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Bijetive ombinatoris of positive braidsMarie Albenque ∗AbstratWe give a new and bijetive proof for the formula of the growthfuntion of the positive braid monoid with respet to Artin generators.IntrodutionConsider n + 1 strands numbered from 1 to n + 1 and n elementary moves
σ1, . . . , σn where σi represents the rossing of strand i and i + 1 with strand
i above. Starting from an unrossed on�guration we apply sequenes ofelementary moves to obtain a braided on�guration; two on�gurations areequivalent if one an be obtained from the other only by moving the strandswithout touhing the top and bottom extremities. An equivalene lass ofon�guration is alled a braid. The set of braids, with onatenation of twobraids as internal law, is a monoid. It is preisely the positive braid monoidon n + 1 strands, denoted P, generated by Σ = {σ1, . . . , σn} (alled Artingenerators) and subjet to the relations:

σiσj = σjσi for |i − j| ≥ 2 (0.1)
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 1 (0.2)For u ∈ P there is a natural length funtion de�ned by:

|u|Σ = min{k | ∃u1, . . . , uk ∈ Σ suh that u = u1 . . . uk}The growth funtion of the positive braid monoid for the Artin generatorsis de�ned by:
F (t) =

∑

b∈P

t|b|Σ

∗LIAFA, CNRS-Université Paris 7, ase 7014, 2, plae Jussieu, 75251 Paris Cedex 05,Frane. E-mail: albenque�liafa.jussieu.fr1



Di�erent ideas have been used to ompute the growth funtion of the positivebraid monoid. In [Bra91℄, Brazil use the fat that, to eah braid is assoi-ated a unique deomposition usually alled its normal form (or its Garside'snormal form or Thurston's normal form). This set of normal forms is reg-ular, meaning that it is reognized by a �nite state automaton. From thisautomaton's adjaeny matrix, we an obtain diretly the growth funtion.But it is not a very e�ient way to ompute it, as for braids on n strands,this automaton has n! states and then it takes a time exponential in thenumber of strands to get the formula. In [Deh07℄, Dehornoy gives a methodto redue from n! to p(n) (where p(n) is the number of partitions of n) thenumber of states of this automaton.Bronfman (see [Bro01℄) and Krammer (see hapter 17 of [Kra05℄) give anew method to ompute the growth funtion in quadrati time. Their proofis based on an inlusion-exlusion priniple. We give here a di�erent andbijetive proof of this result.To explain our point of view, let look at the history of results for traemonoids. Trae monoids (also alled �heaps of piees monoids� or �free par-tially ommutative monoids�) denoted M are de�ned by the following semi-group presentation:
M = 〈Σ | ab = ba if (a, b) ∈ I〉,where Σ is a �nite set of generators and I is a symmetri and antire�exiverelation of Σ × Σ alled the ommutation relation. In 1969, Cartier andFoata omputed the growth funtion of these monoids by using an inlusion-exlusion priniple to get a Möbius inversion formula (see [CF69℄). Theproofs of Bronfman and Krammer use the same kind of arguments.In [Vie86℄, Viennot gives a new way to ompute the growth funtionof heaps of piees monoids. To perform this, he onsiders the set G of allheaps of piees of height at most one and onstruts an involution from

G × M into itself. This involution mathes elements of monoids two by twoand makes it easy to ount them. However, the onstrution of this pairingprovides more than a new way to ompute the growth funtion. It givesindeed an additional ombinatorial understanding of trae monoids. Severalbyproduts are given in [Vie86℄.In the present paper, we show that Viennot's proof an be extendedto braid monoids, whih gives a new point of view in the ombinatoris ofbraids. More preisely, we explain in 1.2 how to de�ne a set G of simplebraids and how to use it to onstrut an involution from (G × P) to itself.Following Bronfman, we show that Viennot's idea an atually be ex-tended to a wider lass of monoids whih naturally inludes braid monoids2



and trae monoids but also Artin-Tits monoids and Birman-Ko-Lee braidmonoids among others.1 Growth funtion of braid monoids1.1 Presentation of braid monoidsWe denote by Σ the set {σ1, . . . , σn} and by Σ∗ the free monoid on Σ. Thatis to say Σ∗ is the set of �nite words on the alphabet Σ with onatenationas monoid law. We denote by 1 the empty word.The positive braid monoid P on n+1 strands has the following semigrouppresentation:
P = 〈σ1, . . . , σn /σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i − j| ≤ 2〉We denote by ≺ divisibility on the left in P (that is, for a, b ∈ P, we have

a ≺ b if and only if there exists c ∈ P suh that ac = b) and denote similarlyby ≻ divisibility on the right.For u ∈ P, set left(u) = {σ ∈ S suh that σ ≺ u}right(u) = {σ ∈ S suh that u ≻ σ}1.2 A few notationsWe de�ne a new set G of generators of P. For all j, i ∈ {1, . . . , n} suh that
j + i ≤ n + 1, set:

