j (t) = fβ,j (t) -E f ( fβ,j (t)) = σ √ n K β,j (t -u)dW u .
The symbol * stands here the convolution of functions defined on R d . The quantity K β,j * f is well-defined since K β,j is continuous with compact support and f is continuous.

A lower bound for anisotropic classes

In the following, we will use the maximal risk in sup-norm on B defined in (2) with

ψ n (β) = C β log n n β 2β+1
, C β defined in (6) and p > 0. We have the following lower bound which is valid for any finite set B satisfying the conditions of Subsection 2.1.

Theorem 1. The minimax risk in sup-norm on B satisfies

lim inf n→∞ inf θn R n (θ n ) ≥ 1.

Exact asymptotics for particular forms of the set B

For β ∈ B and j ∈ {1, 2, 3}, we consider

η j (β) = 2 K β 2 2 σ 2 c j (β) n d i=1 h i,j (β)(2β + 1) log n 1/2
, where c 3 (β) = c 1 (β). We select the vector β(p) ∈ B defined by

β(p) = max β ∈ B : ∀γ < β, fβ,1 -fγ,1 ∞ ≤ η 1 (γ)
We have the following theorem for particular forms of the set B, which include the sets B of isotropic classes.

Theorem 2. We suppose that the set B satisfies the property (P ):

(P ) For all β = (β 1 , . . . , β d ), γ = (γ 1 , . . . , γ d ) ∈ B, if β ≤ γ then for all i = 1, . . . , d β i < γ i .
Then, the estimator f (p) = f β(p) ,1 is asymptotically exact adaptive, i.e. it satisfies the condition (3) with the constant C β defined in (6):

lim n→∞ inf θn R n (θ n ) = lim n→∞ R n ( f (p) ) = 1
Remark. The estimator f (p) is obtained using the method of Lepski. The constant C β has the form of the constant obtained by [START_REF] Lepski | On problems of adaptive estimation in white Gaussian noise[END_REF] in the case d = 1 where we replace β by β.

Upper bounds for anisotropic classes

If the set B does not satisfy Condition (P), Theorem 2 is not true anymore. In this subsection, Theorem 3 gives an upper bound for any finite set B ⊂ (0, 1] d and Theorem 4 improves this upper bound when B contains only two vectors.

We consider new estimators defined for β and γ ∈ B and t

∈ [0, 1] d by fβ * γ,2 (t) = K β * γ,2 (t -u)dY u where K β * γ,2 = K β,2 * K γ,2 .
We consider the vector βani ∈ B defined by

βani = max β ∈ B : ∀γ < β, fβ * γ,2 -fγ,2 ∞ ≤ η 2 (γ) .
Theorem 3. The estimator f ani = f βani ,2 satisfies for p > 0 lim sup

n→∞ sup β∈B sup f ∈Σ(β,L) E f f ani -f p ∞ (ψ n (β)M 2 (β)) -p ≤ 1, (7) 
where, for j ∈ {2, 3} and β ∈ B,

M j (β) = c j (β) c 1 (β) β 2β+1 2 1/(2β+1) + β2 2β/(2β+1)
2β + 1 .

The relation (7) imply that f ani is an optimal rate adaptive estimator on {Σ(β, L)} β∈B for the L ∞ norm, for any finite set B ⊂ (0, 1] d .

For l = 2, we have a better result. We suppose that B = {γ, β} with γ < β. We consider a new estimator defined for t ∈ [0, 1] d by

fβ * γ,1 (t) = K β * γ,1 (t -u)dY u where K β * γ,1 = K β,1 * K γ,3 .
We select the estimator f ani2 defined by

f ani2 = fβ,1 if fβ * γ,1 -fγ,3 ∞ ≤ η 3 (γ) or fβ * γ,1 -fβ,1 ∞ ≥ λ 3 (γ)ψn(γ) 2γ+1 (1 + ρ n ) fγ,3 otherwise, where ρ n = ψn((β+γ)/2) ψn(γ) and ψ n (λ), for λ = (λ 1 , . . . , λ d ) ∈ (0, 1] d ∩ B c , is defined by ψ n (λ) = log n n λ 2λ+1 with λ = d i=1 1/λ i -1
. Here B c denotes the complement of the set B. Then we have the following theorem Theorem 4. The estimator f ani2 satisfies for p > 0 lim sup

n→∞ sup f ∈Σ(β,L) E f f ani2 -f p ∞ ψ -p n (β) ≤ 1 (8) and lim sup n→∞ sup f ∈Σ(γ,L) E f f ani2 -f p ∞ ψ -p n (γ) ≤ (M 3 (γ)) p . ( 9 
)
2.6 Some remarks

1. In the model here, we choose to have observations in R d to simplify the calculations. To obtain the results, it is enough to have observations in a neighborhood in [0, 1] d .

2. These results can be generalized to others models such regression with regular design. This can be done by following the same proofs with minor modifications.

3. In this article, we have considered a finite set B such that its cardinality, card(B), does not depend on n. We could have considered a set B such that card(B) grows as n → ∞ and there exists M > 0 such that, for all β ∈ B, β > M . In Theorems 2 and 4, following the same proofs, it is possible to have the same results taking B such card(B) ≤

(log n) 1 2(2βmax+1) (
The last condition is necessary to have lim n→∞ R 1 (β) = 0 in Section 5 and the relation ( 49)). A weaker condition is possible on B. If, for j ∈ {1, 2, 3}, we replace c j (β) by c j (β) + 1 log log n in η j (β), the results of Theorem 2, Theorem 3 and Theorem 4 can be obtained for B such that card(B) ≤ (log n) a with a > 0.

4. For d = 1, in the Lepski method, for a given family of estimators ( fβ ) β∈B , we choose β, the largest

β ∈ B ⊂ R + such that fβ -fγ ∞ ≤ cψ n (γ) for all γ ≤ β, with a constant c > 0.
This choice is based on the fact that, if f ∈ Σ(β v , L) and γ ≤ β ≤ β v , the bias of fβfγ is upper-bounded by a term of order ψ n (γ). This property is still valid for anisotropic settings when B satisfies Condition (P ), but it does not work for general anisotropic settings. Indeed, for anisotropic settings, we do not have such a property on the bias of fβfγ and this bias can be very large. [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multiindex denoising[END_REF] give a new criteria which permits to obtain results in anisotropic Besov classes. Rather than comparing fβ to fγ for γ ≤ β, they compare, for γ ≤ β, fγ to a kernel estimator fβγ with bandwidth (h 1 (β, γ), . . . , h d (β, γ))

where

h i (β, γ) = max(h i (β), h i (γ)) and (h 1 (β), . . . , h d (β)), respectively (h 1 (γ), . . . , h d (γ)),
is the bandwidth of fβ , respectively fγ . This comparison permits to have a new criteria for selecting β. In Theorem 3 and Theorem 4, we use another estimator fβ * γ,j to do this kind of comparison. The different choice of fβ * γ,j is motivated by our goal to have better constants.

5. Our results are adaptation with respect to β and we suppose that L is fixed and known.

To use our method of estimation, the statistician need to know L. Here we suppose the statistician does not know L. We suppose that β belongs to B and

L ∈ {L (1) , . . . , L (l) } ⊂ ]0, +∞[ d . We note for j = 1, . . . , l, L (j) = (L (j) 1 , . . . , L (j) d ). Our method can be applied to select β ∈ B with L = (max j=1,...,d L (j) 1 , . . . , max j=1,...,d L (j) d ).
6. Theorem 2 gives a result of exact estimation. In Theorem 3 and in Theorem 4 in the case f ∈ Σ(γ, L), the difference between the lower bound and the upper bound is the factor (M 2 (β)) p and (M 3 (γ)) p respectively. The following plot represents the quantity M 3 (β)(on the vertical axis) as a function of β ∈ (0, 1/2]. We can see that, for β ∈ (0, 1/2], 1.06 ≤ M 3 (β) ≤ 2 and then it implies that

1.06 ≤ 1.06 c 2 (β) c 1 (β) β 2β+1 ≤ M 2 (β) ≤ 2 c 2 (β) c 1 (β) β 2β+1
.

