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Bije
tive 
ombinatori
s of positive braidsMarie Albenque ∗Abstra
tWe give a new and bije
tive proof for the formula of the growthfun
tion of the positive braid monoid with respe
t to Artin generators.Introdu
tionConsider n + 1 strands numbered from 1 to n + 1 and n elementary moves
σ1, . . . , σn where σi represents the 
rossing of strand i and i + 1 with strand
i above. Starting from an un
rossed 
on�guration we apply sequen
es ofelementary moves to obtain a braided 
on�guration; two 
on�gurations areequivalent if one 
an be obtained from the other only by moving the strandswithout tou
hing the top and bottom extremities. An equivalen
e 
lass of
on�guration is 
alled a braid. The set of braids, with 
on
atenation of twobraids as internal law, is a monoid. It is pre
isely the positive braid monoidon n + 1 strands, denoted P, generated by Σ = {σ1, . . . , σn} (
alled Artingenerators) and subje
t to the relations:

σiσj = σjσi for |i − j| ≥ 2 (0.1)
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 1 (0.2)For u ∈ P there is a natural length fun
tion de�ned by:

|u|Σ = min{k | ∃u1, . . . , uk ∈ Σ su
h that u = u1 . . . uk}The growth fun
tion of the positive braid monoid for the Artin generatorsis de�ned by:
F (t) =

∑

b∈P

t|b|Σ

∗LIAFA, CNRS-Université Paris 7, 
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Di�erent ideas have been used to 
ompute the growth fun
tion of the positivebraid monoid. In [Bra91℄, Brazil use the fa
t that, to ea
h braid is asso
i-ated a unique de
omposition usually 
alled its normal form (or its Garside'snormal form or Thurston's normal form). This set of normal forms is reg-ular, meaning that it is re
ognized by a �nite state automaton. From thisautomaton's adja
en
y matrix, we 
an obtain dire
tly the growth fun
tion.But it is not a very e�
ient way to 
ompute it, as for braids on n strands,this automaton has n! states and then it takes a time exponential in thenumber of strands to get the formula. In [Deh07℄, Dehornoy gives a methodto redu
e from n! to p(n) (where p(n) is the number of partitions of n) thenumber of states of this automaton.Bronfman (see [Bro01℄) and Krammer (see 
hapter 17 of [Kra05℄) give anew method to 
ompute the growth fun
tion in quadrati
 time. Their proofis based on an in
lusion-ex
lusion prin
iple. We give here a di�erent andbije
tive proof of this result.To explain our point of view, let look at the history of results for tra
emonoids. Tra
e monoids (also 
alled �heaps of pie
es monoids� or �free par-tially 
ommutative monoids�) denoted M are de�ned by the following semi-group presentation:
M = 〈Σ | ab = ba if (a, b) ∈ I〉,where Σ is a �nite set of generators and I is a symmetri
 and antire�exiverelation of Σ × Σ 
alled the 
ommutation relation. In 1969, Cartier andFoata 
omputed the growth fun
tion of these monoids by using an in
lusion-ex
lusion prin
iple to get a Möbius inversion formula (see [CF69℄). Theproofs of Bronfman and Krammer use the same kind of arguments.In [Vie86℄, Viennot gives a new way to 
ompute the growth fun
tionof heaps of pie
es monoids. To perform this, he 
onsiders the set G of allheaps of pie
es of height at most one and 
onstru
ts an involution from

G × M into itself. This involution mat
hes elements of monoids two by twoand makes it easy to 
ount them. However, the 
onstru
tion of this pairingprovides more than a new way to 
ompute the growth fun
tion. It givesindeed an additional 
ombinatorial understanding of tra
e monoids. Severalbyprodu
ts are given in [Vie86℄.In the present paper, we show that Viennot's proof 
an be extendedto braid monoids, whi
h gives a new point of view in the 
ombinatori
s ofbraids. More pre
isely, we explain in 1.2 how to de�ne a set G of simplebraids and how to use it to 
onstru
t an involution from (G × P) to itself.Following Bronfman, we show that Viennot's idea 
an a
tually be ex-tended to a wider 
lass of monoids whi
h naturally in
ludes braid monoids2