δ{j,j+1,...,j+i} = (σj+i−1) . . . (σj+1)(σj)The element δ{j,...,j+i} is the braid where strand j + i moves up to position
j �behind the braid�. We set then:

∆{j,j+1,...,j+i} = δ{j,j+1} · δ{j,j+1,j+2} · . . . · δ{j,...,j+i} (1.1)
= (σj)(σj+1σj) . . . (σj+i−1 . . . σj+1σj), (1.2)The element ∆{j,...,j+i} is the half-turn of the strands j, j + 1, . . . , j + i (seeFig.1.2 for examples).Set G to be:
G =

⋃

J1∪...∪Jp

(∆J1
· · ·∆Jp) (1.3)3
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δ{2,3}

δ{2,3,4}

δ{2,3,4,5}Figure 1: Deomposition in P7 of ∆{2,3,4,5} as a produt of δ{2,3}, δ{2,3,4} and
δ{2,3,4,5}.where J1, . . . , Jp are disjoint subsets formed by onseutive integers of {1, . . . , n+
1}, suh that Jl < Jl+1 for all l ∈ {1, . . . , p−1} (i.e.: if il ∈ Jl and il+1 ∈ Jl+1then il < il+1) and suh that |Jl| ≥ 2 for all l ∈ {1, . . . , p}.We use the onvention that if J is a singleton, ∆J is the empty word. Butin the following, we always write an element of G in the simplest possibleway (i.e.: without terms equal to the empty word).We introdue a few notations:

• Let τ : G → N be the funtion de�ned by :
τ(g) =

p
∑

i=1

(|Ji| − 1) if g = ∆J1
· . . . · ∆Jp . (1.4)So τ(g) is the number of di�erent Artin generators whih appear in arepresentative of g.

• Let u be a word of S∗ suh that u = v · w with v,w ∈ S∗, we set:
v−1 · u = w and u · w−1 = v.

• Let J = {i, i+ 1, . . . , i+ j} be a set of onseutive integers, we denote:1. m(J) = i + j − 12. J + 1 = J ∪ {i + j + 1} = {i, . . . , i + j, i + j + 1}3. J − 1 = J \{i + j} = {i, . . . , i + j − 1}Remark 1. Let g = ∆J1
. . . ∆Jp be an element of G. We an notie that g isthe least ommon multiple of ⋃p

i=1(Ji − 1).Besides if g ∈ G is the least ommon multiple of Σ, then τ(g) = |Σ|.4



1.3 Growth funtion for the braid monoidsWe an now state the main result:Theorem 1. In Z〈〈P 〉〉, the following identity holds:
(
∑

g∈G

(−1)τ(g)g) · (
∑

b∈P

b) = 1 (1.5)Corollary 1. The growth funtion of the positive braid monoid is equal to:
F (t) =

∑

b∈P

t|b|S =




∑

g∈G

(−1)τ(g)t|g|S





−1 (1.6)Proofs of Theorem 1 and Corollary 1 will be given in setions 1.4 and1.5.Example 1 (Expliit formula on 4 strands). On Figure 2, we an read thevalue of τ and the length of all elements of G on 4 strands. The growthfuntion is then:
F4(t) =