The following sections are devoted to preliminary results and to the proofs of the theorems.

Some preliminary results

In the following, D i , with i = 1, 2, . . ., denote positive constants, except otherwise mentioned. These constants can depend on β ∈ B but we do not indicate explicitly the dependence on β. This does not have consequences on the proofs since B is a finite set. The quantity η j (β) satisfies the following lemma which will be proved in Section 8.

Lemma 2. For β ∈ B and j ∈ {1, 2}, we have

η j (β) + jψ n (β)λ j (β) 2β + 1 = M j (β)ψ n (β),
where M 1 (β) = 1. Moreover, for β ∈ B, we have

η 3 (β) + 2ψ n (β)λ 3 (β) 2β + 1 = M 3 (β)ψ n (β).
We have the following results for the families of estimators ( fβ,1 ) β∈B , ( fβ,2 ) β∈B and ( fβ,3 ) β∈B .

Proposition 1. For β ∈ B and j ∈ {1, 2, 3}, we have

sup f ∈Σ(β,L) b β,j (•, f ) ∞ ≤ ψ n (β)λ j (β) 2β + 1 . Proposition 2. For β ∈ B, j ∈ {1, 2, 3} and t ∈ [0, 1] d , we have E f Z 2 β,j (t) ≤ σ 2 K β 2 2 n hj (β) , and for b ≥ D 0 n hj (β)| log( hj (β))|
, we have

P f [ Z β,j ∞ ≥ b] ≤ D 1 hj (β) exp - b 2 n hj (β) 2 K β 2 2 σ 2 exp    D 2 (β)b n hj (β) (log( hj (β))) 1/2    ,
where hj (β) = d i=1 h i,j (β).

Proposition 3. For p > 0, β ∈ B and j ∈ {1, 2, 3}, we have

lim sup n→∞ sup f ∈Σ(β,L) E f fβ,j -f ∞ (M j (β)ψ n (β)) -1 p ≤ 1 (10) lim n→∞ sup f ∈Σ(β,L) E f fβ,j -f ∞ ψ -1 n (β) p I { fβ,j -f ∞≥(1+ε(n))Mj (β)ψn(β)} = 0, (11) 
where ε(n) satisfies ε(n) ≥ (log n) -1/4 , and I A denotes the indicator function of a set A.

Proposition 1, respectively Proposition 2, can be obtained following the proof of Proposition 1, respectively Lemma 4, of [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF]. The proof of Proposition 3 can be deduced from the proofs of [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF] and we add some elements of proof in Section 8. Define for t ∈ [0, 1] d , j ∈ {1, 2} and a function f the bias term of fβ * γ,j

b β * γ,j (t, f ) = E f ( fβ * γ,j (t)) -f (t),
and the stochastic term of fβ * γ,j

Z β * γ,j (t) = fβ * γ,j (t) -E f ( fβ * γ,j (t)) = σ √ n K β * γ (t -u)dW u .
The estimator fβ * γ,j satisfies the two lemmas.

Lemma 3. For β, γ ∈ B, we have

sup f ∈Σ(β,L) b β * γ,2 (•, f ) -b γ,2 (•, f ) ∞ ≤ sup f ∈Σ(β,L) b β,2 (•, f ) ∞ ≤ ψ n (β)λ 2 (β) 2β + 1 . When B = {γ, β} with γ < β we have sup f ∈Σ(β,L) b β * γ,1 (•, f ) -b γ,3 (•, f ) ∞ ≤ sup f ∈Σ(β,L) b β,1 (•, f ) ∞ ≤ ψ n (β) 2β + 1 and sup f ∈Σ(γ,L) b β * γ,1 (•, f ) -b β,1 (•, f ) ∞ ≤ sup f ∈Σ(γ,L) b γ,3 (•, f ) ∞ ≤ ψ n (γ)λ 3 (γ) 2γ + 1 . Lemma 4. For β, γ ∈ B such that γ < β and j ∈ {1, 2}, we have for all t ∈ [0, 1] d E f (Z β * γ,j ) 2 (t) ≤ σ 2 K β 2 2
n hj (β) ,

and for b ≥ D 3 n hj (β)| log( hj (β))| P f [ Z β * γ,j ∞ ≥ b] ≤ D 4 hj (β) exp - b 2 n hj (β) 2 K β 2 2 σ 2 exp    D 5 b n hj (β) (log( hj (β))) 1/2    . ( 12 
)
Lemma 5. Let j ∈ {1, 2, 3}. We have, for γ, β ∈ B such γ < β,

lim n→∞ sup f ∈Σ(β,L) E f Z γ,j p ∞ ψ -p n (β)I { Z γ,j ∞ >τ n,j (γ)} = 0,
where

τ n,j (γ) = 2 K γ 2 2 σ 2 (1 + pβ max ) log n n d i=1 h i,j (γ)(2γ + 1) 1/2
.

Remark: τ n,j (γ) is of the same order of ψ n (γ).

These three lemmas will be proved in Section 8.

Proof of Theorem 1

The proof of the lower bound is similar to the proof of lower bounds in [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF]The difficulties consist in finding a good subclass of Σ(β, L) and good parameters to apply Theorem 6 of [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF]. We have

∆ n = inf Tn sup β∈B sup f ∈Σ(β,L) E f T n -f p ∞ ψ -p n (β) ≥ max β∈B {∆ n (β)}, where ∆ n (β) = inf Tn sup f ∈Σ(β,L) E f T n -f p ∞ ψ -p n (β) .
By Theorem 1 of [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF], we know that lim inf n→∞ ∆ n (β max ) ≥ 1. This comes from the fact that the loss function w(x) = x p satisfies the conditions required in this theorem (i.e. w is a non-decreasing function which admits a polynomial majorant and such that w(0) = 0), and the exact constant C βmax in the rate of convergence is the same as the exact constant in the non-adaptive case. Now, in order to prove the theorem, it is enough to prove that

lim inf n→∞ ∆ n (β) ≥ 1 for all β ∈ B \βmax . Let 0 < ε < 1/2. Let β ∈ B \βmax .
In the following several quantities depend on β, but we do not indicate this dependence to simplify the notations. We consider the set of functions

f j,β (•) defined, for j ∈ {0, • • • , M }, by f j,β = ψ n (β)(1 -ε) 1 -d i=1 t i -a j,i h i,1 (β) β i + , j = 1, . . . , M f 0,β = 0,
where the a j = (a j,1 , . . . , a j,d ) form a grid of points in [0, 1] d . This grid is defined in the following manner. For

m i = 1 2h i,1 (2 1/β + 1) -1
with [x] the integer part of x and M = d i=1 m i , we consider the points a(l 1 , . . . , l d ) ∈ [0, 1] d for l i ∈ {1, . . . , m i } and i ∈ {1, . . . , d}, such that:

a(l 1 , . . . , l d ) = 2(2 1 β + 1) (h 1,1 l 1 , . . . , h d,1 l d ) .
To simplify the notation, we denote these points a 1 , . . . , a M and each a j takes the form:

a j = (a j,1 , . . . , a j,d ).
The functions f j,β satisfy the following lemma which can be proved as in [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF].

Lemma 6. 1-f j,β ∈ Σ(β, L), 2-f j,β 2 2 = σ 2 c 1 (β) log n(1-ε) 2 n(2β+1)
3-the functions f j,β have disjoint support.

