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Bijective combinatorics of positive braids

Marie ALBENQUE *

Abstract

We give a new and bijective proof for the formula of the growth
function of the positive braid monoid with respect to Artin generators.

Introduction

Consider n + 1 strands numbered from 1 to n + 1 and n elementary moves
01,...,0, where o; represents the crossing of strand ¢ and ¢ + 1 with strand
i above. Starting from an uncrossed configuration we apply sequences of
elementary moves to obtain a braided configuration; two configurations are
equivalent if one can be obtained from the other only by moving the strands
without touching the top and bottom extremities. An equivalence class of
configuration is called a braid. The set of braids, with concatenation of two
braids as internal law, is a monoid. It is precisely the positive braid monoid
on n + 1 strands, denoted P, generated by ¥ = {o1,...,0,} (called Artin
generators) and subject to the relations:

0;0j = 04504 for |’L —j| > 2 (0.1)

0;0i410; = 041070441 for 1 < 7 <n-— 1
For u € IP there is a natural length function defined by:
lu|s; = min{k | Juq,...,up € ¥ such that u = uy ... ug}

The growth function of the positive braid monoid for the Artin generators

is defined by:
Ft)=">Y >
belP
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Different ideas have been used to compute the growth function of the positive
braid monoid. In [Bra91|, Brazil use the fact that, to each braid is associ-
ated a unique decomposition usually called its normal form (or its Garside’s
normal form or Thurston’s normal form). This set of normal forms is reg-
ular, meaning that it is recognized by a finite state automaton. From this
automaton’s adjacency matrix, we can obtain directly the growth function.
But it is not a very efficient way to compute it, as for braids on n strands,
this automaton has n! states and then it takes a time exponential in the
number of strands to get the formula. In [Deh07], Dehornoy gives a method
to reduce from n! to p(n) (where p(n) is the number of partitions of n) the
number of states of this automaton.

Bronfman (see [Bro01]) and Krammer (see chapter 17 of [Kra05]) give a
new method to compute the growth function in quadratic time. Their proof
is based on an inclusion-exclusion principle. We give here a different and
bijective proof of this result.

To explain our point of view, let look at the history of results for trace
monoids. Trace monoids (also called “heaps of pieces monoids” or “free par-
tially commutative monoids”) denoted M are defined by the following semi-
group presentation:

M= (¥|ab=ba if (a,b) € I),

where Y is a finite set of generators and I is a symmetric and antireflexive
relation of ¥ x ¥ called the commutation relation. In 1969, Cartier and
Foata computed the growth function of these monoids by using an inclusion-
exclusion principle to get a Mobius inversion formula (see [CF69]). The
proofs of Bronfman and Krammer use the same kind of arguments.

In [Vie86|, Viennot gives a new way to compute the growth function
of heaps of pieces monoids. To perform this, he considers the set G of all
heaps of pieces of height at most one and constructs an involution from
G x M into itself. This involution matches elements of monoids two by two
and makes it easy to count them. However, the construction of this pairing
provides more than a new way to compute the growth function. It gives
indeed an additional combinatorial understanding of trace monoids. Several
byproducts are given in [Vie86].

In the present paper, we show that Viennot’s proof can be extended
to braid monoids, which gives a new point of view in the combinatorics of
braids. More precisely, we explain in 1.2 how to define a set G of simple
braids and how to use it to construct an involution from (G x P) to itself.

Following Bronfman, we show that Viennot’s idea can actually be ex-
tended to a wider class of monoids which naturally includes braid monoids



and trace monoids but also Artin-Tits monoids and Birman-Ko-Lee braid
monoids among others.

1 Growth function of braid monoids

1.1 Presentation of braid monoids

We denote by ¥ the set {o1,...,0,} and by ¥* the free monoid on ¥. That
is to say X* is the set of finite words on the alphabet ¥ with concatenation
as monoid law. We denote by 1 the empty word.

The positive braid monoid P on n+1 strands has the following semigroup
presentation:

P= <0’1, ey Op /O’Z‘O'iJrlo'Z' = 0i4+10;04+1 and 005 = 0404 if |’L —j| < 2>

We denote by < divisibility on the left in P (that is, for a,b € P, we have
a < b if and only if there exists ¢ € P such that ac = b) and denote similarly
by > divisibility on the right.