and tra
e monoids but also Artin-Tits monoids and Birman-Ko-Lee braidmonoids among others.1 Growth fun
tion of braid monoids1.1 Presentation of braid monoidsWe denote by Σ the set {σ1, . . . , σn} and by Σ∗ the free monoid on Σ. Thatis to say Σ∗ is the set of �nite words on the alphabet Σ with 
on
atenationas monoid law. We denote by 1 the empty word.The positive braid monoid P on n+1 strands has the following semigrouppresentation:
P = 〈σ1, . . . , σn /σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i − j| ≤ 2〉We denote by ≺ divisibility on the left in P (that is, for a, b ∈ P, we have

a ≺ b if and only if there exists c ∈ P su
h that ac = b) and denote similarlyby ≻ divisibility on the right.For u ∈ P, set left(u) = {σ ∈ S su
h that σ ≺ u}right(u) = {σ ∈ S su
h that u ≻ σ}1.2 A few notationsWe de�ne a new set G of generators of P. For all j, i ∈ {1, . . . , n} su
h that
j + i ≤ n + 1, set:

δ{j,j+1,...,j+i} = (σj+i−1) . . . (σj+1)(σj)The element δ{j,...,j+i} is the braid where strand j + i moves up to position
j �behind the braid�. We set then:

∆{j,j+1,...,j+i} = δ{j,j+1} · δ{j,j+1,j+2} · . . . · δ{j,...,j+i} (1.1)
= (σj)(σj+1σj) . . . (σj+i−1 . . . σj+1σj), (1.2)The element ∆{j,...,j+i} is the half-turn of the strands j, j + 1, . . . , j + i (seeFig.1.2 for examples).Set G to be:
G =

⋃

J1∪...∪Jp

(∆J1
· · ·∆Jp) (1.3)3



1 2 3 4 5 6 7

δ{2,3}

δ{2,3,4}

δ{2,3,4,5}Figure 1: De
omposition in P7 of ∆{2,3,4,5} as a produ
t of δ{2,3}, δ{2,3,4} and
δ{2,3,4,5}.where J1, . . . , Jp are disjoint subsets formed by 
onse
utive integers of {1, . . . , n+
1}, su
h that Jl < Jl+1 for all l ∈ {1, . . . , p−1} (i.e.: if il ∈ Jl and il+1 ∈ Jl+1then il < il+1) and su
h that |Jl| ≥ 2 for all l ∈ {1, . . . , p}.We use the 
onvention that if J is a singleton, ∆J is the empty word. Butin the following, we always write an element of G in the simplest possibleway (i.e.: without terms equal to the empty word).We introdu
e a few notations:

• Let τ : G → N be the fun
tion de�ned by :
τ(g) =

p
∑

i=1

(|Ji| − 1) if g = ∆J1
· . . . · ∆Jp . (1.4)So τ(g) is the number of di�erent Artin generators whi
h appear in arepresentative of g.

• Let u be a word of S∗ su
h that u = v · w with v,w ∈ S∗, we set:
v−1 · u = w and u · w−1 = v.

• Let J = {i, i+ 1, . . . , i+ j} be a set of 
onse
utive integers, we denote:1. m(J) = i + j − 12. J + 1 = J ∪ {i + j + 1} = {i, . . . , i + j, i + j + 1}3. J − 1 = J \{i + j} = {i, . . . , i + j − 1}Remark 1. Let g = ∆J1
. . . ∆Jp be an element of G. We 
an noti
e that g isthe least 
ommon multiple of ⋃p

i=1(Ji − 1).Besides if g ∈ G is the least 
ommon multiple of Σ, then τ(g) = |Σ|.4



1.3 Growth fun
tion for the braid monoidsWe 
an now state the main result:Theorem 1. In Z〈〈P 〉〉, the following identity holds:
(
∑

g∈G

(−1)τ(g)g) · (
∑

b∈P

b) = 1 (1.5)Corollary 1. The growth fun
tion of the positive braid monoid is equal to:
F (t) =