Here we come back to the study of ∆ n . Let j ∈ {1, . . . , M } and T n an estimator. We have, since

f j,β (a k ) = (1 -ε)ψ n (β)δ j,k , ψ -1 n (β) T n -f j,β ∞ ≥ψ -1 n (β) max 1≤k≤M |T n (a k ) -f j,β (a k )| ≥(1 -ε) max 1≤k≤M θk -δ j,k ,
where δ j,k is the Kronecker delta and θk = T n (a k )ψ -1

n (β) 1-ε . As a consequence ψ -1 n (β) T n -f j,β ∞ ≥ d( θ, θ j ),
where θ = ( θ1 , . . . , θM ), θ j = (δ 1,j , . . . , δ M,j ), and

d(u, v) = (1 -ε) max 1≤k≤M |u k -v k | for two vectors u = (u 1 , . . . , u M ) and v = (v 1 , . . . , v M ) of R M .
In the same way

ψ -1 n (β) T n -f 0,β ∞ ≥ψ -1 n (β) max 1≤k≤M |T n (a k )| ≥ψ -1 n (β max ) max 1≤k≤M |T n (a k )| ≥ ψ n (β) ψ n (β max ) d( θ, θ 0 ),
where θ 0 is the null-vector of R M . Then we have

∆ n (β) ≥ inf T n max 0≤k≤M E k T n -f k,β p ∞ ψ -p n (β) ≥ inf θ∈R d max E 0 ψ n (β) ψ n (β max ) p d p ( θ, θ 0 ) , max 1≤k≤M E k d p ( θ, θ k ) , (13) 
where E k is the expectation E k = E f k,β . We denote also P k = P f k,β .

Here we apply Theorem 6 of [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF] to the relation (13). We consider the M + 1 parameters {θ 0 , . . . , θ M } ⊂ [0, 1] M , the family of probability measures {P θ j = P j }, the loss function w(x) = x p and the distance d previously defined. The parameters θ j satisfy d(θ i , θ k ) ≥ 1ε for i, k ∈ {0, . . . , M } and i = k. We are now going to prove that there exists α n , with 0 ≤ α n ≤ 1 and lim n→∞ α n = 0, such that

Q dP 0 dQ ≥ τ n ≥ 1 -α n , (14) 
where

Q = 1 M M k=1 P k , τ n = n -ν , ν = pβ max 2β max +1 -pβ 2β+1 -εc 1 (β) 2β+1 (1 -ε/2
) and ε is chosen small enough to have ν > 0. Indeed, if we prove ( 14), Theorem 6 of Tsybakov implies that

∆ n (β) ≥ (1 -α n )τ n (1 -2ε) p ψn(β)ε ψn(βmax) p (1 -2ε) p + τ n ψn(β)ε ψn(βmax) p . We have lim n→∞ τ n ψ n (β)ε ψn(βmax) p = +∞. Then lim inf n→∞ ∆ n (β) ≥ (1 -2ε) p .
Since ε can be arbitrarily small, we obtain that lim inf n→∞ ∆ n (β) ≥ 1 and it proves the theorem.

Here we prove (14). In the same way as Tsybakov (1998), we have that under P i

dP k dP 0 = exp ξ k v n + v 2 n k = i exp ξ k v n -v 2 n k = i,
where the ξ k are i.i.d. N (0, 1) variables and

v 2 n = n σ 2 f k,β 2 2 = 2 log n 2β+1 c 1 (β)(1 -ε) 2
. Now, by the independence of the ξ i , we have

P i 1 M M k=1 dP k dP 0 < 1/τ n ≥ P i   1 M M k=1,k =i dP k dP 0 < 1 2τ n   P i 1 M dP i dP 0 < 1 2τ n . ( 15 
)
The probabilities above satisfy, since the ξ k are N (0, 1) variables,

P i   1 M M k=1,k =i dP k dP 0 < 1 2τ n   =P i   1 M M k=1,k =i exp ξ k v n -v 2 n < 1 2τ n   =1 -P i   M k=1,k =i exp ξ k v n -v 2 n ≥ M 2τ n   (16) ≥1 - 2τ n (M -1) M E i exp ξ k v n -v 2 n =1 - 2τ n (M -1) M , (17) 
and

P i 1 M dP i dP 0 < 1 2τ n =P i exp ξ i v n + v 2 n < M 2τ n =1 -Φ 1 v n -log M + log(2τ n ) + v 2 n /2 , ( 18 
)
where Φ is the Gaussian c.d.f. By replacing M , τ n and v n by their values in terms of n and β,

since c 1 (β) 2β+1 = 1 2β+1 + pβ max 2β max +1 -pβ 2β+1 , we obtain that 1 v n -log M + log(2τ n ) + v 2 n /2 = log n v n - 1 2β + 1 - pβ max 2β max + 1 + pβ 2β + 1 + εc 1 (β) 2β + 1 (1 -ε/2) + c 1 (β) 2β + 1 (1 -2ε + ε 2 ) + o(1) = - log n v n c 1 (β)ε 2β + 1 (1 -ε/2) + o(1) . ( 19 
)
Using the relations ( 15), ( 17), ( 18), ( 19), noting that 2τn(M -1) M tends to 0 and that

-log n vn c 1 (β)ε 2β+1 (1 -ε/2) + o(1) tends to -∞, as n tends to ∞, we deduce that lim n→∞ Q dP 0 dQ ≥ τ n = 1.
This implies the existence of a sequence α n that satisfies (14) and lim n→∞ α n = 0, which concludes the proof of the lower bound.

Proof of Theorem 2

Since Theorem 1 is true, in particular for set B satisfying Condition (P ), to prove Theorem 2, it is enough to show that

lim sup n→∞ sup β∈B sup f ∈Σ(β,L) E f f (p) -f p ∞ ψ -p n (β) ≤ 1. (20) 
Here we prove (20). Since the cardinal of B is finite, we are going to prove that for all β ∈ B,

lim sup n→∞ ∆(β, n) ≤ 1, where ∆(β, n) = sup f ∈Σ(β,L) E f f (p) -f p ∞ ψ -p n (β) ≤ R 1,n (β) + R 2,n (β), with R 1,n (β) = sup f ∈Σ(β,L) E f f (p) -f p ∞ ψ -p n (β)I { β(p) <β} and R 2,n (β) = sup f ∈Σ(β,L) E f f (p) -f p ∞ ψ -p n (β)I { β(p) ≥β} .
This will be obtained by proving that

lim n→∞ R 1,n (β) = 0 (21) and that lim sup n→∞ R 2,n (β) ≤ 1. (22) 
•Proof of ( 21)

Let β ∈ B. We have R 1,n (β) ≤ γ∈B,γ<β sup f ∈Σ(β,L) E f fγ,1 -f p ∞ ψ -p n (β)I { β(p) =γ} .
We fix now γ ∈ B with γ < β. The event β(p) = γ satisfies

β(p) = γ ⊂ β ′ ∈B,β ′ <γ ′ fγ ′ ,1 -fβ ′ ,1 ∞ > η 1 (β ′ ) ,
where γ ′ = min{λ ∈ B such that λ > γ}. Then we have

sup f ∈Σ(β,L) E f fγ,1 -f p ∞ ψ -p n (β)I { β(p) =γ} ≤ β ′ ∈B,β ′ <γ ′ sup f ∈Σ(β,L) E f fγ,1 -f p ∞ ψ -p n (β)I A 1,n (β ′ ) , with A 1,n (β ′ ) = fγ ′ ,1 -fβ ′ ,1 ∞ > η 1 (β ′ ) .
We do not indicate the dependence of the set A 1,n (β ′ ) on γ ′ because we argue for fixed γ in B and then for fixed γ ′ . To prove the result (21), since the cardinal of B is finite, it is enough to prove that the following quantity, for

β ′ ∈ B with β ′ < γ ′ , sup f ∈Σ(β,L) E f fγ,1 -f p ∞ ψ -p n (β)I A 1,n (β ′ ) , (23) 
tends to 0 as n → ∞.

