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Statistical tools to characterize discrete rearranging patterns,
in two or three dimensions: cellular materials, assemblies of
particles
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Abstract. Discrete rearranging patterns include cellular patterns, for instance liquid foams, biological
tissues, grains in polycrystals; and assemblies of particles such as beads, granular materials, colloids,
molecules, atoms. We describe such a pattern as a list of sites, some of which are neighbours. Performing
statistics on the links between neighbouring sites, we obtain average quantities (hereafter “tools”) as
the result of direct measurements on images. These descriptive tools are flexible and suitable for various
problems where quantitative measurements are required, whether in two or in three dimensions. At small
scale, they quantify the pattern’s local distortion and rearrangements. At large scale, they help describe a
material as a continuous medium. They also provide a direct correspondence between both scales. They
thus help formulate elastic, plastic, fluid behaviours in a common, self-consistent language. This facilitates
the modelling using continuous mechanics. Since experiments, simulations and models can be expressed in
the same language, a direct comparison is easy. As an example, a companion paper (Marmottant, Raufaste
and Graner, joint paper) provides an application to foam plasticity.

PACS. 62.20.Fe Deformation and plasticity – 83.10.Bb Kinematics of deformation and flow – 83.80.Iz
Emulsions and foams

1 Introduction

1.1 Motivations

Cellular patterns include liquid foams or emulsions (Fig.
1), crystalline grains in polycrystals or biological tissues
(Fig. 2). Assemblies of particles (Fig. 3) include collec-
tions of beads, molecules, or atoms; granular or colloidal
materials; sets of tracers dispersed in a material, such as
fluorescent probes or passively carried particles. Despite
their tremendous diversity of sizes and physical proper-
ties, all these patterns have a common point: they are
made of a large number of well-identified individual ob-
jects. We call them discrete patterns, where the word “dis-
crete” here means the opposite of “continuous”. Other
discrete patterns include interconnected networks, of e.g.
springs, polymers, biological macromolecules, or telecom-
munication lines.

We define the pattern as rearranging if the mutual ar-
rangement of the individual objects can change. This is
the case if they can move past each other, for instance
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b Present address: Department of Science and Technology,

University of Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands.

due to mechanical deformation (Figs. 1 or 2a), sponta-
neous motility (Fig. 2b), or thermal fluctuations (Fig. 3).
This is also the case if the number of individual objects
can change, for instance due to coalescence or nucleation
of bubbles, shrinkage during coarsening of polycrystals or
foams, cell division or death (Fig. 2b).

Many tools are available to describe and quantitatively
characterise patterns [8]. Here, we introduce tools (listed
in Table 1) aimed at describing statistically how the in-
dividual objects are arranged with respect to each other.
With a few simple measurements performed directly from
an image, we extract quantitative information relevant to
the size and anisotropy of the pattern. From two succes-
sive images in a movie, we extract information regarding
the magnitude and direction of deformation rate and rear-
rangements. All tools here are either static or kinematic,
and rely on the image only; that is, they are independent
of dynamics (stresses, masses and forces).

Our tools apply to discrete patterns regardless of the
size of their individual objects, which can range from nanome-
ter to meters or more. They regard simulations as well as
experiments, and should enable quantitative comparison
between them. They apply in both 2 or 3 dimensions, and
whatever the pattern’s disorder is. The only requirement
is that the image should be of sufficient quality to extract
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(a)

(b)

Fig. 1. Liquid foams. (a) Heterogeneous flow: from left to
right, around an obstacle [1]; liquid fraction ∼ 10−4, image
width: 15 cm. (b) Homogeneous shear: in a rectangular box,
deformed at constant area [2]; liquid fraction ∼ 5 10−2, image
width: 18 cm, courtesy C. Quilliet (Univ. Grenoble).

the positions of the centers of each individual object (cell
or particle); as well as the list of neighbour pairs (which
objects are neighbours).

1.2 Outline of this paper

The main goal of this paper is to present a coherent set of
tools, some of which have been already defined and mea-
sured in recent separated papers [9,10,11,3,12,13,14,4].
We try to make it complete and readable; many practical,
technical or theoretical details are thus rejected in Ap-
pendices. We hope that this presentation is pedagogical
enough that the reader can directly use it: if this goal is
not reached, we welcome any feedback.

This paper can be read at different levels of increasing
difficulty. Most readers will need only the core of the pa-
per, that is, the static description (sections 2.1 and 2.2.1).
The description of the pattern evolution requires to read
the remaining of section 2. Comparison between differ-
ent patterns (for instance, experiments and simulations;
or various experiments) requires to read section 3. Section
4 is more theoretical: it addresses specific applications of
our statistical tools. More precisely, the outline of this pa-
per is as follows.

Sections 2.1 and 2.2.1, valid for all discrete rearranging
patterns, introduce our method. The current pattern (that

is, a single image) is characterised by its texture
=

M (eq.
3). It has been suggested as a tool to describe mechanical
deformations by Aubouy et al., but it was already appear-
ing in various contexts, including the order parameters of

(a)

(b)

Fig. 2. Other cellular patterns. (a) Grains in a polycrystal of
ice which rearranged during ice accumulation [3], image width:
10 cm, courtesy J. Weiss (Univ. Grenoble). (b) Tissue of cells
rearranging during the formation of a fruit fly (Drosophila)
embryo: this thorax epithelium is labeled by the expression of
the cell-cell adhesion molecule E-Cadherin-GFP; image width:
160 µm, courtesy Y. Belläiche (Inst. Curie) [4].

nematics, the microstructure of polymers, or the fabric of
grains (see [9] and references therein). Here we refine and
hopefully clarify its definition, presenting it step by step,
for pedagogical purpose.

The remaining of section 2.2 presents more technical
details: how to perform averages in practice, how to rep-
resent graphically the texture, how to deal with 2D pat-
terns. Mathematical notations yield more abstract equa-
tions, easier to manipulate, valid in both 2D and 3D. Most
of this part is developed in Appendices. In particular, for
completeness, a detailed appendix recalls all definitions
and notations of matrices used in this paper, from basic
to difficult.

We then use the texture as the basis on which two other
tools are constructed. Section 2.3 describes the changes

between two successive images. Firstly,
=

C (eq. 12), useful
for instance for the flow of a granular material, describes
shape (geometry) changes due to the movements of objects
relative to each other, without rearrangements. Secondly,
=

T (eq. 13), useful for instance for biological cell division
or death, describes neighbour (topology) changes due to
rearrangements.
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(a)

(b)

Fig. 3. Assemblies of particles. (a) Beads repelling each other
[5]; they are placed on a vibrating loudspeaker, with an effect
shown to be equivalent to thermal fluctuations [6]; image size:
11.6 cm, courtesy G. Coupier (Univ. Grenoble). (b) Simula-
tion of amorphous systems of atoms interacting via Lennard-
Jones potential [7]: circles indicate each particle’s effective ra-
dius (here with a 20% dispersity), tangent circles correspond
to vanishing interaction force; image size: arbitrary, courtesy
A. Tanguy (Univ. Lyon 1).

Section 3 is useful to compare measurements on differ-
ent patterns; and also for materials which behave as con-
tinuous media, that is, where the quantities vary smoothly

with space. Each of the three above tools,
=

M ,
=

C and
=

T , is
rewritten to obtain an equivalent counterpart without any
details related with the discrete scale of the pattern. The

statistical definition of internal strain
=

U (eq. 16), already
published [9], is recalled here for completeness. It extends
to all types of individual objects displacements, even when
these objects are non conserved. In practice, it is measured
with a good signal to noise ratio. This is also the case for

the statistical velocity gradient
=

G (eq. 19), which charac-
terises the variations in space of the velocity, for instance
large cell movements during embryo formation. We finally

define the statistical topological rearrangement rate
=

P (eq.
22).

The second motivation of this paper is to establish
a link between discrete description and continuous me-
chanics. Section 4 discusses when it is possible to identify

Pattern Texture Topological Geometrical

statistics
=

M changes changes

eqs. (3,9)
=

T (
=

C +
=

C
t

)/2
eq. (13) eq. (12)

Statistical Statistical Statistical Statistical
relative internal topological symmetrised
deformations strain rearrangement velocity

=

U rate
=

P gradient
=

V
eq. (16) eq. (22) eqs. (19,20)

Continuous Current Plastic Total
medium elastic deformation deformation
deformations strain rate rate

=

εel

=̇

εpl

=̇

εtot

Table 1. Symmetric matrices defined in the text, and numbers
of the corresponding equations. For comparison, the last row
indicates the deformations defined in continous mechanics for
elastic, plastic and fluid behaviours.

our statistical tools with the usual quantities of continu-
ous mechanics. This suggests a possible way to establish
a formulation of continuous mechanics from discrete ob-
jects, which is one of our main motivations. Our tools
can constitute a coherent language to unify the descrip-
tion of materials which display elastic, plastic and fluid
behaviours.

1.3 The example of foams

Our equations are valid in any dimensions. For clarity, we
write them in 3D, and show that is is straightforward to
rewrite them in 2D, see section 2.2.3. We then use a com-
pact, general expression, see section 2.2.4. We specifically
choose to illustrate this paper with 2D images (Figs. 1-3),
which are simpler and more common that 3D data.

More precisely, we illustrate each definition on the ex-
ample of a foam flow (Fig. 1a) [1], which is both our orig-
inal motivation and the most suitable example. Nitrogen
is blown into water with commercial dishwashing liquid.
Bubbles enter a channel, of length 1 m (only partly visi-
ble on the picture), width 10 cm, and thickness 3.5 mm:
a monolayer of bubbles forms (area Abubble = 16.0 mm2),
sandwiched between two glass plates (quasi-2D foam, liq-
uid fraction less than a percent). It steadily flows from left
to right without vertical component (true 2D flow) until
it reaches the free end of the channel. Coalescence and
ageing are below detection level.

A 3 cm diameter obstacle is inserted into the foam
channel. The foam is forced to flow around it, resulting in
a spatially heterogeneous velocity field. Different regions
simultaneously display different velocity gradients, inter-
nal strains, and rearrangement rates, and allow to sample
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simultaneously many different conditions. Bubbles natu-
rally act as tracers of all relevant quantities; and on the
other hand the foam’s overall behaviour appears continu-
ous. The total deformation rate is partly used to deform
bubbles and partly to make them move past each other;
the companion paper [15] studies how it is shared between
both contributions.

2 Texture and time evolution of links in the

discrete pattern

2.1 Ingredients

The pattern is a collection of individual objects. Here we
are interested in the relative positions of these objects, not
in each object’s shape (although this is related in some
cases such as cellular patterns, see Appendix A.3). We
thus replace each object by a point called “site”, and re-
duce the pattern to a network of connected “sites”.