1

1 − 3t + t2 + 2t3 − t6

τ = 0

τ = 1
|.|S = 1

τ = 2
|.|S = 2

τ = 2
|.|S = 3

τ = 3
|.|S = 6

|.|S = 0

Figure 2: The set G on 4 strands
5



1.4 De�nition of the involution of (G × P)We onstrut an involution from (G × P) to itself with only (1, 1) as �xedpoint. This gives us a natural way to pair elements of (G × P)\(1, 1) whihwill imply great simpli�ations in the following (see subsetion 1.5).To onstrut the involution, given a ouple (g, b) ∈ (G × P) we want tomove �piees� of g (respetively b) from g to b (respetively from b to g).Let us make it more preise; we de�ne the set E of elements whih will beallowed to move:
E = {δJ , J subset of onseutive integers of {1, . . . , n + 1} and |J | ≥ 2}(1.7)We an now de�ne:De�nition 1. Let (g, b) in (G × P) and u ∈ E suh that u ≺ b (resp g ≻ u).We then set g′ = g · u and b′ = u−1 · b (resp. g′ = g · u−1 and b′ = u · b).Now, if g′ satis�es the following onditions:1. g′ belongs to G2. τ(g′) = τ(g) ± 1,then u is alled an eligible moving part of (g, b).Observe that for |J | ≥ 2, ∆J · δ−1

J = ∆J−1. So there is at least oneeligible moving part of (g, b) if g 6= 1. For (1, b) there is learly at leastone eligible moving part unless b = 1. So for (g, b) 6= (1, 1), it exists atleast one eligible moving part of (g, b). In this ase we onsider the eligiblemoving part maximal for the lexiographi ordering indued by the ordering
σ1 < σ2 < . . . < σn on the generators. We all it the moving part of (g, b)and denote it k. Sine k annot be both from g to b and from b to g, we anset:

Ψ(g, b) =







(1, 1) if (g, b) = (1, 1)
(gk, k−1b) if k is from b to g
(gk−1, kb) if k is from g to bFigure 3 shows examples of how Ψ works on some ouples of G5×P5 (eligiblemoving parts are represented with dashed lines).Lemma 1. The funtion Ψ is an involution from (G × P) into itself whoseunique �xed point is (1, 1).
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Ψ

Ψ

(ase 4) (ase 3) (ase 1)(ase 2) Ψ

Ψ

Figure 3: Examples of how Ψ works. Case numbers refer to lemma 2. Ele-ments of G5 are represented at the top and those of P5 at the bottomProof. Assume that Ψ �xes (g, b) in (G×P), it implies that there is no eligiblemoving part of (g, b). Now it implies that g = 1 and then an eligible movingpart is any element of left(b), hene b = 1.Now, given a ouple (g, b) in (G × P) we look at the maximal eligiblemoving part. From De�nition 1, we an see, by diret inspetion, that:Lemma 2. Let (g, b) in (G ×P). We write g = ∆J1
· . . . ·∆Jp . Let Ψ(g, b) =

(g′, b′) and let σmax be the biggest element of left(b) then:1. If σmax ≤ σm(Jp), then the moving part is δJp and (g′, b′) = (∆J1
. . . ∆Jp−1,

δJp · b).2. If σmax is equal to σm(Jp)+1 but δJp+1 ⊀ b, then the onlusion of theprevious ase still holds.3. If σmax is equal to σm(Jp)+1 and δJp+1 ≺ b, then the moving part is
δJp+1, and (g′, b′) = (∆J1

. . . ∆Jp+1, (δJp+1)
−1 · b).4. If σmax > σm(Jp)+1 , then the moving part is σmax and (g′, b′) = (g ·

∆{σmax,σmax +1}, (∆{σmax,σmax +1})
−1 · b).Examples of the di�erent ases of Lemma 2 are given in Figure 3.We ontinue the proof of lemma 1. Let (g, b) be an element of (G × P)and (g′, b′) be its image by Ψ, we want to prove that Ψ((g′, b′)) = (g, b). Twoases have to be onsidered: either the moving part was from g to b (ases1 and 2 of lemma 2) or the moving part was from b to g (ases 3 and 4 oflemma 2).The former ase is far easier. Keeping previous notations:7



• if |Jp | = 2, we get g′ = ∆J1
. . . ∆Jp−1

and b′ = δJp · b. Applying thenase 4 of lemma 2 to (g′, b′) gives Ψ(g′, b′) = (g, b).
• if |Jp | > 2, we get g′ = ∆J1