Here we study the quantity (23). Let f ∈ Σ(β, L). We fix β ′ ∈ B such that β ′ < γ ′ . We have

E f fγ,1 -f p ∞ ψ -p n (β)I A 1,n (β ′ ) ≤ 2 p ψ -p n (β) b γ,1 (•, f ) p ∞ P f (A 1,n (β ′ )) + E f Z γ,1 p ∞ I A 1,n (β ′ ) .
To study the quantity above, we need the following lemma which will be proved in Section 8.

Lemma 7. We have for n large enough sup f ∈Σ(β,L)

P f A 1,n (β ′ ) ≤ D 6 (log n) -1 2β ′ +1 n - p(β max -β ′ ) (2β max +1)(2β ′ +1) .
The bias b γ,1 satisfies, for all

f ∈ Σ(β, L), b γ,1 (•, f ) ∞ ≤ K γ (u) d i=1 L i |u i h i,1 (γ)| β i du.
Since for all i ∈ {1, • • • , d}, γ i < β i , we have that

sup f ∈Σ(β,L) b γ,1 (•, f ) = o(ψ n (γ)),
as n → ∞. As a consequence, we deduce from Lemma 7 that

sup f ∈Σ(β,L) ψ -p n (β) b γ,1 (•, f ) p ∞ P f (A 1,n (β ′ )) ≤ D 7 (log n) -1 2β ′ +1 + pγ 2γ+1 -pβ 2β+1 n - pβ max 2β max +1 + pβ ′ 2β ′ +1 -pγ 2γ+1 + pβ 2β+1 .
(24) Moreover,

E f ψ -p n (β) Z γ,1 p ∞ I A 1,n (β ′ ) ≤ (τ n,1 (γ)) p ψ -p n (β)P f (A 1,n (β ′ )) + E f Z γ,1 p ∞ ψ -p n (β)I { Z γ,1 ∞>τn,1(γ)} . (25) 
From Lemma 7, we know that

P f (A 1,n (β ′ )) is at most of order (log n) -1 2β ′ +1 n - pβ max 2β max +1 + pβ ′ 2β ′ +1 thus (τ n,1 (γ)) p ψ -p n (β)P f (A 1,n (β ′ )) ≤ D 8 (log n) -1 2β ′ +1 + pγ 2γ+1 -pβ 2β+1 n - pβ max 2β max +1 + pβ ′ 2β ′ +1 -pγ 2γ+1 + pβ 2β+1 .
Since β ′ ≤ γ < β ≤ β max , we obtain that

lim n→∞ sup f ∈Σ(β,L) ψ -p n (β) b γ,1 (•, f ) p ∞ P f (A 1,n (β ′ )) = 0 (26)
and

lim n→∞ sup f ∈Σ(β,L) (τ n,1 (γ)) p ψ -p n (β)P f (A 1,n (β ′ )) = 0.
Using Lemma 5, we deduce that

lim n→∞ sup f ∈Σ(β,L) E f ψ -p n (β) Z γ,1 p ∞ I A 1,n (β ′ ) = 0. (27) 
From ( 26) and ( 27), we conclude that the quantity (23) tends to 0 as n → ∞.

•Proof of ( 22)

Let δ n = 1 log n 1/4 and β ∈ B. We have R 2,n (β) ≤ (1 + δ n ) p + sup f ∈Σ(β,L) E f f (p) -f p ∞ ψ -p n (β)I { β(p) ≥β}∩{ f (p) -f ∞ψ -1 n (β)>1+δn} ≤ (1 + δ n ) p + γ∈B,γ≥β sup f ∈Σ(β,L) Q 2,n (β, γ, f ), where Q 2,n (β, γ, f ) = E f fγ,1 -f p ∞ ψ -p n (β)I { β(p) =γ}∩{ fγ,1 -f ∞ψ -1 n (β)>1+δn}
. By Proposition 3, we have lim n→∞ sup f ∈Σ(β,L) Q 2,n (β, β, f ) = 0. To prove ( 22), since the cardinal of B is finite and lim n→∞ δ n = 0, it is enough to prove, for γ ∈ B with γ > β, that

lim n→∞ sup f ∈Σ(β,L) Q 2,n (β, γ, f ) = 0. ( 28 
)
Here we prove the result (28

). Let γ ∈ B such that γ > β and f ∈ Σ(β, L). If β(p) = γ, since γ > β, we have fγ,1 -fβ,1 ∞ ≤ η 1 (β). Then, fγ,1 -f ∞ I { β(p) =γ} ≤ fγ,1 -fβ,1 ∞ + fβ,1 -f ∞ I { β(p) =γ} ≤ η 1 (β) + fβ,1 -f ∞ I { β(p) =γ} . ( 29 
)
The quantity Q 2,n (β, γ, f ) is upper bounded by

E f fγ,1 -f 2p ∞ ψ -2p n (β)I { β(p) =γ} 1/2 P f { β(p) = γ} ∩ { fγ,1 -f ∞ ψ -1 n (β) > 1 + δ n } 1/2 .
Then, (29) and Proposition 3 imply that

sup f ∈Σ(β,L) E f fγ,1 -f 2p ∞ ψ -2p n (β)I { β(p) =γ} 1/2
is bounded above by a positive constant for n large enough and we deduce that

sup f ∈Σ(β,L) Q 2,n (β, γ, f ) ≤ D 9 P f { β(p) = γ} ∩ { fγ,1 -f ∞ ψ -1 n (β) > 1 + δ n } 1/2 , ( 30 
)
for n large enough. Now we are going to prove that the right hand side of inequality (30) tends to 0 as n → ∞. We have

fγ,1 -f ∞ I { β(p) =γ} ≤ ( b γ,1 (•, f ) -b β,1 (•, f ) ∞ + b β,1 (•, f ) ∞ + Z γ,1 ∞ ) I { β(p) =γ} ≤ b γ,1 (•, f ) -b β,1 (•, f ) ∞ + ψ n (β) 2β + 1 + Z γ,1 ∞ I { β(p) =γ} , (31) 
where the last line is a consequence of Proposition 1.

We

have b γ,1 (•, f )-b β,1 (•, f ) ∞ = E f fγ,1 -E f fβ,1 ∞ . The function φ : t -→ E f fγ,1 (t) - E f fβ,1 (t) is a continuous function on [0, 1] d which admits a non-random maximum x 0 satis- fying b γ,1 (•, f ) -b β,1 (•, f ) ∞ = φ(x 0 ) ≤ fγ,1 (x 0 ) -fβ,1 (x 0 ) + |ϕ 1 | ≤ fγ,1 -fβ,1 ∞ + |ϕ 1 | ≤ η 1 (β) + |ϕ 1 |, (32) 
where ϕ 1 = fγ,1 (x 0 ) -fβ,1 (x 0 ) -E f fγ,1 (x 0 ) -fβ,1 (x 0 ) . Since ϕ 1 is a N (0, π 2 n ) variable, by Proposition 2, we deduce that its variance π 2 n satisfies

π 2 n ≤ 2E f (Z β,1 ( x 0 )) 2 + 2E f (Z γ,1 (x 0 )) 2 ≤ 2 K β 2 2 σ 2 (1 + o(1)) n h1 (β) . ( 33 
)
Then using ( 31) and ( 32) we deduce that

fγ,1 -f ∞ I { β(p) =γ} ≤ η 1 (β) + ψ n (β) 2β + 1 + Z γ,1 ∞ + |ϕ 1 | I { β(p) =γ} ≤ (ψ n (β) + Z γ,1 ∞ + |ϕ 1 |) I { β(p) =γ} ,
the last line being a consequence of Lemma 2. Thus,