For u € P, set

left(u) = {o € S such that ¢ < u}

right(u) = {o € S such that u > o}

1.2 A few notations

We define a new set G of generators of P. For all j,7 € {1,...,n} such that
j+i<n+1, set:

0t Lgtit = (Ojri-1) - - (0j41) (o)

The element dy; ;14 is the braid where strand j + ¢ moves up to position
7 “behind the braid”. We set then:

ALttt = 001} - Ogj 1542} -+~ 0fjjta} (1.1)
= (0j)(0j+105) .. (Ojti-1-..0j410), (1.2)

The element Ag; i is the half-turn of the strands j,j +1,...,j +1i (see
Fig.1.2 for examples).
Set G to be:

g= |J Qan---a,) (1.3)

J1U...UJp



912,3}

9(2,3,4}

823,45}

Figure 1: Decomposition in P7 of Ay 3 451 as a product of dya 31, 642,341 and
0{2,3.4,5}-

where Ji, ..., Jp are disjoint subsets formed by consecutive integers of {1,...,n+
1}, such that J; < Jyyq foralll € {1,...,p—1} (i.e.: if 4 € Jyand 4141 € Jj4q
then i; < i;41) and such that |J;| > 2 for all [ € {1,...,p}.

We use the convention that if J is a singleton, A is the empty word. But

in the following, we always write an element of G in the simplest possible
way (i.e.: without terms equal to the empty word).

We introduce a few notations:

e Let 7:G — N be the function defined by :

V4
() =Y (il = 1) ifg=Ay .- Ay, (1.4)

i=1
So 7(g) is the number of different Artin generators which appear in a

representative of g.

e Let u be a word of §* such that v = v - w with v,w € S*, we set:

v i u=wand u-w =0

o Let J={i,i+1,...,i+ 7} be a set of consecutive integers, we denote:
IL.m(J)=i+j—1
2. J+1=Ju{i+j+1}={i,...,i+j,i+j+1}
3. J=1=J\{i+j}={i,....i+j—1}
Remark 1. Let g = Ay ... Ay, be an element of G. We can notice that g is

the least common multiple of (J/_;(J; — 1).
Besides if g € G is the least common multiple of X, then 7(g) = |X|.



1.3 Growth function for the braid monoids

We can now state the main result:

Theorem 1. In Z{(P)), the following identity holds:

D (=1)™g)- (3 b =1 (1.5)

geg beP

Corollary 1. The growth function of the positive braid monoid is equal to:

-1

F(t) _ Zt\b\s — Z(_l)T(g)tMS (1.6)

beP S

Proofs of Theorem 1 and Corollary 1 will be given in sections 1.4 and
1.5.

Ezample 1 (Explicit formula on 4 strands). On Figure 2, we can read the
value of 7 and the length of all elements of G on 4 strands. The growth
function is then:

1
1 —3t+t2 42136

Fy(t)
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Figure 2: The set G on 4 strands



1.4 Definition of the involution of (G x PP)

We construct an involution from (G x P) to itself with only (1,1) as fixed
point. This gives us a natural way to pair elements of (G x P)\(1,1) which
will imply great simplifications in the following (see subsection 1.5).

To construct the involution, given a couple (g,b) € (G x P) we want to
move “pieces” of g (respectively b) from g to b (respectively from b to g).
Let us make it more precise; we define the set € of elements which will be
allowed to move:

E = {6y, J subset of consecutive integers of {1,...,n+ 1} and |J| > 2}
(1.7)
We can now define:

Definition 1. Let (g,b) in (G x P) and u € £ such that u < b (resp g > u).
We then set ¢ =¢g-uand b’ =u~'-b (resp. ¢ =g-u"' and v/ =u-b).
Now, if ¢’ satisfies the following conditions:

1. ¢ belongs to G

2. 7(g)=7(9) £1,
then wu is called an eligible moving part of (g,b).

Observe that for [J| > 2, Ay - 6;1 = A _1. So there is at least one
eligible moving part of (g,b) if ¢ # 1. For (1,b) there is clearly at least
one eligible moving part unless b = 1. So for (g,b) # (1,1), it exists at
least one eligible moving part of (g,b). In this case we consider the eligible
moving part maximal for the lexicographic ordering induced by the ordering
o1 < 03 < ... < o, on the generators. We call it the moving part of (g,b)
and denote it k. Since k cannot be both from g to b and from b to g, we can

set:
(1,1) if (g,b) = (1,1)
U(g,b) =< (gk,k=1b) if kis from b to g
(gk~1,kb) if k is from g to b

Figure 3 shows examples of how ¥ works on some couples of G5 x IP5 (eligible
moving parts are represented with dashed lines).