The texture, as all other measurement tools we intro-
duce here, is not rigidly defined. The user should adapt it
to the pattern under consideration, and the scientific ques-
tions to be answered. For that purpose, the user should
begin by deciding what are the relevant links (that is,
sites and their connexions), and averaging procedure. This
choice is a convention, and thus rather free; once it is cho-
sen, however, it is important to use consistently the same
definition to measure the different tools (Appendix A.1).
The usual (scalar) measurements, such as the number of
neighbours or the number of T1s, depends on the defini-
tion. Our statistical tools also depend on the definition,
but they are much more robust than scalar measurements
(see section 2.3.3). Moreover, their relations (such as eq.
10) are robust, as long as the same definition is used for
all measurements.

2.1.1 Links between neighbouring sites

We reduce the pattern to a set of links. Each link’s length
and orientation is described by the vector ℓ = (X, Y, Z).
We set aside the detailed information regarding the actual
positions.

Howevever, as an intermediate step, it is usually nec-
essary to measure the position r of each site, which has
three coordinates (x, y, z). We then need the list of neigh-
bours, that is, pairs of sites which are connected. A pair
of neighbour sites of coordinates r1 = (x1, y1, z1) and
r2 = (x2, y2, z2) constitutes a link. The vector:

ℓ = r2 − r1, (1)

has coordinates (X, Y, Z) = (x2 − x1, y2 − y1, z2 − z1).
In a cellular pattern (Figs. 1,2), it is often advisable to

choose as sites each cell’s geometrical center (see Fig. 4a).
However, alternative choices exist. For instance, a user in-
terested in studies of dynamics might prefer the center of
mass, if different from the geometrical center. Similarly,

Fig. 4. Definition of sites and links. (a) Cellular pattern. Back-
ground: detail from Fig. (2b). Foreground: a site is a cell’s geo-
metrical center; there is a link between two centers if their cells
touch. (b) Particle assembly. Background: detail from Fig. (3a).
Foreground: a site is a particle’s position; the links are defined
as discussed in the text (here a Delaunay triangulation).

a biologist might be more interested in the cell’s centro-
some or nucleus. Note that we do not advise to use a def-
inition based on vertices (see Appendix A.3). When two
cells touch each other it defines that their sites are con-
nected. This is unambiguous if cells walls are thin. This is
the case for grains in polycristals, cells in an epithelium,
or in a foam with low amount of water (Figs. 1a,2). If
cells walls are thick, as is the case in a foam with a higher
amount of water (Fig. 1b), different definitions of neigh-
bours are possible. For instance, two cells are defined as
neighbours if their distance is smaller than a given cut-off.
Or, if they are neighbours on a skeletonized image; that
is, after an image analysis software has reduced cell walls
to one pixel thick black lines on a white background. If
cell walls are too thick, cells are really separated (as in a
bubbly liquid, where bubbles are round and far from each
other) and can be treated like the particles, which we now
discuss.

If each object is a particle (as in Fig. 3) it is natural
to choose its center as site (see Fig. 4b). There are vari-
ous possible choices for the links. Whatever the choosen
definition, it is important that each particle has only a
finite number of neighbours. In a first case (Fig. 3b), the
average distance between particles is comparable to their
average radius; for instance, for a dense (also called com-
pact or jammed) colloid or granular material. We then
recommend to define that two particles are linked if their
distance is less than a chosen cut-off. For hard spheres,
this cut-off should be the sphere’s radius plus a small tol-
erance. In the opposite case, the average distance between
particles is much larger than their average radius (Fig. 3a);
for instance, for a decompacted colloid or granular mate-
rial. We then recommend to recreate a cellular pattern by
attributing to each particle its Voronoi domain (the set
of points surrounding this particle, closer to it than to
any other particle). One then chooses to define that two
particles are linked if their Voronoi domains touch; this is
called the “Delaunay triangulation” of the particles.
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If the pattern is a network, it is natural to choose the
nodes as sites. The connexions are physically materialised,
and thus unambiguously defined.

2.1.2 Averaging

The present tools aim at describing the collective proper-
ties of links. In what follows, 〈.〉 denotes the average over
a set of links relevant to the user: 〈.〉 = N−1

tot Σ(.) where
the sum is taken over the number Ntot of such links.

Choosing to average over a small number Ntot of links
yields access to detailed local information. For instance,
the local heterogeneity of a sample of ice (Fig. 2a) can be
measured by including the links around one single grain,
then performing a comparison between different grains [3].
Similarly, to study the anisotropy of a cell which divides,
one can include only the links starting at this cell’s center
(Fig. 2b).

On the other hand, choosing a large number Ntot of
links yields better statistics. To detect the overall anisotropy
of an ice sample (Fig. 2a) or an epithelium (Fig. 2b) re-
quires averaging over all links contained in the whole im-
age. This enables a comparison with other samples [3].

If the system is homogenous in space, an average im-
proves the statistics. For instance, in a homogenously sheared
foam, it makes sense to consider that all bubbles play a
similar role, and average over the whole foam (Fig. 1b).
Even if the system is invariant over only one direction of
space, one can average over this direction. Similarly, in a
flow which is invariant in time, one can average over time
(Fig. 1a). For instance, here, figures are prepared with
Abox = 37 mm2 and τ = 750 successive video images (we
checked that these choices do not affect the equations pre-
sented below); thus millions of bubbles can be available:
a time average yields good statistics even if only a small
part (i.e. few links) of each image is included (Fig. 6).

The scale of study determines the number of links in-
cluded. Performing the same analysis at different scales en-
ables to obtain multi-scale results [12,3,14]. For instance,
we can measure the dependence of pattern fluctuations
with scale for particle assemblies (Fig. 3).

Appendix A.1 presents some technical details, espe-
cially regarding the boundaries of the averaging region,
which can be treated as sharp or smooth.

2.2 Texture
=

M : current state of the pattern.

2.2.1 Definition and measurement

For a given link, the vector ℓ = (X, Y, Z) indicates its
length and direction. These are the informations we want
to average. However, ℓ has a sign, i.e. an orientation. It is
not only irrelevant, since ℓ and −ℓ play the same physi-
cal role; but also problematic: an average over several ℓs
will yield a result which depends on this arbitrary choice
of signs (and, in practice, if there are enough links, the
average 〈ℓ〉 turns out to be close to zero).

Fig. 5. Measurement of texture. Snapshots of two regions se-
lected in Fig. (1a): the foam is nearly isotropic in A, not in
B. From the statistical analysis of links (lines), and time aver-

age over several images, we compute the corresponding
=

M . We
represent it by an ellipse with axes proportional to the eigen-
values: in A it is nearly circular. Thin lines indicate the axes
with positive eigenvalues (i.e. here all axes).

The number ℓ2 = X2+Y 2+Z2 does not depend on any
arbitrary sign and thus has a physically relevant average,
〈

ℓ2
〉

=
〈

X2 + Y 2 + Z2
〉

. It reflects the average square link
length, but loses the information of direction.

To combine the advantages of both, one can simply
store the same information in an array independent of the
link sign, as follows:





X2 XY XZ
Y X Y 2 Y Z
ZX ZY Z2



 . (2)

Averaging it, we easily construct the following array, called
texture [9]:

=

M=





〈

X2
〉

〈XY 〉 〈XZ〉
〈Y X〉

〈

Y 2
〉

〈Y Z〉
〈ZX〉 〈ZY 〉

〈

Z2
〉



 . (3)

It is expressed in m2. As required, it stores the same infor-
mation regarding the current pattern [10,11,3,12,14,13]:
the square length, readily visible as the sum of diagonal
terms; the orientation and magnitude of anisotropy, as we
discuss below; but not the sign of links.

2.2.2 Diagonalisation and representation

By construction,
=

M is a matrix with symmetric off-diagonal
terms (XY = Y X , etc...). It can thus be diagonalised (see
Appendix B.2 for details):

diag
=

M=





λ1 0 0
0 λ2 0
0 0 λ3



 . (4)

Its three eigenvalues λi (i = 1, 2 or 3) are strictly positive.

Their sum, Tr
=

M , is exactly
〈

ℓ2
〉

. In practice, they usually

have the same order of magnitude, λi ≈
〈

ℓ2
〉

/3.

In a true 3D pattern,
=

M has strictly positive eigen-
values (except in unphysical examples). Thus its inverse
=

M
−1

always exists (eq. 49).
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=

M can be represented as an ellipsoid, which axes di-

rections are that in which
=

M is diagonal, represented as
thin lines on Fig. (5). Each ellipsoid’s axes length is pro-
portional to the corresponding λi. That is, the direction
in which links are longer is represented by the direction of
ellipsoid elongation: the greater the pattern’s anisotropy,
the more elongated the ellipsoid. The square link length
〈

ℓ2
〉

is reflected in the size of the ellipsoid, more precisely
as the square root of the sum of the three axes lengths; it
is thus not proportional to the ellipsoid’s volume.

If the texture is measured at several regions of the im-
age, it is represented as several ellipsoids, that is, a map

of the texture field
=

M (R, t) (Fig. 6). The same analysis
can be performed at larger scale to decrease the noise due
to fluctuations (Fig. 6a), or at smaller scale to evidence
more details of the spatial variations (Fig. 6c). The inter-
mediate scale (Fig. 6b) corresponds to the one chosen as
reference throughout this paper.

When the pattern is isotropic, so is its texture. It is
thus diagonal in any system of axes, and the three λis are
exactly equal, λi =

〈

ℓ2
〉

/3:

=

M
isotropic

=









〈ℓ2〉
3

0 0

0
〈ℓ2〉

3
0

0 0
〈ℓ2〉

3









=

〈

ℓ2
〉

3





1 0 0
0 1 0
0 0 1



 . (5)

That is, the texture of an isotropic pattern contains only

the information of length:
=

M=
〈

ℓ2
〉 =

I 3 /3, where
=

I 3 is
the identity matrix in 3D. It is represented as a sphere. In
that case, all axes are equivalent (or “degenerated”), see
also section 2.2.3.

2.2.3 Two dimensionnal case

If the pattern under consideration is contained in a plane,
as are most experimental images, we turn to a 2D nota-
tion. As mentioned, this is straightforward:

2D :
=

M=

( 〈

X2
〉

〈XY 〉
〈Y X〉

〈

Y 2
〉

)

. (6)

There exist two orthogonal axes (eigenvectors) in which
=

M would be diagonal:

2D : diag
=

M=

(

λ1 0
0 λ2

)

. (7)

with strictly positive λi, (i = 1 or 2). It is represented by
an ellipse: this is what we use for the illustrations of this

paper (Fig. 5). Its inverse
=

M
−1

always exists (eq. 49).
If we call 〈ℓ+〉 the r.m.s. length of links in the direction

of elongation (say, 1) and 〈ℓ−〉 the r.m.s. length of links in

(a)

(b)

(c)

Fig. 6. Map of the texture measured in each region of the foam
flow (Fig. 1a). The area Vbox of each averaging box corresponds
to (a) 3, (b) 1 and (c) 0.3 bubbles; since there are 1000 movie
images, and 3 times more links than bubbles [16], this corre-
sponds to averages over 104, 3 103 and 103 links, respectively.