P f { β(p) = γ} ∩ { fγ,1 -f ∞ > (1 + δ n )ψ n (β)} ≤P f ( Z γ,1 ∞ + |ϕ 1 | > δ n ψ n (β)) ≤P f Z γ,1 ∞ > δ n 2 ψ n (β) + P f |ϕ 1 | > δ n 2 ψ n (β) . (34) 
As ϕ 1 is a N (0, π 2 n ) variable and using (33), we have

P f |ϕ 1 | > δ n 2 ψ n (β) ≤ exp - ψ 2 n (β)δ 2 n n h1 (β) 16 K β 2 2 σ 2 .
The quantity ψ 2 n (β)δ 2 n n h1 (β) is of order √ log n, and then

lim n→∞ P f |ϕ 1 | > δ n 2 ψ n (β) = 0. ( 35 
)
Using Proposition 2, we have

P f Z γ,1 ∞ > δ n 2 ψ n (β) ≤ D 1 h1 (γ) exp - ψ 2 n (β)δ 2 n n h1 (γ) 8 K β 2 2 σ 2 exp    D 2 δ n ψ n (β) n h1 (γ) 2(log h1 (γ)) 1/2    .
The quantity

ψ 2 n (β)δ 2 n n h1 (γ) is of order ψ 2 n (β)ψ -2 n (γ)(log n) D 10 with some D 10 ∈ R and h1 (γ) is of order log n n 1/(2γ+1)
. Hence, since β < γ, this implies that

lim n→∞ P f Z γ,1 ∞ > δ n 2 ψ n (β) = 0. ( 36 
)
Using ( 35), ( 36) and that the fact that the right hand side of inequality (34) does not depend on f , we deduce that

lim n→∞ sup f ∈Σ(β,L) P f { β(p) = γ} ∩ { fγ,1 -f ∞ > (1 + δ n )ψ n (β)} = 0.
Then we obtain the result (28) which implies ( 22).

6 Proof of Theorem 3

The scheme of proof is similar to the proof of relation ( 20) in the proof of Theorem 2. To prove Theorem 3, we will prove that, for all β ∈ B,

lim n→∞ R 3,n (β) = 0 (37) and lim sup n→∞ R 4,n (β) ≤ (M 2 (β)) p , ( 38 
)
where

R 3,n (β) = sup f ∈Σ(β,L) E f f ani -f p ∞ ψ -p n (β)I { βani <β} , R 4,n (β) = sup f ∈Σ(β,L) E f f ani -f p ∞ ψ -p n (β)I { βani ≥β} .
•Proof of ( 37)

Let β, γ ∈ B such that γ < β. The event βani = γ satisfies βani = γ ⊂ β ′ ∈B,β ′ <β A 2,n (β ′ ), where A 2,n (β ′ ) = fβ * β ′ ,2 -fβ ′ ,2 ∞ > η 2 (β ′ ) .
Following the same reasoning as in the proof of relation ( 20), to prove (37), it is enough to prove that, for all β ′ ∈ B with β ′ < β,

lim n→∞ sup f ∈Σ(β,L) E f fγ,2 -f p ∞ ψ -p n (β)I A 2,n (β ′ ) = 0. ( 39 
)
The event A 2,n (β ′ ) satisfies the following lemma:

Lemma 8. We have for n large enough

sup f ∈Σ(β,L) P f A 2,n (β ′ ) ≤ D 11 (log n) -1 2β ′ +1 n -pµ(β ′ ) .
The bias b γ,2 satisfies for all

f ∈ Σ(β, L) b γ,2 (•, f ) ∞ ≤ K γ (u) d i=1 L i |u i h i,2 (γ)| β i du, then sup f ∈Σ(β,L) b γ,2 (•, f ) ∞ is at most of order log n n min β i γ γ i (2γ+1)
, where the minimum is taken on i = 1, . . . , d. Therefore

sup f ∈Σ(β,L) ψ -p n (β) b γ,2 (•, f ) p ∞ P f (A 2,n (β ′ ))
is upper bounded by

D 12 (log n) -pω(β,γ)-1 2β ′ +1 n -p(µ(β ′ )-ω(β,γ))
where

ω(β, γ) = β 2β + 1 -min i=1,...,d β i γ γ i (2γ + 1)
.

If B satisfies Condition (P ), then ω(β, γ) < β 2β + 1 - γ 2γ + 1 .
Since β > γ and µ(β ′ ) > 0, this implies that

lim n→∞ sup f ∈Σ(β,L) ψ -p n (β) b γ,2 (•, f ) p ∞ P f (A 2,n (β ′ )) = 0. (40) 
If B do not satisfy Condition (P ), there exists i ∈ {1, . . . , d} such that

β i /γ i ≤ 1, then µ(β ′ ) ≥ ω(β, γ) ≥ β 2β + 1 - γ 2γ + 1 > 0.
This implies that lim

n→∞ sup f ∈Σ(β,L) ψ -p n (β) b γ,2 (•, f ) p ∞ P f (A 2,n (β ′ )) = 0. (41) 
Reasoning as in the proof of (21), using the decomposition (25), Lemma 5, Lemma 8 and that

β 2β + 1 - γ 2γ + 1 ≤ µ(β ′ ),
we deduce that lim

n→∞ sup f ∈Σ(β,L) E f ψ -p n (β) Z γ,2 p ∞ I A 2,n (β ′ ) = 0. (42) 
From ( 41), ( 40) and ( 42), we obtain (37).

•Proof of (38)

The proof will be similar to the proof in the proof of ( 22). We fix

δ n = 1 log n 1/4 . We have R 4,n (β) ≤ (1 + δ n ) p (M 2 (β)) p + γ∈B,γ≥β sup f ∈Σ(β,L) Q 4,n (β, γ, f ), where Q 4,n (β, γ, f ) = E f fγ,2 -f p ∞ ψ -p n (β)I { βani =γ}∩C 1,n ,
and

C 1,n = { fγ,2 -f ∞ ψ -1 n (β) > M 2 (β)(1 + δ n )}.
By Proposition 3, we have lim n→∞ sup f ∈Σ(β,L) Q 4,n (β, β, f ) = 0. To prove (38), it is enough to prove that, for all γ ∈ B such that γ > β,

lim n→∞ sup f ∈Σ(β,L) Q 4,n (β, γ, f ) = 0. (43) 
Let γ ∈ B, such that γ > β, and f ∈ Σ(β, L). Following the same reasoning as in the proof of ( 22) from ( 31) to (33), using Proposition 1, Lemma 2 and Lemma 3, we deduce that

fγ,2 -f ∞ I { βani =γ} ≤( b β * γ,2 (•, f ) -b γ,2 (•, f ) ∞ + b β * γ,2 (•, f ) -b β,2 (•, f ) ∞ + b β,2 (•, f ) ∞ + Z γ,2 ∞ )I { βani =γ} ≤ 2ψ n (β)λ 2 (β) 2β + 1 + η 2 (β) + Z γ,2 ∞ + |ϕ 2 | I { βani =γ} , ≤ (M 2 (β) + Z γ,2 ∞ + |ϕ 2 |) I { βani =γ} (44) 
where

ϕ 2 = fβ * γ,2 (x 0 ) -fβ,2 (x 0 ) -E f fβ * γ,2 (x 0 ) -fβ,2 (x 0 ) , with some x 0 ∈ [0, 1] d . Using
Lemma 4 and Proposition 2, we have that ϕ 2 is a N (0, π 2 n ) variable, with variance π 2 n satisfying