. . . ∆Jp−1 and b′ = δJp · b. Applying thenase 3 of lemma 2 to (g′, b′) gives Ψ(g′, b′) = (g, b).We have to be a little more areful for the seond ase as we have tostudy how left(b′) behaves. Let k be the moving part of (g, b) from b to g,we write k = δ{i,...,i+p}. If σ belongs to left(b′) then σ is not bigger than
σi+p. Indeed if we assume that there exists j > i+ p suh that σj ∈ left(b′),using the ommutation relations, we an rewrite b = k · σj . . . = σj · k . . ..Applying now lemma 2 ontradits the fat that k is the moving part from
b to g.So we are in ase 2 or 3. It remains to prove that we are not in ase 3 orequivalently that δ{i,...,i+p,i+p+1} ⊀ b′. Assume that δ{i,...,i+p,i+p+1} ≺ b′ thenwe an rewrite :

b = δ{i,...,i+p} · δ{i,...,i+p,i+p+1} · b1

= δ{i,...,i+p+1} · δ{i+1,...,i+p} · b1Sine δ{i,...,i+p+1} = σi+p . . . σi, it shows that σi+p belongs to left(b) and onemore lemma 2 leads to a ontradition with k being the moving part from bto g. This onludes the proof.1.5 Proof of Theorem 1 and Corollary 1For (g, b) ∈ (G × P)\{(1, 1)}, let Ψ(g, b) = (g′, b′). We see that gb and g′b′are in P equal and that τ(g) di�ers from τ(g′) only by 1. We an translatethese two observations into the following equality (in Z〈〈P 〉〉):
(−1)τ(g)gb + (−1)τ(g′)g′b′ = 0Besides, aording to lemma 1, Ψ is an involution whose unique �xed pointis (1, 1). We deompose the sum below on (G ×P) along the orbits of Ψ anddedue the following equalities (in Z〈〈P 〉〉):

(
∑

g∈G

(−1)τ(g)g) · (
∑

b∈P

b) = 1 +
∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)gb = 1 (1.8)This onludes the proof of the Theorem 1.8



Proof of Corollary 1. We begin with the seond part of Equality 1.8:
1 +

∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)gb = 1Projeting it into Z[t] by identifying σ1, . . . , σn with t and notiing that
|gb|S = |g|S + |b|S give:

1 +
∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)t|gb|S) = 1

1 +
∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)t|g|S t|b|S = 1

(
∑

g∈G

(−1)τ(g)t|g|S) · (
∑

b∈P

t|b|S) = 1This onludes the proof of the orollary.Now that we de�ne an involution for braid monoids, we show that ouronstrution remains valid for a larger lass of monoids in the next setion.2 Generalisation2.1 De�nition of a larger lass of monoidsWe follow the work of Bronfman (see [Bro01℄) to extend our result to alarger lass of monoids. From now on we only onsider monoids M = 〈 S|R 〉(where S is a �nite generating set in R a �nite set of relations), satisfyingthe following properties:1. M is homogeneous (ie: all relations are R are length-preserving)2. M is left-anellative, ie: if a, u, v ∈ M are suh that au = av then
u = v.3. If a subset {sj |j ∈ J} of the generating set S has a ommon multiple,then this subset has a least ommon multiple.We an notie that Property 1 implies the uniity of a least ommon multipleif it exists.Let J ⊂ S suh that J has a ommmon multiple and hene a uniqueleast ommon multiple by properties 1 and 3. We denote this least ommon9



multiple by ∨
(J). Subsetion 1.2 leads us to de�ne a new set G of generatorsas:

G = {
∨

(J), for all J ⊂ S suh that J has a ommon multiple }Observe that for K ⊂ J ⊂ S suh that J has a ommon multiple, K hasalso a ommon multiple and ∨
(K) ≺

∨
(J) (we reall that ≺ represents thedivisibility on the left).Notation. For J and K de�ned as above, we denote:

∨

(K) · δ
J\K
K =

∨

(J)For g =
∨

({si1 , . . . , sip}) ∈ G, we set τ(g) = p. This extends the de�ni-tion of τ of subsetion 1.2.2.2 Growth funtion for monoidsTheorem 2. Let M be a monoid satisfying Properties 1,2 and 3 of setion2.1 and S = {s1, . . . , sn} be the set of generators of M. In Z〈〈M 〉〉 thefollowing identity holds:
(
∑

g∈G

(−1)τ(g)g) · (
∑

m∈M

b) = 1 (2.1)The growth funtion of M is equal to:
F (t) =

∑

m∈M

t|m|S =




∑

g∈G(M)

(−1)τ(g)t|g|S





−1 (2.2)Proof of Theorem 2. For the passage from 2.1 to 2.2, the proof of Corollary1 remains valid sine we assume that M is homogeneous.For the �rst part of the theorem, we stay very lose from the proof ofTheorem 1 (see subsetions 1.4 and 1.5 for more details). We onstrut aninvolution Ψ from (G, M) to itself. We de�ne the set E of elements whihwill be allowed to move:
E = {δ