Scale: actual image size, 15 cm × 10 cm;
=

M (ellipses): bar =
10 mm2.

the direction of compression (say, 2), then λ1 ≈
〈

ℓ2
+

〉

/2

and λ2 ≈
〈

ℓ2
−

〉

/2. When the pattern is isotropic, its tex-
ture is diagonal with any choice of axes:

=

M

2D
isotropic

=

( 〈ℓ2〉
2

0

0
〈ℓ2〉

2

)

=

〈

ℓ2
〉

2

(

1 0
0 1

)

, (8)
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That is,
=

M=
〈

ℓ2
〉 =

I 2 /2, where
=

I 2 is the identity matrix
in 2D. It is represented by a circle. Here again, all axes are
equivalent (or “degenerated”); see for instance A in Fig.
(5) or far left and right of Fig. (6): the ellipses are nearly
circular and their thin lines lose their signification.

2.2.4 Compact notation

The array defined in eq. (2) is the matrix one can build
using only the vector ℓ. It is sometimes called the “tensor
product” (or equivalently “outer product”) of ℓ by itself,
and denoted by ℓ⊗ℓ. For the sake of generality and brevity,
from now on we use this compact notation, valid in all
dimensions (see Appendix B.3 for more details).

A matrix, like a vector, is a tensor which can be ma-
nipulated as a whole, independently of its detailed compo-
nents. Thus several of its properties are independent from
the choice of the axes of coordinates. It can be averaged,
so that we rewrite both eqs. (3) and (6) as:

=

M≡ 〈ℓ ⊗ ℓ〉 . (9)

A physical origin of this expression is discussed in Ap-
pendix B.4.

2.3 Time evolution

The time evolution of
=

M helps define two other tools,
=

C

and
=

T , which can be measured on a movie.

2.3.1 Changes of texture with time

By differentiating eq. (9) (see details in the Appendix C.1),

we can write approximately how
=

M varies:

∂
=

M

∂t
= −∇.

≡

JM +

(

=

C +
=

C
t
)

+
=

T , (10)

Physically, these three terms have the following meaning.
In the time interval ∆t between two successive images,
some links enter or exit the region of averaging; some links
change their length or direction; some links are created or
destroyed. The first term is now discussed briefly. Both
other terms play a role in what follows and we discuss
them in more details (sections 2.3.2 and 2.3.3).

Here
≡

JM is the flux of advection, that is, the trans-
port of texture. It counts the rate at which links enter or
exit throught the sides of the region of averaging. Tech-
nically, it is a rank-three tensor (i.e. with 3 indices): for
more details see ref. [17] and Appendix B.3. In a good

approximation,
≡

JM≃ v⊗
=

M , where v is the local average

velocity. Its divergence ∇.
≡

JM counts the net balance be-

tween links that enter and exit; it vanishes if
=

M is spatially
homogeneous, or at least is constant along a flux line; it
also vanishes if the local average velocity is zero.

2.3.2 Geometrical texture changes:
=

C

=

C describes the changes in the pattern’s shape, that is,
geometry: rotation or elongation of the pattern. It reflects
relative movements: it is insensitive to a global, collective
translation. It can thus characterise at which rate, and
in which direction, a cell deforms. It is useful in particu-
lar for theoretical purposes, or as an intermediate step to

introduce
=

G (section 3.3.1).
=

C is based on the links which, on both successive im-
ages, exist (i.e. do not undergo topological rerrangement)
and belong to the region of averaging (i.e. are not ad-
vected). These links may change in length and direction
(Fig. 7). We obtain each link’s contribution directly from
eq. (9) and average it:

〈

d (ℓ ⊗ ℓ)

dt

〉

=

〈

ℓ ⊗ dℓ

dt
+

dℓ

dt
⊗ ℓ

〉

. (11)

From eq. (11) we define (see details in the Appendix C.1):

=

C =

〈

ℓ ⊗ dℓ

dt

〉

=





〈

X dX
dt

〉 〈

Y dX
dt

〉 〈

Z dX
dt

〉

〈

X dY
dt

〉 〈

Y dY
dt

〉 〈

Z dY
dt

〉

〈

X dZ
dt

〉 〈

Y dZ
dt

〉 〈

Z dZ
dt

〉



 . (12)

Its units are in m2s−1. Its transposed is
=

C
t

= 〈dℓ/dt ⊗ ℓ〉.
Its symmetric part

(

=

C +
=

C
t
)

/2 has a positive eigen-

value in the direction of extension, and a negative one in
the direction of compression. In a region of shear, it can
thus be plotted as an ellipse with one thin line drawn on
it, similar to a “coffee bean” (Fig. 7). We can plot a map

of

(

=

C +
=

C
t
)

/2: it is similar to that of
=

V (Fig. 10). In case

of dilation, for instance for cell growth, all its eigenvalues
are positive.

2.3.3 Topological texture changes:
=

T

=

T reflects the topological changes, that is, changes in the
list of links: creation and destruction, that is, source term
of the texture. For details see the Appendix C.1. Briefly,
each link ℓa which appears between two successive images
(separated by a time interval ∆t) has a contribution given
by eq. (2), noted ℓa⊗ℓa; and similarly the contribution of
a link which disappears is noted ℓd⊗ℓd. Averaging over all
links which appear or disappear between successive images

defines
=

T as:

=

T= ṅa 〈ℓa ⊗ ℓa〉 − ṅd 〈ℓd ⊗ ℓd〉 . (13)

Here ℓa (resp. ℓd) is a link at the time it appears (resp.
disappears). The quantity ṅa (resp. ṅd), expressed in s−1,
is not the time derivative of a physical quantity (which we
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Fig. 7. Changes in the shape of links (geometry). In a first
snapshot of a small region of the foam, links are represented by
dashed lines. The same bubbles are tracked on a next image,
with links represented by solid lines. To evidence how each link
changes, we have removed the overall translation (which plays
no role here), and superimposed both snapshots. We calculate
(

=

C +
=

C
t)

/2 and plot it as a coffee bean: an ellipse with a thin

line indicating the positive eigenvalue (direction of extension).

would note d/dt). It is the rate of link appearance (resp.
disappearance), per unit time and per existing link. If ṅa

and ṅd are equal, their inverse is the average link’s life
expectancy.

=

T has been introduced in ref. [14]. It is expressed in
m2s−1. It characterises the total effect on the pattern of
all topological changes occurred between two images (and
can also be averaged over a whole movie). By construc-

tion it is symmetric, like
=

M : it can thus be diagonalized
and represented as an ellipsoid. It includes information of
frequency, size, direction and anisotropy for all kinds of
topological changes. However, as we now discuss, the user
might be interested in studying separately the contribu-
tions of the different processes [4].

Neighbour exchanges (Fig. 8a,b), also called “T1” in
the case of cellular patterns [18,16], preserve the sites; in

2D, they also preserve the number of links, ṅa = ṅd.
=

T
usually is mostly deviatoric (Appendix B.1), with both
positive and negative eigenvalues, in directions correlated
with the appearing and disappearing links. Note that the
eigenvectors are exactly orthogonal, while the appearing
and disappearing links need not be: thus eigenvectors are

not strictly parallel to links, especially when
=

T is measured
as an average over several individual topological processes.

We can plot a map of
=

T for our flowing foam example: it

is similar to that of
=

P (Fig. 11).
The disparition of a site (Fig. 8c) corresponds in foams

to a bubble which shrinks, also called “T2” [18,16]; and in
epithelia to a cell which dies, or exits the epithelium plane.
The reverse process is a site nucleation. Both processes

have an approximately isotropic contribution to
=

T .
The coalescence of two sites (Fig. 8d) corresponds in

foams to the breakage of a liquid wall between two bub-
bles, with a net balance of minus one site [19]. The reverse
process corresponds in epithelia to a cell division, and re-
sults in one more site [20]. When the number of sites de-
creases (resp. increases), so does the number of links, and

(a)

ℓd

ℓa

(b)

(c)

(d)

Fig. 8. Changes in the list of links (topology). They are here
illustrated by cellular patterns but are much more general. (a)
Neighbour exchange in 2D: snapshots extracted from a dry
foam [15], one link disappears (dashes) and another appears

(thick grey line); and corresponding representation of
=

T as an
ellipse, where a thin line indicates the positive eigenvalue. (b)
Same, sketched in 3D: three links (hence 3 faces) disappear
and one appears. (c) Site disparition, in 2D or 3D: all its links
disappear. (d) Coalescence of two sites, in 2D or 3D: the link
between them disappears, the links to their common neigh-
bours merge (here there is a total of five disappearances and
two creations).
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=

T usually has only negative (resp. positive) eigenvalues.
The variation in the number of sites and links is thus vis-

ible in the trace (sum of diagonal terms) of
=

T .
When requested, all contributions of all topological

changes can be treated indifferently and added together.
This is certainly an advantage of the present description
using matrices, over a classical counting as numbers (when
counting the number of T1s and T2s, for instance, it would
not make any sense to add them). In fact, some topological
changes are significant, and do contribute to the pattern’s
evolution; while some changes are not physically relevant.

Consider the case where a topological change occurs
between t and t + ∆t, and the reverse one occurs between
t+∆t and t+2∆t, so that the original links are recovered.
This is often the case for neighbour exchanges, for instance
due to thermal fluctuations; or, errors in the determina-
tion of links, in experiments or simulations, give rise to
such pairs of opposite T1s, which are artifacts. Then the

contributions to
=

T of both T1s are opposed and cancel

each other, so that in average
=

T is not affected. Hence
=

T
correctly describes the fact that the pattern is unchanged
(while counting T1s as numbers would wrongly record 2
events) [4].

3 Statistical tools to obtain relative

deformations and their time evolution

3.1 Continuous description

This section facilitates comparison between different ex-
periments; or between experiments, simulations and the-
ory. This is useful for flows of particle assemblies, in foams
and emulsions, or granular materials. For biological tis-
sues, it helps define the large scale flow (migration, rota-
tion) during morphogenesis.

Here we try to link the discrete, local description with
a continuous, global one. We want this continuous descrip-
tion to be self-consistent. For that purpose, we need to get
rid of the discrete objects’ length scale, that is, the typical
size of links. We now construct tools which are dimension-
less, or expressed in s−1, but with no m2 any longer. We

thus construct a continuous counterpart
=

U ,
=

G,
=

P for each

of the three discrete quantities
=

M ,
=

C,
=

T defined in section
2.

Averages 〈.〉 on detailed geometrical quantities are per-
formed on a spatial box of volume Vbox and over a time τ
selected to suit the problem under consideration.