π 2 n ≤ 2 K β 2 2 σ 2 (1 + o(1)) n h1 (β) .
We have

E f Z γ,2 2p ∞ ψ -2p n (β) ≤ (τ n,2 (γ)) 2p ψ -2p n (β) + ψ -2p n (β)E f Z γ,2 2p 
∞ I { Z γ,2 ∞>τn,2(γ)} .
Reasoning as in the proof of Lemma 5, we have that

lim n→∞ (ψ n (β)) -2p sup f ∈Σ(β,L) E f Z γ,2 2p ∞ I { Z γ,2 ∞>τn,2(γ)} = 0.
Since γ > β, we deduce that

lim n→∞ sup f ∈Σ(β,L) E f Z γ,2 2p ∞ ψ -2p n (β) = 0. (45) 
Moreover, the variable ϕ 3 satisfies the properties

P f [|ϕ 2 | > δ n ψ n (β)t] ≤ exp -D 13 t 2 log n , t ≥ 0, (46) 
lim n→∞ sup f ∈Σ(β,L) E f |ϕ 2 | 2p ψ -2p n (β) = 0. (47) 
The property (46) comes from the fact that ϕ 2 is a N (0, π 2 n ) variable, and the property (47) can be proved as ( 45) using ( 46) and the proof of Lemma 5.

The relations ( 45) and ( 47) and Proposition 3 imply that

sup f ∈Σ(β,L) E f fγ,2 -f 2p ∞ ψ -2p n (β)I { βani =γ} 1/2
is bounded above by a positive constant for n large enough. Now to have (43), it is enough to prove that lim n→∞ sup f ∈Σ(β,L)

P f C 1,n ∩ { βani = γ} = 0. (48) 
Using the relations ( 44) and ( 46), and following the proof of ( 22) from ( 34) to (36), we deduce (48), which finishes the proof.

7 Proof of Theorem 4

•Proof of ( 8)

By Proposition 3, we have

lim sup n→∞ sup f ∈Σ(β,L) E f fβ,1 -f p ∞ ψ -p n (β) ≤ 1
Then to have (8), it is enough to prove that

lim n→∞ sup f ∈Σ(β,L) E f fγ,3 -f p ∞ ψ -p n (β)I { f ani2 = fγ,3 } = 0 (49) 
The event f ani2 = fγ,3 satisfies f ani2 = fγ,3 ⊂ A 3,n ∩ A 4,n , where

A 3,n = fβ * γ,1 -fγ,3 ∞ > η 3 (γ) , A 4,n = fβ * γ,1 -fβ,1 ∞ < ψ n (γ)λ 3 (γ) 2γ + 1 (1 + ρ n ) ,
The event A 3,n satisfies the lemma:

Lemma 9. We have for n large enough

sup f ∈Σ(β,L) P f [A 3,n ] ≤ D 14 (log n) -1 2γ+1 n - p(β-γ) (2β+1)(2γ+1) .
The proof of Lemma 9 is similar to the proof of Lemma 7 and 8. Let f ∈ Σ(β, L). We have

fγ,3 -f ∞ I A 3,n ∩A 4,n ≤ fβ * γ,1 -fγ,3 ∞ + fβ * γ,1 -fβ,1 ∞ + fβ,1 -f ∞ I A 3,n ∩A 4,n
Using Proposition 3 and Lemma 9 we deduce that

lim n→∞ sup f ∈Σ(β,L) E f fβ,1 -f p ∞ ψ -p n (β)I A 3,n ∩A 4,n = 0,
Moreover, using the definition of A 4,n , we have

E f fβ * γ,1 -fβ,1 p ∞ ψ -p n (β)I A 3,n ∩A 4,n ≤ λ 3 (γ)ψ n (γ)ψ -1 n (β) 2γ + 1 p (1 + ρ n ) p P f (A 3,n ).
Using Lemma 9, we deduce that, for n large enough,

ψ -p n (β)ψ p n (γ)(1 + ρ n ) p P f (A 3,n ) is at most of order (log n) -1 2γ+1 + pγ 2γ+1 -pβ 2β+1 , therefore, since γ < β, lim n→∞ sup f ∈Σ(β,L) E f fβ * γ,1 -fβ,1 p ∞ ψ -p n (β)I A 3,n ∩A 4,n = 0
To prove (49), it remains to prove that

lim n→∞ sup f ∈Σ(β,L) E f fβ * γ,1 -fγ,3 p ∞ ψ -p n (β)I A 3,n ∩A 4,n = 0.
We have

fβ * γ,1 -fγ,3 ∞ I A 3,n ∩A 4,n ≤ ( b β * γ,1 (•, f ) -b γ,3 (•, f ) ∞ + Z γ,3 ∞ + Z β * γ,1 ∞ ) I A 3,n ∩A 4,n .
Reasoning as in the proof of ( 21), using the decomposition (25) and applying Lemma 5 to Z γ,3 , we deduce that lim

n→∞ sup f ∈Σ(β,L) E f ( Z γ,3 ∞ ) p ψ -p n (β)I A 3,n ∩A 4,n = 0.
Since Z β * γ,1 satisfies Lemma 4, a similar reasoning permits to have

lim n→∞ sup f ∈Σ(β,L) E f ( Z β * γ,3 ∞ ) p ψ -p n (β)I A 3,n ∩A 4,n = 0.
Appying Lemma 3, we obtain that the quantity

sup f ∈Σ(β,L) b β * γ,1 (•, f ) -b γ,3 (•, f ) ∞ is of order ψ n (β)
, and finally we have by Lemma 9 that

lim n→∞ sup f ∈Σ(β,L) b β * γ,1 (•, f ) -b γ,3 (•, f ) ∞ ψ -p n (β)P f (A 3,n ∩ A 4,n ) = 0,
which prove (49) and then (8).

•Proof of ( 9)

The proof will be similar to the proof in the proof of ( 22). Let f ∈ Σ(γ, L). We fix δ n = 1 log n 1/4 . We have

E f f ani2 -f p ∞ ψ -p n (γ) ≤(1 + δ n ) p (M 3 (γ)) p + E f f ani2 -f p ∞ ψ -p n (γ)I C 2,n , ≤(1 + δ n ) p (M 3 (γ)) p + E f fβ,1 -f p ∞ ψ -p n (γ)I C 2,n ∩An +E f fγ,3 -f p ∞ ψ -p n (γ)I C 2,n ∩A c n , where C 2,n = f ani2 -f ∞ ψ -1 n (γ) > (1 + δ n )M 3 (γ) ,
and

A n = (A 3,n ∩ A 4,n ) c
. By Proposition 3, we have

lim n→∞ sup f ∈Σ(γ,L) E f fγ,3 -f p ∞ ψ p n (γ)I C 2,n ∩A c = 0.
The event A 4,n satisfies the lemma Lemma 10. For n large enough, we have sup f ∈Σ(γ,L)