Lemma 1. The function ¥ is an involution from (G x P) into itself whose
unique fixed point is (1, 1).
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Figure 3: Examples of how ¥ works. Case numbers refer to lemma 2. Ele-
ments of G5 are represented at the top and those of P; at the bottom

Proof. Assume that W fixes (g,b) in (G xP), it implies that there is no eligible
moving part of (¢,b). Now it implies that g = 1 and then an eligible moving
part is any element of left(b), hence b = 1.

Now, given a couple (g,b) in (G x P) we look at the maximal eligible
moving part. From Definition 1, we can see, by direct inspection, that:

Lemma 2. Let (g,b) in (G xP). We write g = Ay, -...- Ay . Let ¥(g,b) =
(¢',0') and let opmax be the biggest element of left(b) then:

1. If Omax < 0y, then the moving part is 8, and (¢, ') = (Ay, ... A1,
8y, - b).

p

2. If omax 18 equal to opy(7,)41 but 6,41 A b, then the conclusion of the
previous case still holds.

3. If omax is equal to Om(Jp)+1 and 5Jp+1 < b, then the moving part is
67,41, and (¢',0") = (Ay ... Agg1,(85,41) - b).

4. 1f Omax > Op(s,)+1 > then the moving part is omax and (¢',0") = (g -
A{UmaX70'max+l}’ (A{UmaX7Umax+l})7l ’ b)

Examples of the different cases of Lemma 2 are given in Figure 3.

We continue the proof of lemma 1. Let (g,b) be an element of (G x P)
and (¢/,b') be its image by ¥, we want to prove that ¥((¢’,b")) = (g,b). Two
cases have to be considered: either the moving part was from g to b (cases
1 and 2 of lemma 2) or the moving part was from b to g (cases 3 and 4 of
lemma 2).

The former case is far easier. Keeping previous notations:



o if |J,| =2, weget g =Ay...A;_, and b’ =d;, -b. Applying then
case 4 of lemma 2 to (¢/,b") gives ¥(¢',b') = (g,b).

o if | J,|>2, wegetg =Ay...A;_1and ¥/ =4, -b. Applying then
case 3 of lemma 2 to (¢/,b") gives ¥(¢',b') = (g,b).

We have to be a little more careful for the second case as we have to
study how left(d’) behaves. Let k be the moving part of (g,b) from b to g,
we write k = 0 _iyp)- If 0 belongs to left(b’) then o is not bigger than
oitp. Indeed if we assume that there exists j > ¢+ p such that o; € left(d),

using the commutation relations, we can rewrite b =k -0j... = 0;-k....
Applying now lemma 2 contradicts the fact that k is the moving part from
b to g.

So we are in case 2 or 3. It remains to prove that we are not in case 3 or
equivalently that o iypiypr1y A b'. Assume that Ofi,. . itpyitpt1} = b then
we can rewrite :

b=104i itp)  Ofi,...itp,itpt+1} " b1
= Ofj,.itp1}  Ofit1,..itp) " 01

Since 0y, i4p+1} = Oitp--- 0, it shows that ;1 belongs to left(b) and once
more lemma 2 leads to a contradiction with & being the moving part from b
to g. This concludes the proof. O

1.5 Proof of Theorem 1 and Corollary 1

For (g,b) € (G x P)\{(1,1)}, let W(g,b) = (¢',b'). We see that gb and ¢t/
are in P equal and that 7(g) differs from 7(¢’) only by 1. We can translate
these two observations into the following equality (in Z{(P))):

(=1)"@Dgb+ (—1)"9) gt/ =0

Besides, according to lemma 1, W is an involution whose unique fixed point
is (1,1). We decompose the sum below on (G x PP) along the orbits of ¥ and
deduce the following equalities (in Z{{P))):

QD (-D)Dg)- (D k) =1+ > (-)Wgb=1  (18)

9€g belP (g,0)e(GxP)\{(1,1)}

This concludes the proof of the Theorem 1.