Vboxτ should be large enough, to include enough links

to perform statistics, Ntot ≫ 1. More precisely, N
−1/2
tot

should be smaller than the relative incertitude required
by the user. A few tens or hundreds of links are often
enough (there is no need for 1023 links!).

The shape of the box should preferably respect the sys-
tem’s symmetries. When there is a symmetry along one
coordinate (for instance over time, for a steady state pro-
cess [10], or over one space coordinate [12]), averaging over

this coordinate improves the statistics and enables to re-
solve better (average less) along other coordinates.

In particular, in the case of a steady flow, time averages
on successive images can be performed. Thus it is enough
to extract only a few links from each image: when multi-
plied by many images it yields a reasonably large Ntot. In
this case Vbox can be small enough to reflect physically rel-
evant local variations. There is no theoretical lower limit
to Vbox : it can well be as small as the link size, or even
smaller, if there are enough images to average (Fig. 6).

If the material acts as a continuous medium [21,22,23],
it usually has the following properties. First, there exists
a range of Vbox sizes over which measurements yield the
same results [14]. In that case, the box is called a repre-
sentative volume element (RVE). This is usually obeyed
if Vbox is much larger than the range of interaction be-
tween individual objects, and also larger than their cor-
relation length (but these conditions are neither neces-
sary nor sufficient). Second, its description can be local
in space, that is, its equation of evolution involves partial
space derivatives, and the spatial variations of its solutions
look smooth. Third, the average quantities have at large
scale a role more important than that of fluctuations. The
present paper is purely descriptive: it provides tools to
investigate these aspects, but studying them in practical
examples is the purpose of separate studies [15,1].

3.2 Statistical internal strain :
=

U

We first present the internal strain, defined through a com-
parison between the current pattern and a reference one.
We provide more details than in the original reference by
Aubouy et al. [9], hoping to make the reading easier.

3.2.1 Strain : from a single link to a pattern

Consider first a link ℓ of length ℓ, and apply to it an in-
finitesimal variation dℓ. Its relative extension, or infinitesi-
mal strain, is dℓ/ℓ, or equivalently d(log ℓ) [24]. The “true
strain” (also called “Hencky strain” [24]) is defined by
with respect to a state ℓ0 chosen as a reference (often a
state without stress) using several equivalent expressions:

∫

dℓ

ℓ
= log

(

ℓ

ℓ0

)

=
1

2
log

(

ℓ
2

ℓ2
0

)

=
1

2

[

log
(

ℓ
2
)

− log
(

ℓ
2
0

)]

. (14)

Here we have introduced ℓ
2 instead of ℓ (and compensated

by a factor 1/2). We also have replaced the log of division
by a substraction of log, which is strictly equivalent; it is
not a problem to take the log of dimensioned quantities
(here, the square of a length) because this cancels out in
the final result.
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We perform these manipulations because the last ex-
pression of eq. (14) is the easiest to generalise. We want to
keep the information over the link orientation, as well as
the statistical method to average over links. It is natural
to replace ℓ

2 by the texture.

The logarithm of
=

M is unambiguously defined (sec-
tion B.2) and is easily performed in three standard steps
on a computer. It suffices to first, switch to the three or-

thogonal axes (
=

M ’s eigenvectors) in which
=

M is diagonal;
second, take the logarithm of its eigenvalues, which are
strictly positive (section 2.2.2):

diag log
( =

M
)

=





log λ1 0 0
0 log λ2 0
0 0 log λ3



 ; (15)

and third, switch back to the original axes. It is neces-
sary to perform first all linear operations such as aver-
aging. This ensures in particular that all λis in eq. (15)
are non-zero. Taking the logarithm, which is a non-linear
operation, has to be performed later.

Eq. (15), like eq. (14), requires to define a reference,

expressed in the same units as
=

M , so that the difference of
their logarithms is well defined and dimensionless. Using

a reference texture
=

M0, Aubouy et al. [9] thus define the
“statistical internal strain” as:

=

U=
1

2

(

log
=

M − log
=

M0

)

. (16)

Here
=

U completely characterises the material’s current de-
formation: relative dilation, amplitude and direction of
anisotropy.

3.2.2 Reference texture
=

M0

This section is devoted to general comments regarding the

reference texture
=

M0. Practical details are presented in
appendix A.2.

Eq. (16) shows that the exact choice of
=

M0 affects

the value of
=

U but not its variations. It thus does not
appear explicitly in the kinematics (eqs. 65,23) nor in the
dynamics (for instance in the value of the shear modulus,
appendix A.3). Moreover, eq. (16) remains unchanged if

we multiply both
=

M0 and
=

M by a prefactor; this is why

the exact unit (e.g. m2, mm2, µm2) in which
=

M0 and
=

M
are expressed is unimportant, as long as it is the same unit
for both.

Whatever the choice, the reference is defined by the

texture
=

M0. It suffices to determine 6 numbers; or 3, in 2D;

or 1, in the (most common) case where
=

M0 is isotropic.
Only the reference texture corresponding to the current
state matters; past changes of the reference pattern, for
instance during an irreversible deformation (also called
“work hardening” [23]), need not be taken into account.

It is never necessary to known the details of the corre-
sponding pattern’s structure, such as the positions of each
object one by one: it is even not necessary that this pat-
tern exists and is realisable.

There are many different definitions of strain; see Refs.
[25,12] for review. In particular, some definitions reflect
accurately a discrete pattern’s geometry [26] or dynamics
[27]. The main advantage of eq. (16) is that it does not
require the detailed knowledge of each object’s past dis-
placement. It is thus probably the only definition which
extends much beyond the material’s elastic limit. It is valid
even when bubbles rearrange and move past each other,
that is, when the pattern flows.

3.2.3 Examples

This section presents a few examples and particular cases
of internal strain.

(i) If the material is uniformly dilated (affine defor-
mation, see section 4.1.2) by a factor k in all directions,

then
=

M= k2
=

M0. Thus
=

U= log(k)
=

ID, as is expected for
instance for gases; that is, in 3D:

=

U=





log k 0 0
0 log k 0
0 0 log k



 .

(ii) Conversely, if the material is uniformly dilated by
a factor k in one direction and compressed by a factor 1/k
in another direction, then:

diag
=

U=





log k 0 0
0 − log k 0
0 0 0



 .

(iii) More generally, for incompressible materials, the

links’ mean square length can vary, but
=

U ’s diagonal terms
are usually both positive and negative, and their sum is

certainly small. Then
=

U is mostly deviatoric (Appendix
B.1).

(iv) In Fig. (9), most ellipses look circular; deviations
from circles occur close to the obstacle (see also section
4.1.4). We distinguish regions where extension dominates,
and ellipses look like coffee beans, from regions where com-
pression dominates, where the ellipses are flattened. Up to
a prefactor, namely the foam’s shear modulus, (Ud)

2 rep-
resents the elastic energy stored (that is, the difference
between the energy of the current state and that of the
local minimum) due to shear.

(v) If
=

M0 is isotropic, then
=

U is diagonal in the same

axes as
=

M . Then (15) enables to rewrite eq. (16) more
explicitly:

diag
=

U=











log
√

λ1

λ0

0 0

0 log
√

λ2

λ0

0

0 0 log
√

λ3

λ0











, (17)
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Fig. 9. Elastic behaviour. Map of the statistical internal strain
=

U (eq. 16) measured on the foam of Fig. (1a). Coffee bean axes
indicate the direction and amplitude of stretching (indicated

by a thin line) and compression.
=

M0 is chosen as the value of
=

M measured at the left of the image, on each streamline, in
order to be insensitive to a possible bubble size segregation.
Scale: for ellipses, bar = 1 (dimensionless).

where λ0 is
=

M0’s eigenvalue (e.g. λ0 =
〈

ℓ2
0

〉

/3 is
=

M0 if we

use the definition of eq. 40). Eq. (17) reflects that
=

M and
=

U have the same eigenvectors: they commute. Eq. (17)

also relates the trace of
=

U with
=

M ’s determinant (product
of eigenvalues):

Tr
=

U = log

√

λ1λ2λ3

λ3
0

=
1

2
log

(

det
=

M
)

− 1

2
log

(

det
=

M0

)

. (18)

(vi) in the limit of small deformations, i.e. when
=

M

remains close enough to
=

M0, eq. (16) can be linearised
[9]. The difference of logarithms would simply amount to

a division by
=

M0, that is:
=

U≃ (
=

M −
=

M0)
=

M
−1

0 /2. This is

true whether
=

M0 is isotropic or not (unlike eq. 17). This
approximation is used in Appendix C.2.2.

3.3 Kinematics: time evolution

3.3.1 Statistical velocity gradient:
=

G

We want to define the continuous counterpart of the ge-

ometrical changes
=

C (eq. 12).
=

M
−1

(eq. 49), which is in

m−2, is always defined. We thus use it to define
=

G as:

=

G = 〈ℓ ⊗ ℓ〉−1

〈

ℓ ⊗ dℓ

dt

〉

=
=

M
−1 =

C . (19)

Fig. 10. Fluid behaviour. Map of the statistical symmetrised

velocity gradient
=

V (eq. 20) measured on the foam of Fig.
(1a). Coffee bean axes indicate the direction and amplitude
of stretching rate (indicated by a thin line) and compression
rate. Scale for ellipses: bar = 0.1 s−1. Grey levels: statistical
vorticity from the rotation rate Ω (eq. 21) in s−1.

=

G has the dimension of a deformation rate (s−1): its order

of magnitude is the links’ average variation rate. Like
=

C,
it vanishes when the pattern moves as a whole (“solid
translation”).

For reasons which appear below (eqs. 29-31), we call
it the “statistical velocity gradient”, and we purposedly

define it as
=

M
−1 =

C rather than
=

C
=

M
−1

. In general,
=

G is
not symmetrical.

In practice, the most useful quantity is its symmetric
part, the “statistical symmetrised velocity gradient”:

=

V =

=

G +
=

G
t

2
=

=

M
−1 =

C +
=

C
t =

M
−1

2
. (20)

It is the rate of variation of
=

M due to the links’ stretching

and relaxation. Fig. (10) plots an example of
=

V . It is large
all around the obstacle, but only very close to it; it is
almost symmetrical before and after the obstacle. When

the material’s density is constant, Tr
=

V is small, and the
corresponding ellipse is nearly circular.

The anti-symmetric part is the statistical rotation rate:

=

Ω=

=

G −
=

G
t

2
=

=

M
−1 =

C −
=

C
t =

M
−1

2
. (21)

It has 3 independent components in 3D, but only 1 in 2D
(appendix B.1). Thus Fig. (10) plots it as grey levels.