P f A c 4,n ≤ D 15 h1 (β) exp -D 16 (log n) D 17 n D 18 exp -D 19 (log n) D 17 n D 18 , with D 17 ∈ R.
Lemma 10 implies that

lim n→∞ sup f ∈Σ(γ,L) E f fβ,1 -f p ∞ ψ -p n (γ)I C 2,n ∩A c 4,n = 0.
Then to have (9), it is enough to prove that

lim n→∞ sup f ∈Σ(γ,L) E f fβ,1 -f p ∞ ψ -p n (γ)I A 5,n = 0, (50) 
where

A 5,n = C 2,n ∩ A c 3,n ∩ A 4,n On A c 3,n ∩ A 4,n , we have fβ,1 -f ∞ ≤ fβ,1 -fβ * γ,1 ∞ + fβ * γ,1 -fγ,3 ∞ + fγ,3 -f ∞ ≤η 3 (γ) + ψ n (γ)λ 3 (γ)(1 + ρ n ) 2γ + 1 + fγ,3 -f ∞ .
Using Proposition 3, we deduce that, for n large enough,

sup f ∈Σ(γ,L) E f fβ,1 -f 2p ∞ ψ -2p n (γ)I A 5,n
is upper bounded by a constant. Now to have (50), it is enough to prove that

lim n→∞ sup f ∈Σ(γ,L) P f [A 5,n ] = 0. (51) 
We have by Lemma 2 and Proposition 1,

fβ,1 -f ∞ I A 5,n ≤ fβ,1 -fβ * γ,1 ∞ + b β * γ,1 (•, f ) -b γ,3 (•, f ) ∞ + b γ,3 (•, f ) ∞ + Z β * γ,1 ∞ I A 5,n ≤ b β * γ,1 (•, f ) -b γ,3 (•, f ) ∞ + 2λ 3 (γ)ψ n (γ) 2γ + 1 + Z β * γ,1 ∞ .
Following the same argument as in the proof of ( 22) from ( 31) to (33), we deduce that

b β * γ,1 (•, f ) -b γ,3 (•, f ) ∞ ≤ η 3 (γ) + |ϕ 3 | (52) 
where

ϕ 3 = fβ * γ,1 (x 0 ) -fγ,3 (x 0 ) -E f fβ * γ,1 (x 0 ) -fγ,3 (x 0 ) , with some x 0 ∈ [0, 1] d . Using
Lemma 4, we have that ϕ 3 is a random variable N (0, π 2 n ), where π 2 n satisfies

π 2 n ≤ 2 K γ 2 2 σ 2 (1 + o(1)) n h1 (γ) .
Using Lemma 3 and Lemma 4, we obtain finally that

fβ,1 -f ∞ I A 5,n ≤ η 3 (γ) + 2λ 3 (γ)ψ n (γ) 2γ + 1 + Z β * γ,1 ∞ + |ϕ 3 | I A 5,n ≤ (M 3 (γ)ψ n (γ) + Z β * γ,1 ∞ + |ϕ 3 |) I A 5,n
Now following the proof of ( 22) from ( 34) to (36), we deduce (51), which finishes the proof of (50).

Proofs of the lemmas and propositions

Proof of Lemma 2

Since K β 2 2 = 2(β+1) βα(β)(2β+1) , we have for j ∈ {1, 2, 3},

η j (β) = log n n β 2β+1 C -1 2β β 2c j (β) K β 2 2 σ 2 L 1/β * 2β + 1 1/2 (λ j (β)) -1 2β , = log n n β 2β+1 C -1 2β β 4β 2 c j (β)(β + 1)σ 2 L 1/β * (2β + 1) 2 α(β)β 3 1/2 (λ j (β)) -1 2β .
For j=1, we deduce that

η 1 (β) = log n n β 2β+1 C -1 2β β C 2β+1 2β β 2β 2β + 1 = 2β 2β + 1 ψ n (β).
This implies the result of the lemma for j = 1. For j ∈ {2, 3}, we have

η j (β) = 2β 2β + 1 ψ n (β)2 -1/(2β+1) c j (β) c 1 (β) β 2β+1
, which permits to have the result for j ∈ {2, 3}.

Proof of Proposition 3

Following the proof of Theorem 1 of [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF] with the loss function w(x) = x p , studying the bias term and the stochastic term of fβ,j , we can deduce, for j ∈ {1, 2, 3}, that

lim sup n→∞ sup f ∈Σ(β,L) P f fβ,j -f ∞ > (1 + ε n )ψ n (β) λ j (β) 2β + 1 + η j (β) ψ n (β)(c j (β)) 1/2 = 0 and lim sup n→∞ sup f ∈Σ(β,L) E f fβ,j -f p ∞ ψ -p n (β) ≤ λ j (β) 2β + 1 + η j (β) ψ n (β)c j (β) p . For j = 1, using that η 1 (β) = 2β 2β+1 ψ n (β) (cf. proof of Lemma 2), and that c 1 (β) ≥ 1, we have that λ 1 (β) 2β + 1 + η 1 (β) ψ n (β)c 1 (β) = 1 2β + 1 + 2β (2β + 1)(c 1 (β)) 1/2 ≤ 1. For j ∈ {2, 3}, using that η j (β) = 2β 2β+1 ψ n (β)2 -1/(2β+1) c j (β) c 1 (β) β 2β+1 ( 
cf. proof of Lemma 2), and that c j (β) ≥ 1, we have that

λ j (β) 2β + 1 + η j (β) ψ n (β)c j (β) = c j (β) c 1 (β) β 2β+1   2 -2β 2β+1 2β + 1 + 2β2 -1 2β+1 (2β + 1)(c 2 (β)) 1/2   ≤ M j (β).
The above lines imply the results of Proposition 3.

Proof of Lemma 3

Here we prove the first result of the lemma. Let β = (β 1 , . . . , β d ) ∈ B, γ ∈ B, f ∈ Σ(β, L) and x = (x 1 , . . . , x d ), y = (y 1 , . . . , y d ) ∈ R d . We have

K γ,2 * f (x) -K γ,2 * f (y) = K γ (u) {f (x 1 -u 1 h 1,2 (γ), . . . , x d -u d h d,2 (γ)) -f (y 1 -u 1 h 1,2 (γ), . . . , y d -u d h d,2 (γ))} du ≤ K γ (u)du d i=1 L i |x i -y i | β i = d i=1 L i |x i -y i | β i Then, K γ,2 * f belongs to Σ(β, L). As a consequence, we have b β * γ,2 (•, f ) -b γ,2 (•, f ) ∞ = b β,2 (•, K γ,2 * f ) ∞ ≤ sup f ∈Σ(β,L) b β,2 (•, f ) ∞ .
Thus, from Proposition 1, we deduce that

sup f ∈Σ(β,L) b β * γ,2 (•, f ) -b γ,2 (•, f ) ∞ ≤ ψ n (β)λ 2 (β) 2β + 1 .
The two other results can be proved exactly in the same way.

Proof of Lemma 4

We prove here the result for j = 2. The result for j = 1 can be proved exactly in the same way. Let β = (β 1 , . . . , β d ), γ ∈ B such that γ < β and t ∈ [0, 1] d . We have

E f Z 2 β * γ,2 (t) = σ 2 n h2 2 (β) h2 2 (γ) K β t -u -v h 2 (β) K γ v h 2 (γ) dv 2 du,
where the notation u t , for two vectors u = (u 1 , . . . , u d ) and t = (t 1 , . . . , t d ), represents the vector (u 1 /t 1 , . . . , u d /t d ). By the generalized Minkowskii inequality (cf. Appendix), we deduce that

E f Z 2 β * γ,2 (t) ≤ σ 2 n h2 2 (β) h2 2 (γ) K 2 β t -u -v h 2 (β) K 2 γ v h 2 (γ) du 1/2 dv 2 ≤ σ 2 K β 2 2 n h2 2 (β) h2 2 (γ) K γ v h 2 (γ) dv 2 = σ 2 K β 2 2 n h2 (β) .
Now the proof of ( 12) is similar to the proof of Proposition 3, and then to that of Lemma 4 of [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF]. The process Z β * γ satisfies as β) . Furthermore, to apply that argument, we need to bound the quantity

Z β , E f Z 2 β * γ (t) ≤ σ 2 K β 2 2 n h2 (
E f Z 2 β * γ (t) -Z 2 β * γ (s) 2 by a multiple of 1 n h2 (β) d i=1 s i -t i h i,2 (β) 
β i for s = (s 1 , . . . , s d ), t = (t 1 , . . . , t d ) in [0, 1] d .
Here we look at this quantity.