∑

b∈P

t|b|S =




∑

g∈G

(−1)τ(g)t|g|S





−1 (1.6)Proofs of Theorem 1 and Corollary 1 will be given in se
tions 1.4 and1.5.Example 1 (Expli
it formula on 4 strands). On Figure 2, we 
an read thevalue of τ and the length of all elements of G on 4 strands. The growthfun
tion is then:
F4(t) =

1

1 − 3t + t2 + 2t3 − t6

τ = 0

τ = 1
|.|S = 1

τ = 2
|.|S = 2

τ = 2
|.|S = 3

τ = 3
|.|S = 6

|.|S = 0

Figure 2: The set G on 4 strands
5



1.4 De�nition of the involution of (G × P)We 
onstru
t an involution from (G × P) to itself with only (1, 1) as �xedpoint. This gives us a natural way to pair elements of (G × P)\(1, 1) whi
hwill imply great simpli�
ations in the following (see subse
tion 1.5).To 
onstru
t the involution, given a 
ouple (g, b) ∈ (G × P) we want tomove �pie
es� of g (respe
tively b) from g to b (respe
tively from b to g).Let us make it more pre
ise; we de�ne the set E of elements whi
h will beallowed to move:
E = {δJ , J subset of 
onse
utive integers of {1, . . . , n + 1} and |J | ≥ 2}(1.7)We 
an now de�ne:De�nition 1. Let (g, b) in (G × P) and u ∈ E su
h that u ≺ b (resp g ≻ u).We then set g′ = g · u and b′ = u−1 · b (resp. g′ = g · u−1 and b′ = u · b).Now, if g′ satis�es the following 
onditions:1. g′ belongs to G2. τ(g′) = τ(g) ± 1,then u is 
alled an eligible moving part of (g, b).Observe that for |J | ≥ 2, ∆J · δ−1

J = ∆J−1. So there is at least oneeligible moving part of (g, b) if g 6= 1. For (1, b) there is 
learly at leastone eligible moving part unless b = 1. So for (g, b) 6= (1, 1), it exists atleast one eligible moving part of (g, b). In this 
ase we 
onsider the eligiblemoving part maximal for the lexi
ographi
 ordering indu
ed by the ordering
σ1 < σ2 < . . . < σn on the generators. We 
all it the moving part of (g, b)and denote it k. Sin
e k 
annot be both from g to b and from b to g, we 
anset:

Ψ(g, b) =







(1, 1) if (g, b) = (1, 1)
(gk, k−1b) if k is from b to g
(gk−1, kb) if k is from g to bFigure 3 shows examples of how Ψ works on some 
ouples of G5×P5 (eligiblemoving parts are represented with dashed lines).Lemma 1. The fun
tion Ψ is an involution from (G × P) into itself whoseunique �xed point is (1, 1).
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Ψ

Ψ

(
ase 4) (
ase 3) (
ase 1)(
ase 2) Ψ

Ψ

Figure 3: Examples of how Ψ works. Case numbers refer to lemma 2. Ele-ments of G5 are represented at the top and those of P5 at the bottomProof. Assume that Ψ �xes (g, b) in (G×P), it implies that there is no eligiblemoving part of (g, b). Now it implies that g = 1 and then an eligible movingpart is any element of left(b), hen
e b = 1.Now, given a 
ouple (g, b) in (G × P) we look at the maximal eligiblemoving part. From De�nition 1, we 
an see, by dire
t inspe
tion, that:Lemma 2. Let (g, b) in (G ×P). We write g = ∆J1
· . . . ·∆Jp . Let Ψ(g, b) =

(g′, b′) and let σmax be the biggest element of left(b) then:1. If σmax ≤ σm(Jp), then the moving part is δJp and (g′, b′) = (∆J1
. . . ∆Jp−1,

δJp · b).2. If σmax is equal to σm(Jp)+1 but δJp+1 ⊀ b, then the 
on
lusion of theprevious 
ase still holds.3. If σmax is equal to σm(Jp)+1 and δJp+1 ≺ b, then the moving part is
δJp+1, and (g′, b′) = (∆J1

. . . ∆Jp+1, (δJp+1)
−1 · b).4. If σmax > σm(Jp)+1 , then the moving part is σmax and (g′, b′) = (g ·