3.3.2 Statistical topological rearrangement rate:
=

P

We define the continuous counterpart of the topological

changes
=

T (eq. 13) in a way similar to section (3.3.1). Since
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Fig. 11. Plastic behaviour. Map of the topological deforma-

tion rate
=

P (eq. 22) measured on the foam of Fig. (1a). Coffee
bean axes indicate the direction of links which have just disap-
peared (indicated by a thin line) and just appeared; note that
this is the inverse of Fig. (8), due to the minus sign in eq. (22).
Scale for ellipses: bar = 0.1 s−1, proportional to the frequency
of rearrangements. Measurement boxes touching the obstacle
were removed.

=

T is symmetric, we suggest to construct its counterpart
=

P
directly as symmetric too, as in eq. (20):

=

P = −1

2

=

T
=

M
−1

+
=

M
−1 =

T

2
. (22)

Here we have introduced a factor −1/2 so that
=

P is the
term which unloads the statistical internal strain, as will

appear in eqs. (65,23). In cases where
=

T and
=

M commute,

such as in the companion paper [15],
=

T
=

M
−1

is symmetric

and eq. (22) simply writes
=

P= −
=

T
=

M
−1

/2.

This “statistical topological rearrangement rate”
=

P (eq.
22) has the dimension of s−1. It measures the frequency
and direction of rearrangements: it is of the order of mag-
nitude of the number of changes per unit time and per
link. Corresponding coffee beans are elongated (resp: flat-
tened) if the number of links decreases (resp: increases); if
the number of links is conserved, coffee beans are nearly
circular.

As an example, Fig. (11) shows that the rearrange-
ments are more frequent just in front of the obstacle, or
in a very narrow region behind it. The rate of rearrange-
ments decreases smoothly with the distance to the obsta-
cle. This is due to the foam’s elasticity. It contrasts with
the sharp transition between solid-like and fluid-like re-
gions observed in purely visco-plastic materials [28,29].
Note that, since there are only few topological events, the
size of boxes has been chosen large (same as Fig. 6a),
to keep reasonable statistics. The companion paper [15]
presents an example with a larger spatial distribution of
topological events, which enables for a better spatial res-
olution.

3.3.3 Kinematic equation of evolution

We have thus three independent symmetric matrices:
=

U ,
=

V and
=

P . As discussed in Appendix C.2.3, there is a re-
lation between them. In the case where we can neglect
=

M ’s advection and rotation, its time evolution (eq. 10)
approximately simplifies as:

=

V =
D

=

U

Dt
+

=

P . (23)

That is, the (statistical) symmetrised velocity gradient is
shared between two contributions: one part changes the
(statistical) internal strain, the other part is the (statis-

tical) topological rearrangement rate. How
=

V is shared
between both contributions constitutes the main subject
of the companion paper [15].

Physically, eq. (23) means that, when a perturbation
is applied to the overall shape of the pattern, part of it
affects the appearance of the pattern (loading) and the
other part goes into rearrangements (unloading). Section
4 introduces a parallel point of view, in particular with
eq. (27).

4 Mechanics

This section, which addresses applications of our tools be-
yond the simple description, is more theoretical.

In the section 3, we have introduced statistical mea-
surements based on discrete objects. They describe the
pattern’s connections (topology), shape (geometry) and
movements (kinematics). On the other hand, continuous
mechanics describes forces (or stresses), that is, dynam-
ics. A given region of the pattern is said to be in elastic,
plastic or viscous (or fluid) regime, according to the con-
tribution to the stress that dominates locally [30]. The
viscous (or fluid) contribution to stress is irreversible: it
is due to, and thus increases with, the velocity gradient;
that is, relative movements of objects within the material.
The elastic contribution to stress is reversible, while the
plastic one is irreversible; both are solid behaviours, that
is, exist in the limit of very low velocity gradient.

In order to unify the description of the three regimes,
we would like to identify the statistical and dynamical
descriptions. We first recall that continous mechanics in-

volves three kinematical quantities
=̇
εtot,

=
εel and

=̇
εpl (sec-

tion 4.1.1), which are related through eq. (27). We then
try to identify it with eq. (23). This is possible, not in
general, but in particular cases.

We thus proceed step by step. Section 4.2 shows that

in affine deformations we can approximately identify
=

V

and
=̇
εtot. To proceed further, section 4.1.2 considers the

case where either D =
εel /Dt or

=̇
εpl vanishes, and thus the

number of independent quantities reduces to 1; section
4.3.2 investigates the case of foams. We hope that in these
cases, statistical measurements can constitute a coherent
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language to unify the description of elastic, plastic and
fluid behaviours, as well as facilitate models and tests.

4.1 Link with continuous mechanics

4.1.1 Elastic, plastic, fluid behaviours

If the pattern behaves as a continuous material, we can
consider a representative volume element, or RVE (section
3.1). If this RVE is at position R, the velocity field is
〈v〉 (R), that is, an average over the whole RVE. If R1 and
R2 are the positions of two RVEs, the velocity gradient
=

∇v is the spatial derivative of the velocity field, and
=

∇v
t

is its transposed (eqs. 52,53), then:

〈v〉 (R2) ≃ 〈v〉 (R1)+
=

∇v
t

· (R2 − R1) . (24)

Details on this notation can be found in Appendix B.3.
Eq. (24) neglects terms of order of |R2 − R1|2 and higher.
It describes the velocity field as continuous and affine,
that is, a term which varies linearly with position plus a
constant.

One of the key ingredients of continuous mechanics is
the velocity gradient’s symmetrical part, that is, the total
deformation rate:

=̇
εtot =

=

∇v +
=

∇v
t

2
. (25)

This is a purely kinematical quantity, but it determines
the contribution to the viscous (dissipative) stress [21].

For small deformations (linear regime), neglecting ad-
vection and rotation, the integration of eq. (25) defines a
total applied deformation, which is a function of the past
history of the sample, as:

=
εtot=

∫

dt
=̇
εtot ≈

=

∇u +
=

∇u
t

2
. (26)

Here
=

∇u is the gradient of the displacement field u, and
=
εtot its symmetrical part.

The total deformation rate contributes in part (load-

ing) to change the elastic strain
=
εel, and in part (unload-

ing) to a plastic deformation rate
=̇
εpl which is defined by:

=̇
εtot =

D =
εel

Dt
+

=̇
εpl. (27)

Both are defined through dynamics. The elastic strain
=
εel

contributes to the reversible part of the stress. The plastic

strain rate
=̇
εpl describes the irreversible contribution to

the stress in the low velocity limit (note that rearranging
patterns can often deform a lot without breaking).

4.1.2 Affine assumption

The affine assumption is analogous to, but much stronger
than, eq. (24). It assumes that the velocity of each indi-
vidual object is affine too:

v (r2)
affine≃ v (r1)+

=

∇v
t

· (r2 − r1) . (28)

In other words, it assumes that the continous velocity gra-
dient has a meaning down to the level of individual ob-
jects, and that fluctuations around it are small enough to
have no effect on the material’s mechanical behaviour.

In cellular patterns, especially in dry ones where there
are no gaps not overlaps, the movement of each individual
object is highly correlated with its neighbours’. Thus the
affine assumption is reasonable, see section 4.1.4 and in
particuler Fig. (12). In particle assemblies, it might apply
to dense assemblies of repelling particles, which cannot be
too close nor too far from each other. Whenever this as-
sumption is valid, it considerably simplifies the description
of the pattern evolution.

Consider for instance a link, ℓ = r2 − r1 (eq. 1). Its
time derivative is

dℓ

dt
= v (r2) − v (r1) .

Thus, under the affine assumption (eq. 28), the velocity
gradient modifies all links in almost the same way by (see
eq. 54):

dℓ

dt

affine≃
=

∇v
t

ℓ. (29)

In the definition (eq. 12) of
=

C
t

, the velocity gradient
can be taken out of the average:

=

C
t affine≃

〈

=

∇v
t

ℓ ⊗ ℓ

〉

=
=

∇v
t

〈ℓ ⊗ ℓ〉 . (30)

By injecting eq. (30) into eq. ( 19) we show that
=

G is a

statistical equivalent of the velocity gradient
=

∇v:

=

G=
=

M
−1 =

C
affine≃

=

∇v . (31)

This is why we included
=

M
−1

only on the right side of
=

G
(eq. 19).

In a deformation at constant volume,
=

∇v has a zero

trace, so
=

G approximately has a zero trace too.

4.1.3 Velocity gradient and total deformation rate

By comparing eq. (25) with eqs. (20,31) we identify the
statistical and dynamical definitions of the total deforma-
tion rate:

=

V
affine≃ =̇

εtot. (32)
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(a)

(b)

Fig. 12. Affine assumption: test of eq. (31) on a foam. (a)

Comparison of maps of
=

G (left) and
=

∇v (right): ellipses, sym-
metric part; grey levels, antisymmetric part (bar: 5.6 × 10−3

s−1). (b) Quantitative comparison: left, (GXX − GY Y )/2 ver-

sus (∇vXX −∇vY Y )/2, and the same for all other components
(superimposed): XX +Y Y , XY −Y X, XY +Y X; right, angle
(in degrees) of ellipses plotted in (a). Each point comes from
one RVE of the image.

=

V thus appears as a statistical measurement of the

symmetrised velocity gradient
=̇
εtot. When only large scale

measurements are possible, only
=̇
εtot can be measured.

However, when the detailed information on links in avail-

able to perform statistics, measuring
=

V offers several ad-
vantages.

First, the signal to noise ratio is optimal, in the sense
that all the local information, and only it, is used.

Moreover,
=

V is intrinsically based on the material’s
structure. It can be defined and measured even if there a
only a few objects or if the standard deviation of their ve-
locities is large. Each link acts as a small probe of the local
velocity differences: the spatial derivative is taken natu-
rally at the places where the objects are, not on a large
scale lattice of RVEs. Averaging over all links provides
a statistical measurement of the continuous deformation

rate. At no point does the definition or measurement of
=

V
require any affine description.

Physically, we expect
=

V to play a more general role

than
=̇
εtot, because it is based on the individual objects

themselves. For instance, we expect
=

V to be determinant
in yielding, and thus in the description of plasticity (and

possibly
=

Ω too) [15]. Similarly, the material’s internal dis-
sipations are probably more closely related to changes in
the links than to a large scale velocity gradient: this sug-
gests that the dissipative contribution to the stress arises

in general from
=

V rather than from
=̇
εtot.

4.1.4 Example

Using our example of foam, we have checked eq. (31) at
different scales (the same as in Fig. 6). Fig. (12) shows
some of our measurements. We have measured the detailed
components, including the rotationnal (asymmetric part),
as well as eigenvalues and axes of the symmetric part.

All these quantities are the same for
=

G and
=

∇v, within a
few percents precision, with a correlation close to 1. The

measurements of
=

G and
=

∇v have a comparable precision,
and suffer from similar imprecisions near the channel walls
and obstacle. Both have a small trace (ellipses are nearly
circular), see section 3.2.3.