Let s, t ∈ [0, 1] d , we have

E f Z 2 β * γ (t) -Z 2 β * γ (s) 2 = σ 2 n h2 2 (β) h2 2 (γ) K γ v h 2 (γ) K β t -u -v h 2 (β) -K β s -u -v h 2 (β) dv 2 du ≤ σ 2 n h2 2 (β) h2 2 (γ)   K 2 γ v h 2 (γ) K β t -u -v h 2 (β) -K β s -u -v h 2 (β) 2 du 1/2 dv   2 ≤ σ 2 D 20 n h2 (β) 1 h2 (γ) K γ v h 2 (γ) dv 2 d i=1 s i -t i h i,2 (β) 
β i = σ 2 D 20 n h2 (β) d i=1 s i -t i h i,2 (β) β i ,
the second line being obtained by the generalized Minkowskii inequality (cf. Appendix) and the third line coming from the fact K β satisfies an Hölder condition of order β.

As a consequence, following the proof of Lemma 4 of [START_REF] Bertin | Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes[END_REF], we will obtain the result for j = 2 of Lemma 4.

Proof of Lemma 5

Let f ∈ Σ(β, L) and j ∈ {1, 2, 3}. We have, by a change of variables, (1 + pβ max ) log n exp D 21 t log n t p-1 dt.

E f Z γ,j p ∞ ψ -p n (β)I { Z γ,j ∞>τn,j (γ)} = ψ -p n (β) +∞ 0 P f Z γ,j p ∞ I { Z γ,j ∞>τn,j (γ)} > t dt =ψ -p n (β) (τ n,j (γ)) p +∞ 0 P f Z γ,j p ∞ I { Z γ,j ∞>τn,j (γ)} > t (τ n,j ( 
By using several integrations by parts, one can find that this integral is at most of order n log n 

P f fγ ′ ,1 -fβ ′ ,1 ∞ > η 1 β ′ ≤ P f Z γ ′ ,1 ∞ + Z β ′ ,1 ∞ > η 1 β ′ (1 + κ n ) ≤ P 1 (n) + P 2 (n),
where κ n is of order n -δ with a δ > 0 and

P 1 (n) = P f Z γ ′ ,1 ∞ > ψ n ((β ′ + γ ′ )/2)(1 + κ n ) , P 2 (n) = P f Z β ′ ,1 ∞ > η 1 β ′ (1 + κ n ) 1 - ψ n ( β ′ +γ ′ 2 ) η 1 (β ′ )
.

Using Proposition 2, since

η 2 1 (β ′ )n h1 (β ′ ) 2 K β ′ 2 2 σ 2 = 1 2β ′ +1
1 + p β max -β ′ 2β max +1 log n, we obtain that for n large enough

P 2 (n) ≤ D 24 (log n) -1 2β ′ +1 exp - p 2β ′ + 1 β max -β ′ 2β max + 1 log n . ( 55 
)
Using Proposition 2, it can be proved that P 1 (n) is negligible with respect to P 2 (n) as n → ∞.

The relation (55) implies the lemma.

Proof of Lemma 8

Let f ∈ Σ(β, L). By Lemma 3, we have that b β ′ * β,2 (•, f )b β ′ ,2 (•, f ) ∞ is at most of order ψ n (β). Since β ′ < β, ψ n (β) is negligible with respect to η 2 (β ′ ) and therefore

P f fβ * β ′ ,2 -fβ ′ ,2 ∞ > η 2 β ′ ≤ P f Z β * β ′ ,2 ∞ + Z β ′ ,2 ∞ > η 2 β ′ (1 + κ n ) ≤ P 3 (n) + P 4 (n),
where κ n is of order ψ n (β)/η 2 (β ′ ),

P 3 (n) = P f Z β * β ′ ,2 ∞ > ψ n ((β ′ + β)/2)(1 + κ n ) , and 
P 4 (n) = P f Z β ′ ,2 ∞ > η 2 β ′ (1 + κ n ) 1 - ψ n ( β ′ +β 2 ) η 2 (β ′ )
.

Using Proposition 2, since

η 2 2 (β ′ ) d i=1 h i,2 (β ′ ) 2 K β ′ 2 2 σ 2 = 1 2β ′ + 1 + pµ(β ′ ) log n,
we obtain that for n large enough

P 4 (n) ≤ D 11 (log n) -1 2β ′ +1 exp -pµ(β ′ ) log n . ( 56 
)
Using Lemma 4, it can be proved that P 3 (n) is negligible with respect to P 4 (n) as n → ∞. The relation (56) implies the lemma.

Proof of Lemma 10

Let f ∈ Σ(γ, L). By Lemma 3, we have that

b β * γ,1 (•, f ) -b β,1 (•, f ) ∞ ≤ ψ n (γ)λ 3 (γ) 2γ + 1 . Then P f fβ * γ,1 -fβ,1 ∞ ≥ ψ n (γ)λ 3 (γ) 2γ + 1 (1 + ρ n ) ≤ P 5 (n) + P 6 (n),
where P 5 (n) = P f Z β * γ,1 ∞ > ψ n (γ)λ 3 (γ)ρ n 2(2γ + 1) , and

P 6 (n) = P f Z β,1 ∞ > ψ n (γ)λ 3 (γ)ρ n 2(2γ + 1) .
Using Proposition 2, since ρ n = ψn((β+γ)/2) ψn(γ)

, we obtain that (57) Using Lemma 4, we have that P 5 (n) satisfies the same inequality as (57) but with different constants D 1 and D 2 . Now, since β > γ, we have (cf. [START_REF] Besov | Integral representations of functions and imbedding theorems[END_REF] for a proof)

  where g ∞ = sup t∈[0,1] d |g(t)|, p > 0 and ψ n (β) has the form ψ n (β) = C β

  γ)) p dt = ψ -p n (β) (τ n,j (γ)) p P f ( Z γ,j ∞ > τ n,j (γ))+ψ -p n (β) (τ n,j (γ)) p +∞ 1 P f ( Z γ,j p ∞ > t (τ n,j (γ)) p ) dt.(53) We are going to prove that the two elements of the sum (53) tend to 0 as n tends to ∞. We obtain by Proposition 2 thatP f ( Z γ,j p ∞ > t (τ n,j (γ)) p ) ≤ D 1 p (1 + pβ max ) 2γ + 1 log n exp t 1/p D 21 log n .(54) Using the formula (54) with t = 1, we deduce that ψ -p n (β) (τ n,j (γ)) p P f ( Z γ,j ∞ > τ n,j (γ)) log n) D 22 with some D 22 ∈ R, and then it tends to 0 as n tends to ∞ since γ ≤ β ≤ β max . Moreover by (54) we have, after a change of variables,

∞

  > t (τ n,j (γ)) p ) dt tends to 0 as n tends to ∞.Proof of Lemma 7Let f ∈ Σ(β, L). Using the same argument as in the proof of (21), we can deduce thatb γ ′ ,1 (•, f ) ∞ = o(ψ n (γ ′ )) and b β ′ ,1 (•, f ) ∞ = o(ψ n (β ′ )) for all f ∈ Σ(β, L). As a consequence for all f ∈ Σ(β, L) b γ ′ ,1 (•, f )b β ′ ,1 (•, f ) ∞ = o(ψ n (β ′ )), since β ′ < γ ′ ,and therefore

=

  D 16 (log n) D 17 n D 18 ,with D 17 ∈ R, which includes the lemma.Appendix: Minkowskii inequalityFor all function g measurable on R d × R d , we have g