∆{σmax,σmax +1}, (∆{σmax,σmax +1})
−1 · b).Examples of the di�erent 
ases of Lemma 2 are given in Figure 3.We 
ontinue the proof of lemma 1. Let (g, b) be an element of (G × P)and (g′, b′) be its image by Ψ, we want to prove that Ψ((g′, b′)) = (g, b). Two
ases have to be 
onsidered: either the moving part was from g to b (
ases1 and 2 of lemma 2) or the moving part was from b to g (
ases 3 and 4 oflemma 2).The former 
ase is far easier. Keeping previous notations:7



• if |Jp | = 2, we get g′ = ∆J1
. . . ∆Jp−1

and b′ = δJp · b. Applying then
ase 4 of lemma 2 to (g′, b′) gives Ψ(g′, b′) = (g, b).
• if |Jp | > 2, we get g′ = ∆J1

. . . ∆Jp−1 and b′ = δJp · b. Applying then
ase 3 of lemma 2 to (g′, b′) gives Ψ(g′, b′) = (g, b).We have to be a little more 
areful for the se
ond 
ase as we have tostudy how left(b′) behaves. Let k be the moving part of (g, b) from b to g,we write k = δ{i,...,i+p}. If σ belongs to left(b′) then σ is not bigger than
σi+p. Indeed if we assume that there exists j > i+ p su
h that σj ∈ left(b′),using the 
ommutation relations, we 
an rewrite b = k · σj . . . = σj · k . . ..Applying now lemma 2 
ontradi
ts the fa
t that k is the moving part from
b to g.So we are in 
ase 2 or 3. It remains to prove that we are not in 
ase 3 orequivalently that δ{i,...,i+p,i+p+1} ⊀ b′. Assume that δ{i,...,i+p,i+p+1} ≺ b′ thenwe 
an rewrite :

b = δ{i,...,i+p} · δ{i,...,i+p,i+p+1} · b1

= δ{i,...,i+p+1} · δ{i+1,...,i+p} · b1Sin
e δ{i,...,i+p+1} = σi+p . . . σi, it shows that σi+p belongs to left(b) and on
emore lemma 2 leads to a 
ontradi
tion with k being the moving part from bto g. This 
on
ludes the proof.1.5 Proof of Theorem 1 and Corollary 1For (g, b) ∈ (G × P)\{(1, 1)}, let Ψ(g, b) = (g′, b′). We see that gb and g′b′are in P equal and that τ(g) di�ers from τ(g′) only by 1. We 
an translatethese two observations into the following equality (in Z〈〈P 〉〉):
(−1)τ(g)gb + (−1)τ(g′)g′b′ = 0Besides, a

ording to lemma 1, Ψ is an involution whose unique �xed pointis (1, 1). We de
ompose the sum below on (G ×P) along the orbits of Ψ anddedu
e the following equalities (in Z〈〈P 〉〉):

(
∑

g∈G

(−1)τ(g)g) · (
∑

b∈P

b) = 1 +
∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)gb = 1 (1.8)This 
on
ludes the proof of the Theorem 1.8



Proof of Corollary 1. We begin with the se
ond part of Equality 1.8:
1 +

∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)gb = 1Proje
ting it into Z[t] by identifying σ1, . . . , σn with t and noti
ing that
|gb|S = |g|S + |b|S give:

1 +
∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)t|gb|S) = 1

1 +
∑

(g,b)∈(G×P)\{(1,1)}

(−1)τ(g)t|g|S t|b|S = 1

(
∑

g∈G

(−1)τ(g)t|g|S) · (
∑

b∈P

t|b|S) = 1This 
on
ludes the proof of the 
orollary.Now that we de�ne an involution for braid monoids, we show that our
onstru
tion remains valid for a larger 
lass of monoids in the next se
tion.2 Generalisation2.1 De�nition of a larger 
lass of monoidsWe follow the work of Bronfman (see [Bro01℄) to extend our result to alarger 
lass of monoids. From now on we only 
onsider monoids M = 〈 S|R 〉(where S is a �nite generating set in R a �nite set of relations), satisfyingthe following properties:1. M is homogeneous (ie: all relations are R are length-preserving)2. M is left-
an
ellative, ie: if a, u, v ∈ M are su
h that au = av then
u = v.3. If a subset {sj |j ∈ J} of the generating set S has a 
ommon multiple,then this subset has a least 
ommon multiple.We 
an noti
e that Property 1 implies the uni
ity of a least 
ommon multipleif it exists.Let J ⊂ S su
h that J has a 
ommmon multiple and hen
e a uniqueleast 
ommon multiple by properties 1 and 3. We denote this least 
ommon9



multiple by ∨
(J). Subse
tion 1.2 leads us to de�ne a new set G of generatorsas:

G = {
∨

(J), for all J ⊂ S su
h that J has a 
ommon multiple }Observe that for K ⊂ J ⊂ S su
h that J has a 
ommon multiple, K hasalso a 
ommon multiple and ∨
(K) ≺

∨
(J) (we re
all that ≺ represents thedivisibility on the left).Notation. For J and K de�ned as above, we denote:

∨

(K) · δ
J\K
K =

∨

(J)For g =
∨

({si1 , . . . , sip}) ∈ G, we set τ(g) = p. This extends the de�ni-tion of τ of subse
tion 1.2.2.2 Growth fun
tion for monoidsTheorem 2. Let M be a monoid satisfying Properties 1,2 and 3 of se
tion2.1 and S = {s1, . . . , sn} be the set of generators of M. In Z〈〈M 〉〉 thefollowing identity holds:
(
∑

g∈G

(−1)τ(g)g) · (
∑

m∈M

b) = 1 (2.1)The growth fun
tion of M is equal to:
F (t) =

∑

m∈M

t|m|S =




∑

g∈G(M)

(−1)τ(g)t|g|S





−1 (2.2)Proof of Theorem 2. For the passage from 2.1 to 2.2, the proof of Corollary1 remains valid sin
e we assume that M is homogeneous.For the �rst part of the theorem, we stay very 
lose from the proof ofTheorem 1 (see subse
tions 1.4 and 1.5 for more details). We 
onstru
t aninvolution Ψ from (G, M) to itself. We de�ne the set E of elements whi
hwill be allowed to move:
E = {δ

{k}
J , where J ⊂ {s1, . . . , sn} and k /∈ J} (2.3)De�nition 1 of an eligible moving part remains valid for a 
ouple (g,m) ∈

G×M (with the de�nition of τ given in the end of se
tion 2.1). The ordering10



s1 < . . . < sn on the generators indu
es a partial ordering on E by thefollowing:
δ
{i}
J < δ

{i′}
J ′ if and only if i < i′It is straightforward to see that given any 
ouple of G × M \ {(1, 1)}, thereis a unique maximal eligible moving part for this ordering, we 
all it themoving part and denote it k. We then de�ne:

Ψ(g,m) =

{

(gk, k−1m) if k ≺ m

(gk−1, km) if g ≻ kLemma 3. The fun
tion Ψ is an involution from G × M into itself whoseunique �xed point is (1, 1).If the lemma above is proved we 
an then 
on
lude the proof of Theorem2 exa
tly in the same way we did in subse
tion 1.5.Proof of lemma 3. The fa
t that (1, 1) is the unique �xed point is 
lear (seeproof of lemma 1 for details).Let (g,m) ∈ G × M, we set Ψ((g,m)) = (g′,m′) and we want to show that
Ψ((g′,m′)) = (g,m). As in the proof of lemma 1, we distinguish two 
ases:either the moving part was from g to m or from m to g.We begin with the 
ase of a moving part from m to g, we set:

{

g =
∨

(J)

m = δ
{i}
J · m1,

and {

g′ =
∨

(J) · δ
{i}
J =

∨
(J ∪ {i})

m′ = m1,
(2.4)Assume the moving part for (g′,m′) is from m′ to g′, it means that thereexists l > i su
h that m′ = δ

{l}
J∪{i}

· m′
1. Then:

g · m =
∨

(J) · δ
{i}
J · δ

{l}
J∪{i} · m

′
1 (2.5)

=
∨

(J ∪ {i, l}) · m′
1 (2.6)