This agreement is unexpectedly good, given that with
the dry foam chosen here the deformation is large and its
gradient is strong. At large scale, movements of individual
objects within the same RVE can differ considerably; but
even in this unfavorable case, the affine assumption seems
to hold, as shown in Fig. (12). The reason seems to be that

eq. (31) is correct whenever
=

M does not vary significantly
within the chosen RVE [1].

4.2 Identification of matrices under the affine
assumption

4.2.1 Strain, in the elastic regime

In this section we consider the particular case where the
material is in the elastic regime; first, for simplicity, the
linear elastic regime; then back to the general one.

In elastic regime, there is no plastic deformation rate,
=̇
εpl = 0. Eq. (27) becomes simply:

D =
εel

Dt
=

=̇
εtot. (33)

Thus, in the elastic regime, the elastic strain and the
deformation rate are not independent physical quantities.

Combining eqs. (26) and (33) shows that
=
εel≈

=
εtot .. That

is, in the linear elastic regime, one can identify two quan-
tities: the symmetrised gradient of the displacement field,
=
εtot, which is a function of the past history of the sample;

and the elastic strain
=
εel, which is a function of state. In

fact, in elasticity, both quantities are considered as equiv-
alent [22].

On the other hand, under the affine hypothesis, Ref. [9]
for the linear elastic regime (small deformations), and Ref.
[12] for the non-linear elastic regime (large deformations),
show that:

=

U

affine
elastic≃ =

εtot . (34)

The demonstration of eq. (34) is similar to that for
=

V (eqs.
30-32): it uses the same hypotheses, with the additional

assumption that
=

M and
=

M0 commute (which is satisfied

if
=

M0 is isotropic).
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Eq. (34) shows that in the elastic regime
=

U≈=
εel .. Thus

the elastic strain
=
εel can be measured using two different

methods. When large scale measurements of total defor-

mation are possible,
=
εel can be measured as

=
εtot. When

the detailed information on links in available, measuring
=
εel as

=

U offers many advantages, similar to that of
=

V (sec-
tion 4.1.3).

4.2.2 Plastic deformation rate, in steady flow

In the more general case, there is a plastic deformation

rate,
=̇
εpl 6= 0, and deformations can be non affine. Eq. (33)

does not hold. The current elastic strain
=
εel and the total

deformation rate
=̇
εtot are independent physical quantities;

=
εel can no longer be measured as

=
εtot. Whether it can be

measured as
=

U is discussed in section 4.3.
For instance, if the material flows, involving arbitrary

large displacements,
=̇
εpl can become much larger than

D =
εel /Dt. In the extreme cases of steady flows, inde-

pendent of time, it is possible (in absence of advection)

that D =
εel /Dt = 0, and eq. (27) reduces to:

=̇
εtot =

=̇
εpl. (35)

According to eq. (22), a steady flow with a corotational
derivative that vanishes (meaning no advection nor rota-
tion effects, see eq. (66)), implies that all the geometrical
deformation rate translates into the topological deforma-
tion rate:

=

P =
=

V .

Using the identification of eq. (32), we therefore obtain in
that case:

=

P

affine

steady≃ =̇
εpl. (36)

4.3 Complete identification

4.3.1 General case

The statistical tools
=

U and
=

P are always defined and mea-
surable, even out of the elastic regime or out of the steady

regime. If we could identify them with
=
εel and

=̇
εpl, respec-

tively, it would make possible to measure the elastic strain
in all regimes. This is certainly not possible in general, as
shown by the following counterexamples [31].

In granular systems, due to solid friction in the con-
tacts, irreversible plastic strains appear before the list of
contacts changes. In solid networks (e.g. solid foams) with
no topological change, the bond themselves might behave
plastically, or they might perhaps undergo buckling insta-
bilities leading to non-reversible stress-stain curves. Those
are examples in which plasticity occurs before the first
topological change.

Fig. 13. XY components of the elastic stress σ (in arbitrary

units) versus XY components of
=

U . Each point comes from one
RVE of the image. Data for the (XX−Y Y )/2 components are
superimposed. For details of the measurement method see refs.
[11,10,12].

Conversely, consider a set of rigid cables which re-
sist tension, but no compression, and tie them together
at knots to form a redundant, hyperstatic network. Un-
der given external forces on the knots, some cables will
be taut, others will dangle and transmit no force. Upon
changing the forces, the list of taut, tension-carrying ca-
bles will change. This can be regarded as a topological
change. The response, which implies displacements and
strains, is however reversible and might be called elastic.
Hence a case for which plasticity begins after the first
topological change.

4.3.2 The case of foams

Identification is apparently possible in at least one case,
that of liquid foams (or emulsions). As we have seen in
section 4.1.4, they obey the affine hypothesis, as probably
do many cellular patterns. This is already an important
property; see also the discussion in Appendix A.3. How-
ever, they have two additional properties, which are very
specific.

Firstly, in a foam, the elastic energy is proportional
to the bubble surfaces, so that the elastic strain stems
from bubble deformation. This has been experimentally

checked:
=

U (or at least its deviatoric part) actually de-
termines the (deviatoric) elastic stress [11,10,12]. Their
proportionality factor is a measurement of the shear mod-
ulus. We check it on our example too (Fig. 13).

Secondly, each topological process instantaneously changes
the energy landscape, leading to a relaxation within a new
attraction basin, and thus an irreversible plastic change
[15]. There is thus a direct link between the discrete pat-
tern and its continuous mechanical behaviour. This sug-
gests that it should be possible to achieve the identifica-
tion:

=

U
foams≃ =

εel,
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=

P ≃ =̇
εpl,

=

V ≃ =̇
εtot. (37)

5 Summary

In the present paper, we define tools (Table 1) to extract
information from a pattern made of discrete objects, sub-
ject to rearrangements, within a wide class of complex
materials made of individual constituents such as atoms,
molecules, bubbles, droplets, cells or solid particles. They
characterise quantitatively the mutual arrangements of
these objects, or more precisely the links between neigh-
bouring objects.

Their definition, which can flexibly adapt to the ques-
tions to be answered, is operational. That is, given an
experimental or simulated pattern, whether in 2D or 3D,
there is a well defined method to measure them directly as
statistics on individual constituents (links between neigh-
bouring sites). This measurement is easy, and requires
only a few basic operations on a computer: multiplica-
tion, average, diagonalisation, logarithm. It is robust to
experimental noise, even if there is a limited number of
links.

=

M ,
=

C and
=

T characterise the current state of the pat-
tern, its geometrical changes, and its topological rear-
rangements, respectively. They are explicitly based on the
pattern’s discrete structure. They can be measured locally,
for instance on a single biological cell, or grain in crystals.
But they can also be measured as averages over a larger
region in space, or as time averages.

For instance, in foams, measuring them smoothens out
the pattern fluctuations due to the discrete nature of bub-
bles, and evidences the underlying behaviour of the foam
as a continuous medium.

Their statistical counterparts,
=

U ,
=

G (or rather
=

V ) and
=

P , are independent of the pattern’s discrete length scale.
Each of them exists and is valid together in elastic, plas-
tic and fluid regimes : they unify the description of these
three mechanical behaviours. It facilitates the comparison
between experiments, simulations and theories.

In at least two cases: (i) linear, affine, elastic regime;
and (ii) foam mechanics, we suggest how to identify them
with the quantities which characterise the continous me-
chanics: elastic strain, total deformation rate, and plastic
deformation rate, respectively. From a practical point of
view, this offers the advantage of measuring these con-
tinuous quantities with an optimal signal to noise ratio,
even with few discrete objects. On a fundamental side,
this provides a physical basis to the description of a con-
tinuous medium, at any local or global scale, by relating it
to the individual constituents. Moreover, it provides a co-
herent language common to elasticity, plasticity and fluid
mechanics.

The companion paper [15] illustrates most of these
points on a detailed practical example.
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A Measurement techniques

This Appendix, aimed at non-specialists, lists practical
advices based on our past experience.

A.1 Averaging procedure

There are at least three main possible choices for the av-
eraging procedure (Fig. 14). Once a procedure has been
selected, it is important to keep consistently the same for
all measurements.

The topology is useful for local information, typically

to measure
=

M or
=

T for a single particle or cell. This is the
case for instance when studying the division of a cell [4]. In
that case, each link is either included or excluded (“all or
nothing”). One should at least include the links between
the site of interest and its neighbours (first shell). One
can also choose to include the second shell (next nearest
neighbours), third, or even higher. Statistics are over a
few links only, and are easy to compute, even sometimes
by hand.

The geometry is useful for a continuous description,

typically to measure
=

U (R, t),
=

P (R, t) or
=

V (R, t) in a
RVE as a function of space and time. This is the case
for the examples of foam flow which illustrate this paper.
The average is over all links in a box which respects as
much as possible the symmetry of the problem: rectan-
gle, annulus. The dimensions of the box determine the
scale of averaging. The measurements are performed on
boxes at different positions R. The distance between mea-
surements positions cannot be more distant than the box
size (it would leave gaps between boxes), but they can
be closer (thus boxes overlap). If the box dimension is
much larger than a link, one might choose to neglect links
which cross the box boundary. But in general, links which
cross the boundary require attention (especially near the
box corner) if an automatised image analysis is used. An
additional choice is required. A first possibility (“all or
nothing”), computationnally simpler, is to look where the
link’s center lies: if the center lies inside the box, the link
is assigned to this box; else, this link is not counted [10] or
assigned to this box with a weight 1/2 [14]. A second pos-
sibility (“proportional”), which yields a better precision,
consists in determining the fraction w of the link which is
inside the box (the remaining 1 − w is outside); then the
link is counted in the statistics with a weight w [12], see
also Appendix C.1.



F. Graner et al.: Statistical tools to characterize discrete rearranging patterns 17

Fig. 14. Examples of averaging procedures: a link’s weigth vs

its position, here the box range is the segment [−a, a]. Dots:
“all or nothing”. Dashes: “proportional”. Solid line: “coarse
grained”, here with a hyperbolic tangent profile.

The coarse graining is seldom convenient in the practi-
cal applications considered here. However, specialists use
it for theory [27], especially for the advection term (see
Appendix C.1) [17]. A link at position r is counted in a
box at position R with a weight w(|r − R|). The coarse
graining function w is a function which is non-increasing,
from w(0) = 1 to w = 0, and has an integral equal to 1.
Its width at half height (that is, where w = 1/2) defines
the scale of coarse graining. It is a continous and differen-
tiable function, so that advected links enter and leave the
average smoothly, without singularity [27].

Once the procedure has been chosen, we note:

Ntot =
∑

w,

where the sum is taken over all links in the averaging
region; and the average of any quantity x is:

〈x〉 = N−1
tot

∑

w x.