Proof of Corollary 1. We begin with the second part of Equality 1.8:

1+ > (=1)@gb =1
(9.0)E(@xP\{(1,1)}

Projecting it into Z[t] by identifying oy,...,0, with ¢ and noticing that
lgbls = |gls + [b]s give:

1+ Z (=1)7@)¢loblsy =1

(9:)e(GxP)\{(1,1)}
1+ Z (=1)7@)¢lals ¢lbls  — 1
(9:)€(GxP)\{(1,1)}
(Z(_l)f(g)tlgls) . (Z thlsy =1
S beP
This concludes the proof of the corollary. O

Now that we define an involution for braid monoids, we show that our
construction remains valid for a larger class of monoids in the next section.

2 Generalisation

2.1 Definition of a larger class of monoids

We follow the work of Bronfman (see [Bro01l]) to extend our result to a
larger class of monoids. From now on we only consider monoids M = (S|R )
(where S is a finite generating set in R a finite set of relations), satisfying
the following properties:

1. M is homogeneous (ie: all relations are R are length-preserving)

2. M is left-cancellative, ie: if a, u, v € M are such that au = av then
U =v.

3. If a subset {s;|j € J} of the generating set S has a common multiple,
then this subset has a least common multiple.

We can notice that Property 1 implies the unicity of a least common multiple
if it exists.

Let J C & such that J has a commmon multiple and hence a unique
least common multiple by properties 1 and 3. We denote this least common



multiple by \/(J). Subsection 1.2 leads us to define a new set G of generators
as:

g = {\/(J), for all J C S such that J has a common multiple }

Observe that for K C J C § such that J has a common multiple, K has
also a common multiple and \/(K) < \/(J) (we recall that < represents the
divisibility on the left).

Notation. For J and K defined as above, we denote:

V(&) - 6% =\ ()

For g = \/({54,,...,5i,}) € G, we set 7(g) = p. This extends the defini-
tion of 7 of subsection 1.2.

2.2 Growth function for monoids

Theorem 2. Let M be a monoid satisfying Properties 1,2 and 3 of section
2.1 and § = {s1,...,sp} be the set of generators of M. In Z{(M)) the
following identity holds:

D (=1)"Wg) (> b) =1 (2.1)

geg meM
The growth function of M s equal to:
—1

F(t) = Z timls — Z (_1)T(g)t|9|s (2.2)

meM geG (M)

Proof of Theorem 2. For the passage from 2.1 to 2.2, the proof of Corollary
1 remains valid since we assume that M is homogeneous.

For the first part of the theorem, we stay very close from the proof of
Theorem 1 (see subsections 1.4 and 1.5 for more details). We construct an
involution ¥ from (G,M) to itself. We define the set £ of elements which
will be allowed to move:

E= {5§k}, where J C {s1,...,s,} and k ¢ J} (2.3)

Definition 1 of an eligible moving part remains valid for a couple (g, m) €
G x M (with the definition of 7 given in the end of section 2.1). The ordering

10



§1 < ... < 8, on the generators induces a partial ordering on & by the
following:

5§i} < 5§€/} if and only if i < 4’
It is straightforward to see that given any couple of G x M\ {(1,1)}, there

is a unique maximal eligible moving part for this ordering, we call it the
mowving part and denote it k. We then define:

(gk, k= 'm) if k <m
(g,m) = ) .
(gk—,km) if g >k
Lemma 3. The function ¥ is an involution from G x M into itself whose
unique fixed point is (1,1).
If the lemma above is proved we can then conclude the proof of Theorem

2 exactly in the same way we did in subsection 1.5. O

Proof of lemma 3. The fact that (1,1) is the unique fixed point is clear (see
proof of lemma 1 for details).

Let (g,m) € G x M, we set ¥((g,m)) = (¢’,m’) and we want to show that
U((g',m’)) = (g,m). As in the proof of lemma 1, we distinguish two cases:
either the moving part was from g to m or from m to g.