{k}
J , where J ⊂ {s1, . . . , sn} and k /∈ J} (2.3)De�nition 1 of an eligible moving part remains valid for a ouple (g,m) ∈

G×M (with the de�nition of τ given in the end of setion 2.1). The ordering10



s1 < . . . < sn on the generators indues a partial ordering on E by thefollowing:
δ
{i}
J < δ

{i′}
J ′ if and only if i < i′It is straightforward to see that given any ouple of G × M \ {(1, 1)}, thereis a unique maximal eligible moving part for this ordering, we all it themoving part and denote it k. We then de�ne:

Ψ(g,m) =

{

(gk, k−1m) if k ≺ m

(gk−1, km) if g ≻ kLemma 3. The funtion Ψ is an involution from G × M into itself whoseunique �xed point is (1, 1).If the lemma above is proved we an then onlude the proof of Theorem2 exatly in the same way we did in subsetion 1.5.Proof of lemma 3. The fat that (1, 1) is the unique �xed point is lear (seeproof of lemma 1 for details).Let (g,m) ∈ G × M, we set Ψ((g,m)) = (g′,m′) and we want to show that
Ψ((g′,m′)) = (g,m). As in the proof of lemma 1, we distinguish two ases:either the moving part was from g to m or from m to g.We begin with the ase of a moving part from m to g, we set:

{

g =
∨

(J)

m = δ
{i}
J · m1,

and {

g′ =
∨

(J) · δ
{i}
J =

∨
(J ∪ {i})

m′ = m1,
(2.4)Assume the moving part for (g′,m′) is from m′ to g′, it means that thereexists l > i suh that m′ = δ

{l}
J∪{i}

· m′
1. Then:

g · m =
∨

(J) · δ
{i}
J · δ

{l}
J∪{i} · m

′
1 (2.5)

=
∨

(J ∪ {i, l}) · m′
1 (2.6)

=
∨

(J) · δ
{l}
J · δ

{i}
J∪{l} · m

′
1 (2.7)This ontradits the fat that δ

{i}
J is the moving part from m to g. It remainsto show that ∀j ∈ J, j < i whih will imply that δ

{i}
J is the maximal eligiblemoving part from g′ to m′. Assume there exists j ∈ J suh that j > i, then

δ
{j}
J\{j} is an eligible moving part for (g,m) bigger than δ

{i}
J , whih ontraditsthe maximality of δ

{i}
J and onludes the �rst ase.11



We deal now with the ase of a moving part from g to m and set:
{

g =
∨

(J ∪ {l}) =
∨

(J) · δ
{l}
J

m = m,
and {

g′ =
∨

(J)

m′ = δ
{l}
J · m

(2.8)It is lear that the moving part for (g′,m′) is from m′ to g′ (otherwise itontradits the maximality of l among elements of J ∪ {l}). Assume δ
{l}
J isnot the moving part for (g′,m′), it implies that m′ = δ

{i}
J · m1 with i > l.Hene we an write gm = g′m′ =

∨
(J ∪ {i}) · m1 whih implies i ≺ gm.Lastly for all j ∈ J, j ≺

∨
(J) and l ≺ g hene :

∨

(J ∪ {l} ∪ {i}) ≺ gm
∨

(J ∪ {l}) · δ
{i}
J∪{l} ≺ gm

g · δ
{i}
J∪{l}

≺ gmNow we assumed that M has the left anellation property thus δ
{i}
J∪{l}

≺

m and δ
{i}
J∪{l} is an eligible moving part for (g,m) bigger than δ

{l}
J . Thisontradits the fat that δ

{l}
J is the moving part for (g,m) and onludes theproof.2.3 A few examples of monoids2.3.1 Artin-Tits monoidsArtin-Tits monoids are a generalisation of both braid and trae monoids.Given a �nite set S and a symmetri matrix M = (ms,t)s,t∈S suh that

ms,t ∈ N ∪ {∞} and ms,s = 1, the Artin-Tit monoid M assoiated to S and
M has the following presentation:

M = 〈s ∈ S| sts . . .
︸ ︷︷ ︸

ms,t terms = tst . . .
︸ ︷︷ ︸

ms,t terms if ms,t 6= ∞〉 (2.9)Now an Artin-Tits monoid is learly homogeneous, he has the left and rightanellation property (see Mihel, Proposition 2.4 of [Mi99℄) and has theleast-ommon multiple property (see Brieskorn and Saito, Proposition 4.1 of[BS72℄)
12



2.3.2 Right-Gaussian monoidsIn [DP99℄, Dehornoy and Paris generalise Artin-Tits groups. They de�ne aright Gaussian monoid as a �nitely generated monoid M suh that:1. There exists a mapping ν : M → N suh that ν(a) < ν(ab) for all a, bin M, b 6= 1.2. M is left anellative.3. All a, b ∈ M admit a least ommon multiple.Suh a monoid is not neessarily homogeneous. We an neverthelesseloosen onditions of Theorem 2 by only assuming that M satis�es properties2 and 3 of setion 2.1 for a generating set S. We de�ne the set G by hoosingfor eah ouple (a, b) ∈ S2 one least ommon multiple. The �rst part ofTheorem 2 remains true but it is no longer possible to ompute the growthfuntion of M.Now, if M is a homogeneous right Gaussian monoid, we are exatly inthe onditions of setion 2.1. We apply this point to Birman-Ko-Lee braidmonoids in the next setion.2.3.3 Birman-Ko-Lee braid monoidsIn [BKL98℄, Birman, Ko and Lee gives a new presentation of braid groups.Namely the braid group on n strands has the following presentation:
〈ats, n ≥ t > s ≥ 1 : atsarq = arqats for (t − r)(t − q)(s − r)(s − q) > 0

atsasr = asratr = atrats for t > s > r〉The new generators are onjugate of the lassial Artin generators we use inthe �rst setion, indeed:
ats = (σt−1σt−2 . . . σs+1)σs (σt−1σt−2 . . . σs+1)

−1This new presentation gives birth to a new monoid denoted by BBKL+
n .This monoid is a homogeneous right Gaussian monoid (and even a Garsidemonoid) hene it satis�es the onditions of setion 2.1. We an then omputeits growth funtion.
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Example (Growth funtion of BBKL+
4 ). The generators of BBKL+

4 are a43, a42,
a41, a32, a31 and a21 and they are submitted to relations:

a43a32 = a32a42 = a42a43 a41a32 = a32a41

a43a31 = a31a41 = a41a43 a43a21 = a21a43

a42a21 = a21a41 = a41a42

a32a21 = a21a31 = a31a32We observe that a43a32a21 is the least ommon multiple of the six generatorsand get:
F (t) =

1

1 − 6t + 10t2 − 5t3
(2.10)Referenes[BKL98℄ Joan Birman, Ki Hyoung Ko, and Sang Jin Lee. A new approah tothe word and onjugay problems in the braid groups. Adv. Math.,139(2):322�353, 1998.[Bra91℄ Marus Brazil. Monoid growth funtions for braid groups. Internat.J. Algebra Comput., 1(2):201�205, 1991.[Bro01℄ Aaron Bronfman. Growth funtions of a lass of monoids. Preprint,2001.[BS72℄ Egbert Brieskorn and Kyoji Saito. Artin-Gruppen und Coxeter-Gruppen. Invent. Math., 17:245�271, 1972.[CF69℄ Pierre Cartier and Dominique Foata. Problèmes ombinatoires deommutation et réarrangements. Leture Notes in Mathematis,No. 85. Springer-Verlag, Berlin, 1969.[Deh07℄ Patrik Dehornoy. Combinatoris of normal sequenes of braids. J.Combinat. Th. Series A, 114:389�409, 2007.[DP99℄ Patrik Dehornoy and Luis Paris. Gaussian groups and Garsidegroups, two generalisations of Artin groups. Pro. London Math.So. (3), 79(3):569�604, 1999.[Kra05℄ Daan Krammer. Braid groups.http://www.maths.warwik.a.uk/∼daan/· · ·MA4F2Braids/braids.pdf, 2005.14



[Mi99℄ Jean Mihel. A note on words in braid monoids. J. Algebra,215(1):366�377, 1999.[Vie86℄ Gérard Xavier Viennot. Heaps of piees. I. Basi de�nitions andombinatorial lemmas. In Combinatoire énumérative (Montreal,Que., 1985/Quebe, Que., 1985), volume 1234 of Leture Notes inMath., pages 321�350. Springer, Berlin, 1986.
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