For instance, the texture is:

=

M= 〈ℓ ⊗ ℓ〉 =

∑

w ℓ ⊗ ℓ
∑

w
(38)

There are other details which we have not tested yet.
For instance, regarding particles or cells placed at the pat-
tern’s boundary. Or for images of low quality (for instance
due to defocalisation in 3D patterns, or low contrast), in
which particles or cells are difficult to identify. We encour-
age the user to develop and test specific procedures, and
if possible to keep us informed.

A.2 Choice of
=

M0

Since the reference texture
=

M0 plays almost no physi-
cal role, its choice is not very important. It depends on
the problem under consideration, but once its definition is
chosen, it should be kept consistently. We now list a few
possibilities, with decreasing available information.

The most favorable case is when
=

M0 can be measured
directly. In experiment, this is possible when an image can
be chosen as reference, for instance a stress free pattern.
In simulation (Fig. 3b), this requires to relax the stress
under prescribed constraints.

In theory,
=

M0 can be determined in a set of particles
with known interaction potential; for instance in Fig. (3a),

where the natural reference is the honeycomb pattern with
a link size:

ℓ2
0 =

2A√
3

= 2
√

3Alink. (39)

Here A is the area per particle (or cell), Alink = A/3 is

the area per link, and
=

M0= ℓ2
0

=

I 2 /2.
In many cases (Fig. 1), no reference state is known

in details. If only
〈

ℓ2
0

〉

is known, we suggest to take
=

M0

as isotropic. Although we don’t know any fundamental
reason for that, it seems to be satisfactory in all practical
cases we have encountered. From eqs. (5, 8) it writes, in
D = 2 or 3 dimensions:

=

M0=

〈

ℓ2
0

〉

D

=

ID, (40)

In some cases,
〈

ℓ2
0

〉

is not known but we can estimate
it. For instance, in a 2D cellular pattern of known average
area 〈A〉 (Fig. 2), the comparison with hexagons (eq. 39)
suggests to take approximately :

〈

ℓ2
0

〉

≈ 2 〈A〉√
3

, (41)

In the worst case, even
〈

ℓ2
0

〉

is unknown. A possibility
is to take:

=

M0≈ λ̄
=

ID,

where λ̄ is the average of the λis,
=

M ’s eigenvalues. Taking
the arithmetic average, λ̄ = Σiλi/D, corresponds to the
assumption that

〈

ℓ2
〉

is conserved:
〈

ℓ2
0

〉

≈
〈

ℓ2
〉

. Taking

the geometric average, λ̄ = (Πiλi)
1/D, corresponds to the

assumption that Tr
=

U= 0, which is close to assuming that
the material is incompressible (see section 3.2.3).

A.3 The case of cellular patterns, especially foams

In dry cellular patterns, the number of neighbours of each
cell is variable; but its average over the whole pattern is
always close to 6 neighbours, and thus 6 links, per cell [18,
16]. Since each link is shared by two cells, the number of
links is 3 times the number of cells. This is also true for a
moderately wet cellular pattern, if neighbours are defined
on a skeletonized image. It extends to Voronoi/Delaunay
definition of neighbours for particles.

Aubouy et al. [9] chose to describe a cellular pattern
such a 2D dry foam as a network, each site being a vertex
(that is, a point where three cells meet). Here, we pre-
fer to use cell centers, for several reasons. (i) First, and
most important: the centers move according to the overall
velocity field (while vertices have a highly fluctating dis-
placement), thus the affine assumption (eq. 28) applies.
(ii) It is more robust, because a cell center is measured as
an average over several pixels (while a vertex is a single
pixel, which position might depend on the image analy-
sis procedure). (iii) This has the advantage of being more
general: it applies to all other discrete patterns; and even
within cellular patterns, it applies to wet foams, and to
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3D. (iv) Finally, the topological rearrangements are well
characterised (while on the opposite, if ℓ was defined as
the vector between two vertices, a T1 occurs would be de-
fined as ℓa = ℓd = 0, so that the contribution of a T1 to
eq. 13 would systematically be zero!).

Marée et al. [32] propose to measure the shear modu-
lus by considering the variation of cell shapes. Each cell’s
shape is characterised by its inertia matrix: it looks sim-
ilar to eq. (2), but it is averaged over the pixels inside
a cell; thus their description is intra-cellular. Ours, aver-
aged over the links between the cells, and thus based on
the shape of the overall pattern, is rather inter-cellular.
In dry cellular patterns, where there are no gaps between
cells, nor overlaps, the deformation of each cell is highly
correlated to the global deformation; thus, in this case,
both descriptions coincide and yield approximately the
same results [4]. Here, we prefer to use the texture based
on cell centers, which is more general, for several reasons.
(i) It also applies to characterise the deformation of wet
foams (where bubbles are round, and thus each bubble’s
inertia is isotropic). (ii) It applies to all other discrete pat-
terns, including particle assemblies. (iii) Centers, rather
than shape, are involved in the kinematic description, in-
cluding eqs. (20,22).

Finally, note that the shear modulus is the variation of

elastic stress with respect to infinitesimal variations of
=

U .
This measurement is robust [11,10,12]. As mentioned in

section 3.2.2, it is not affected if we multiply
=

M and
=

M0

by a same prefactor; and even if we change
=

M0, see for
instance eq. (16). This is why this particular measurement
gives similar results with both above methods.

B Matrices: notations and definitions

We work here in a space with D = 3 dimensions, although
many practical applications regard 2D images. A scalar is
a simple number; a vector is a list of D numbers, and
we note it with an arrow; a matrix is an array of D × D
numbers, and we note it with a double bar. All these ob-
jects are tensors, of rank 0, 1 and 2, respectively. Tensors
of rank 3, for which there exist no particular name, are
barely used in the present paper, and we note it with a
triple bar.

This appendix is aimed at readers who are not familiar
with the matrices. We thus list all relevant definitions used
in the text, from the simplest to the most complicated, but
all of them are standard.

B.1 Notations and definitions

Throughout this paper we manipulate matrices using a
compact notation for simplicity. In this Appendix we use
a developed notation, easier to understand, using compo-
nents (labelled by 2 indices) rather than double bar. Both
notations are equivalent; both ensure that the equations
we write are independent of the system of axes we choose.

A matrix
=

A is an array with components Aij , where
i, j = 1, 2 or 3:

=

A=





A11 A12 A13

A21 A22 A23

A31 A32 A33



 . (42)

Its trace is the sum of its diagonal terms:

Tr
=

A= A11 + A22 + A33. (43)

Its transposed
=

A
t

has components At
ij = Aji, and has the

same trace. Any matrix can be rewritten as the sum of its
symmetric and antisymmetric parts:

=

A =

=

A +
=

A
t

2
+

=

A −
=

A
t

2
.

A matrix
=

S is said to be symmetric if it is equal to its

transposed,
=

S=
=

S
t

(while an antisymmetric matrix is equal
to minus its transposed); by definition, the symmetric part

of
=

A is always symmetric. A symmetric matrix can itself
be rewritten as an isotropic term and a traceless (or devi-
atoric) term:

=

S =
Tr(

=

S)

D

=

ID +Dev(
=

S), (44)

where
=

ID is the identity matrix in dimension D (eq. 5),
and:

Dev(
=

S) =
=

S −Tr(
=

S)

D

=

ID . (45)

Itself, the deviatoric part can be decomposed in diagonal
components, called normal differences, and off-diagonal
ones.

To summarize, a matrix has in general 9 independent
components Aij . They can be rewritten as 3 antisym-
metric ones, namely (A12 − A21)/2, (A23 − A32)/2, and
(A31−A13)/2; and 6 symmetric ones, namely 1 trace A11+
A22 + A33, 2 normal differences A11 −A22 and A22 −A33,
3 off-diagonal terms (A12 + A21)/2, (A23 + A32)/2, and
(A31 + A13)/2. This means that an antisymmetric matrix
has 3 independent components, a symmetric matrix has
6, a deviatoric one has 5, an isotropic one has 1.

Tensorial notations are valid in any dimension D, and
it is straigthforward to rewrite them in 2D, see also sec-

tion 2.2.3. In 2D, a matrix
=

A has in general 4 independent
components Aij , where i, j = 1 or 2. They can be rewrit-
ten as 1 antisymmetric one, namely (A12 − A21)/2; and
3 symmetric ones, namely 1 trace A11 + A22, 1 normal
difference A11 − A22, 1 off-diagonal terms (A12 + A21)/2.
This means that an antisymmetric matrix has 1 indepen-
dent component, a symmetric matrix has 3, a deviatoric
one has 2, an isotropic one has 1.

The scalar product between matrices is
=

A:
=

B=
∑

i,j AijBij .

The (“euclidian”) norm of
=

A is a strictly positive number
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defined in any dimension D as:

||
=

A || =

√

=

A:
=

A =





∑

i,j

(AijAji)





1/2

. (46)

B.2 Diagonalisation

Any symmetric matrix
=

S can be diagonalised. That is,

there exist three orthogonal axes, called
=

S’s eigenvectors
(from the German word “eigen”, meaning “own”), in which
=

S would be diagonal, see for instance eq. (4). That is, if
we use these axes (instead of the original ones) to mea-
sure the matrix, it would have non-zero terms only along
its diagonal:

diag
=

S=





s1 0 0
0 s2 0
0 0 s3



 . (47)

The three numbers s1, s2, s3 are called the matrix’ eigen-
values.

They determine many properties of
=

S, including its
trace and norm:

Tr(
=

S) = s1 + s2 + s3,

||
=

S || =
√

s2
1 + s2

2 + s2
3. (48)

If the sis are non zero, the inverse of
=

S exists, and it

is diagonal in the same axes as
=

S:

diag
=

S
−1

=





1
s1

0 0

0 1
s2

0

0 0 1
s3



 . (49)

If the sis are strictly positive, the logarithm of
=

S (see
eq. 15) is defined by rotating to the eigenvectors, taking
the logarithm of the eigenvalue, and rotate back to the

original axes. By construction, log(
=

S) is symmetric too

(see eq. 16), and diagonal in the same axes as
=

S.
The literature of mechanics [23,33] sometimes uses a

specific definition adapted for shear. A shear is charac-
terised by a deviatoric matrix with two opposite eigenval-
ues (s1 = −s2 = S) and nothing in the third direction
(s3 = 0). Its amplitude S is defined as:

S =





1

2

∑

i,j

S2
ij





1/2

=
||

=

S ||√
2

. (50)

B.3 Outer product

The outer product of two vectors a, b is the matrix of
components aibj:

a ⊗ b =





a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3



 . (51)

Its trace is the scalar product a.b = a1b1 + a2b2 + a3b3.
In the text, the outer product appears for instance for

the vector ℓ (eq. 9). It is also used for the notation ∇ =
(∂ri) = (∂/∂x, ∂/∂y, ∂/∂z) (called gradient, or nabla) which
symbolises the space derivatives:

=

∇v = ∇ ⊗ v =
∂vj

∂ri

=





∂v1

∂x
∂v2

∂x
∂v3

∂x
∂v1

∂y
∂v2

∂y
∂v3

∂y
∂v1

∂z
∂v2

∂z
∂v3

∂z



 (52)

More precisely, eq. (24) uses its transposed:

=

∇v
t

=
∂vi

∂rj
. (53)

Similarly, the rotational is the vector product ∇i × vj .
However, rheologists [23,33] often prefers the notation

gradv = ∂vi/∂rj . This creates an ambiguity with eqs.
(52,53). In case of doubt, it is safe to come back to indices,
which are unambiguous. For instance, the demonstration
of eq. (29) writes as follows:

∂ℓi

∂t
= vi(rj + ℓj) − vi(rj) =

∑

j

∂vi

∂rj
ℓj . (54)

For a rank three tensor, the notation
≡

J= v⊗
=

M means

Jijk = viMjk, and the notation ∇.
≡

J is equivalent to
∑

i ∂Jijk/∂ri.