We begin with the case of a moving part from m to g, we set:

{gz vy {g'= V)8 =V U,

m = 5:{;} my, m/ == miy,

Assume the moving part for (¢, m’) is from m’ to ¢, it means that there

exists [ > ¢ such that m’ = (5%’{ A -m}. Then:
g-m=\/(J): 55 5%{2} 1 (2.5)
=\/(Ju{i,i})-m} (2.6)

_ {3 §{i}
- \/(‘]) 05"~ 055qy M m (2.7)

This contradicts the fact that 5:{;‘} is the moving part from m to g. It remains

to show that Vj € J, j < i which will imply that 6{7 is the maximal eligible
moving part from ¢’ to m’. Assume there exists j € J such that j > 4, then

5?73\}:{ 1 is an eligible moving part for (g, m) bigger than 6§Z}, which contradicts
st

the maximality of and concludes the first case.

11



We deal now with the case of a moving part from g to m and set:

{g:_ VU =v)-et {g':_ V) g

m,

It is clear that the moving part for (¢’,m’) is from m’ to ¢’ (otherwise it
contradicts the maximality of [ among elements of J U {l}). Assume (5:{11} is
not the moving part for (¢’,m’), it implies that m’ = (5L{,i} -mq with ¢ > [.
Hence we can write gm = ¢'m’ = \/(J U {i}) - m; which implies i < gm.
Lastly for all j € J, 7 < \/(J) and [ < g hence :

Vuf{ibu{i}) < gm

Vo) 6, < gm

{1}

9'5Ju{1} = gm

Now we assumed that M has the left cancellation property thus (5:{13{1} =<

m and 5:{;&{1} is an eligible moving part for (g, m) bigger than 5:{11}. This
contradicts the fact that 5§l} is the moving part for (g, m) and concludes the
proof. [

2.3 A few examples of monoids
2.3.1 Artin-Tits monoids

Artin-Tits monoids are a generalisation of both braid and trace monoids.
Given a finite set S and a symmetric matrix M = (mgs4)stecs such that
ms € NU{oo} and mg s = 1, the Artin-Tit monoid M associated to S and
M has the following presentation:

M= (seS| sts.., = tst.., ifmgs+#o0) (2.9)

msy terms  mg, terms
Now an Artin-Tits monoid is clearly homogeneous, he has the left and right
cancellation property (see Michel, Proposition 2.4 of [Mic99|) and has the

least-common multiple property (see Brieskorn and Saito, Proposition 4.1 of
[BS72])

12



2.3.2 Right-Gaussian monoids

In [DP99], Dehornoy and Paris generalise Artin-Tits groups. They define a
right Gaussian monoid as a finitely generated monoid M such that:

1. There exists a mapping v : M — N such that v(a) < v(ab) for all a,b
in M, b # 1.

2. M is left cancellative.
3. All a,b € M admit a least common multiple.

Such a monoid is not necessarily homogeneous. We can neverthelesse
loosen conditions of Theorem 2 by only assuming that M satisfies properties
2 and 3 of section 2.1 for a generating set S. We define the set G by choosing
for each couple (a,b) € S? one least common multiple. The first part of
Theorem 2 remains true but it is no longer possible to compute the growth
function of M.

Now, if M is a homogeneous right (Gaussian monoid, we are exactly in
the conditions of section 2.1. We apply this point to Birman-Ko-Lee braid
monoids in the next section.

2.3.3 Birman-Ko-Lee braid monoids

In |[BKL98|, Birman, Ko and Lee gives a new presentation of braid groups.
Namely the braid group on n strands has the following presentation:

(ats,m >t >85> 1 :asarg = arqars for (t —7r)(t—q)(s —7)(s —q) >0

AtsOsy = Qgppr = Qprys for t > s > 1)

The new generators are conjugate of the classical Artin generators we use in
the first section, indeed:

ats = (04-104—2 ... 0541) 05 (01-101—2 ... 0511) "

This new presentation gives birth to a new monoid denoted by BfKL+.
This monoid is a homogeneous right Gaussian monoid (and even a Garside
monoid) hence it satisfies the conditions of section 2.1. We can then compute
its growth function.

13



BK L+ BKL+
By T) By

Ezample (Growth function of . The generators of

a41, a32,a31 and ag; and they are submitted to relations:

are a43, @42,

43032 = 32042 = 142043 (41032 = a32041
43031 = 31041 = 41043 43021 = A21043
A42G21 = (21041 = (41042

32021 = (21031 = 031032

We observe that a43asoas; is the least common multiple of the six generators

and get:
1

T 1_6t+ 1062 — 563

F(t) (2.10)
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