B.4 Texture and stress

This appendix, inspired from ref. [9], aims at relating the
texture with the stress; the matrices with their mathemat-
ical interpretation; and the discrete description with the
continuous one.

Consider a pattern made of discrete objects. Now, draw
a plane through the pattern, and note n the vector normal
to this plane. Some links ℓ cut this plane, with a proba-
bility proportional to ℓ · n = ℓjnj (where ℓ is oriented by
the direction of n, so that this number is positive). It is
higher for links which are long, and/or perpendicular to
the plane. Thus the distribution of the ℓs which cut this
plane is biased with respect to the distribution of ℓ in the
bulk.

More precisely, the average of the ℓs which cut this

plane is 〈ℓiℓjnj〉 = Mijnj , or equivalently
=

M ·n. Thus
=

M
can be interpreted as a tensor acting on the vector n, to
estimate the average of the ℓs crossing a plane normal to
n.

In that case, the outer product by ℓ transforms the
surface integral of a discrete individual vector, the link,
into a bulk integral of a continuous average matrix, the
texture. The discrete individual vector ℓ encodes the in-
formation over the link and the corresponding continuous,
statistical matrix is the average of ℓ⊗ℓ. In this continuous
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description, the orientation of ℓ does not play a role any
longer, and the discrete pattern can be forgotten.

Eq. (9) is reminiscent of another application of the
outer product, regarding stress [9,10,12]. Consider an as-
sembly of particles which interact through a pairwise force
F , which we orient in the same direction as ℓ. The force
through a plane of normal n is proportional to:

〈Fiℓjnj〉 = 〈F ⊗ ℓ〉 · n.

This means that the stress in this assembly is proportional
(up to a prefactor, namely the density of links) to 〈F ⊗ ℓ〉.
As required, it is insensitive to the orientation of F and
ℓ. In that case, the outer product by ℓ transforms the sur-
face integral of a discrete individual vector, the force, into
a bulk integral of a continuous average matrix, the stress.
The role that stress plays for force (continuous equivalent

of a discrete description),
=

M plays it for the links them-
selves.

In the particular case of polymers or springs (with
zero length at rest) where F is proportional to ℓ, the
stress is proportional to the texture. In foams, where forces
are very different (and regard bubble walls rather than
links between centers), there is no simple relation between
them, as discussed in detail in ref. [12].

C Time evolution of the texture

C.1 Taking into account the finite number of links

This appendix can be useful for a user who wants to anal-
yse a movie (and not only a static image). It helps to

understand the definitions, units and measurements of
=

C

and
=

G; as well as the time evolution of
=

M (eq. 10).
We consider a movie, and more specifically two consec-

utive images at times t and t + ∆t. If possible, ∆t should
be chosen small enough to enable a good sampling (as will
become clear below); still, the average can be performed
on a large time interval τ , that is, a large number τ/∆t
of images. Measurements should not depend too much on
the exact value of ∆t. Thus most users can consider ∆t
as a prefactor, important only when comparing different
experiments or simulations.

For a given quantity x which depends both on space
and time, ∆x/∆t tends towards its partial time derivative
∂x/∂t, since we perform all measurements in a fixed region
of space (so-called “Eulerian” point of view, often useful
in practice). In principle, if the measurement box moved
with the links (so-called “Lagrangian” point of view, often
useful in theory), ∆x/∆t would tend towards its usual
time derivative dx/dt.

Eq. (38) can be rewritten as:

Ntot

=

M=
∑

w ℓ ⊗ ℓ. (55)

Its variation between successive images, divided by ∆t, in-
volves the links ℓa (resp. ℓd) appeared (resp. disappeared)

during ∆t:

∆(Ntot

=

M)

∆t
=
∑ ∆w

∆t
(ℓ ⊗ ℓ)

+
∑

w

(

ℓ ⊗ ∆ℓ

∆t
+

∆ℓ

∆t
⊗ ℓ

)

+
1

∆t

(

∑

a

waℓa ⊗ ℓa −
∑

d

wdℓd ⊗ ℓd

)

.

(56)

Dividing both sides by Ntot yields:

∆
=

M

∆t
+

=

M
∆ log Ntot

∆t
= −∇.

≡

JM

+

(

=

C +
=

C
t
)

+
=

T (57)

The advection term −∇.
≡

JM is the term in ∆w/∆t,
in eq. (56). It is due to links entering or exiting the re-

gion where
=

M is measured. In a first approximation,
≡

JM≃
v⊗

=

M : the demonstration is delicate and we do not de-
velop it here (briefly: when the averaging procedure uses
a coarse-graining function w(r(t)), it is possible to trans-
form a a time derivative of w into a space derivative; this
involves dr/dt, that is, the local velocity [27,17]). We do
not consider here in detail the influence of advection.

We also neglect here the influence of the variation of
log Ntot: if the movie has been correctly sampled, that is
if ∆t is small enough, the proportion of links created or
destroyed during ∆t remains small.

The geometrical variation term is:

=

C=
Nc

Ntot

〈

ℓ ⊗ ∆ℓ

∆t

〉

. (58)

Here Nc the number of links conserved between both im-
ages, that is, the number of terms involved in the average
noted 〈.〉 (hence the correction Nc/Ntot). If ∆t is small
enough, then ∆ℓ/∆t tends towards dℓ/dt and Nc/Ntot

tends towards 1, so that we obtain eq. (12).
The topological term is between the last parentheses

in eq. (56). Note that we can derive its exact prefactor
(often unimportant in practice):

=

T=
1

∆t

∆Na

Ntot
〈ℓa ⊗ ℓa〉 −

1

∆t

∆Nd

Ntot
〈ℓd ⊗ ℓd〉 , (59)

where ∆Nd is the number of disappeared links (that exist
at t but no longer at t + ∆t); and ∆Na the number of
appeared links (that exist at t + ∆t but not yet at t).
In the limit of small ∆t, eq. (59) tends towards eq. (13).
In eq. (59), the number of terms involved in the average
〈ℓa ⊗ ℓa〉 (resp: 〈ℓd ⊗ ℓd〉) is ∆Na (resp: ∆Nd), which is

much smaller than Ntot: thus statistics on
=

T are always

much noisier than that on
=

M or
=

C. It is thus advisable to

integrate
=

T over a long time τ .
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C.2 Objective derivatives

This technical section is rather aimed at specialists. It dis-
cusses the different objective derivatives which appear in
the course of this paper, when estimating the time deriva-

tives of
=

M or
=

U .

C.2.1 Time evolution of
=

M

In the affine assumption, the geometrical term
=

C +
=

C
t

of
eq. (10) can be rewritten using eq. (19,31):

=

C +
=

C
t

=
=

M ·
=

G +
=

G
t

·
=

M
affine≃

=

M ·
=

∇v +
=

∇v
t

·
=

M . (60)

Thus, the second term of the right hand side of eq.
(10) can be grouped with its left hand side formally ap-
pearing as a Maxwell upper convective tensor derivative
(see e.g [34]):

∇
=

M =
∂

=

M

∂t
+ v · ∇

=

M −
=

∇v
t

·
=

M −
=

M ·
=

∇v . (61)

Hence eq. (10) appears as a conservation equation for
=

M :

∇
=

M
affine≃ −

=

T , (62)

which source
=

T is due to topological changes. Note that the
present approach has unambiguously selected the upper
(rather than the lower, or any other) convective tensor
derivative.

C.2.2 The small
=

U assumption

Consider now the case where the deformation
=

U is small
everywhere. Inverting eq. (16), the texture develops as:

=

M =
=

M0 exp
(

2
=

U
)

=
=

M0

(

=

I +2
=

U +O(
=

U
2

)

)

small≃
=

M0 +2
=

M0

=

U .

This assumption is valid for foams, since the deformation
of bubbles does not excess the size of two bubbles before

topological changes occurs, and thus ||
=

U || is bounded. Let

us also suppose that
=

M0= m0

=

I , i.e. that the reference
configuration is isotropic. Then, eq. (62) becomes:

2m0





∇
=

U −
=

∇v +
=

∇v
t

2





small≃ −
=

T ,

or equivalently:

=

∇v +
=

∇v
t

2

small≃
∇
=

U +
=

P , (63)

where
=

P= −
=

T /(2m0) denotes the rate of the plas-
tic deformation. This linear assumption thus simplifies
eqs. (66,23). Again, this selects an upper convective tensor
derivative.

C.2.3 Kinematic equation of
=

U

As in appendix C.2.2, we first invert the definition of
=

U
(eq. 16):

=

M=
=

M0 exp
(

2
=

U
)

. (64)

We differentiate eq. (64), inject it in the time evolution of
=

M (eq. 10), then eliminate
=

M using eq. (16). We finally

obtain the time evolution of
=

U , versus
=

U instead of
=

M .
The complete calculation of this kinematical equation is
heavy (in particular because it involves the rotation of the
eigenvectors), and we do not develop it here. We only use
its lowest order terms in U :

∂
=

U

∂t
= −∇.

≡

JU +
=

V −
=

Ω
=

U

−
=

U
=

Ω
t

+O
(

=

Ω
=

U
2
)

−
=

P . (65)

The term −
=

P appears on the r.h.s. thanks to the factor

−1/2 in eq. (22). The O(
=

Ω
=

U
2

) term is often negligible in
a plastic material such as considered here, where the elas-
tic internal deformation is seldom much larger than unity.

On the other hand, the advection term
≡

JU and the rota-

tion term
=

Ω
=

U +
=

U
=

Ω
t

have symmetries which are different

from that of
=

V and
=

P , and may not necessarily be negligi-
ble. They can be regrouped using the total corotationnal
(“Jaumann” [35]) objective derivative:

D
=

U

Dt
=

∂
=

U

∂t
+ ∇.

≡

JU +
=

Ω
=

U −
=

U
=

Ω, (66)

where we recall that
=

Ω
t

= −
=

Ω. We thus approximately
obtain eq. (23).
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