=
∨

(J) · δ
{l}
J · δ

{i}
J∪{l} · m

′
1 (2.7)This 
ontradi
ts the fa
t that δ

{i}
J is the moving part from m to g. It remainsto show that ∀j ∈ J, j < i whi
h will imply that δ

{i}
J is the maximal eligiblemoving part from g′ to m′. Assume there exists j ∈ J su
h that j > i, then

δ
{j}
J\{j} is an eligible moving part for (g,m) bigger than δ

{i}
J , whi
h 
ontradi
tsthe maximality of δ

{i}
J and 
on
ludes the �rst 
ase.11



We deal now with the 
ase of a moving part from g to m and set:
{

g =
∨

(J ∪ {l}) =
∨

(J) · δ
{l}
J

m = m,
and {

g′ =
∨

(J)

m′ = δ
{l}
J · m

(2.8)It is 
lear that the moving part for (g′,m′) is from m′ to g′ (otherwise it
ontradi
ts the maximality of l among elements of J ∪ {l}). Assume δ
{l}
J isnot the moving part for (g′,m′), it implies that m′ = δ

{i}
J · m1 with i > l.Hen
e we 
an write gm = g′m′ =

∨
(J ∪ {i}) · m1 whi
h implies i ≺ gm.Lastly for all j ∈ J, j ≺

∨
(J) and l ≺ g hen
e :

∨

(J ∪ {l} ∪ {i}) ≺ gm
∨

(J ∪ {l}) · δ
{i}
J∪{l} ≺ gm

g · δ
{i}
J∪{l}

≺ gmNow we assumed that M has the left 
an
ellation property thus δ
{i}
J∪{l}

≺

m and δ
{i}
J∪{l} is an eligible moving part for (g,m) bigger than δ

{l}
J . This
ontradi
ts the fa
t that δ

{l}
J is the moving part for (g,m) and 
on
ludes theproof.2.3 A few examples of monoids2.3.1 Artin-Tits monoidsArtin-Tits monoids are a generalisation of both braid and tra
e monoids.Given a �nite set S and a symmetri
 matrix M = (ms,t)s,t∈S su
h that

ms,t ∈ N ∪ {∞} and ms,s = 1, the Artin-Tit monoid M asso
iated to S and
M has the following presentation:

M = 〈s ∈ S| sts . . .
︸ ︷︷ ︸

ms,t terms = tst . . .
︸ ︷︷ ︸

ms,t terms if ms,t 6= ∞〉 (2.9)Now an Artin-Tits monoid is 
learly homogeneous, he has the left and right
an
ellation property (see Mi
hel, Proposition 2.4 of [Mi
99℄) and has theleast-
ommon multiple property (see Brieskorn and Saito, Proposition 4.1 of[BS72℄)
12



2.3.2 Right-Gaussian monoidsIn [DP99℄, Dehornoy and Paris generalise Artin-Tits groups. They de�ne aright Gaussian monoid as a �nitely generated monoid M su
h that:1. There exists a mapping ν : M → N su
h that ν(a) < ν(ab) for all a, bin M, b 6= 1.2. M is left 
an
ellative.3. All a, b ∈ M admit a least 
ommon multiple.Su
h a monoid is not ne
essarily homogeneous. We 
an neverthelesseloosen 
onditions of Theorem 2 by only assuming that M satis�es properties2 and 3 of se
tion 2.1 for a generating set S. We de�ne the set G by 
hoosingfor ea
h 
ouple (a, b) ∈ S2 one least 
ommon multiple. The �rst part ofTheorem 2 remains true but it is no longer possible to 
ompute the growthfun
tion of M.Now, if M is a homogeneous right Gaussian monoid, we are exa
tly inthe 
onditions of se
tion 2.1. We apply this point to Birman-Ko-Lee braidmonoids in the next se
tion.2.3.3 Birman-Ko-Lee braid monoidsIn [BKL98℄, Birman, Ko and Lee gives a new presentation of braid groups.Namely the braid group on n strands has the following presentation:
〈ats, n ≥ t > s ≥ 1 : atsarq = arqats for (t − r)(t − q)(s − r)(s − q) > 0

atsasr = asratr = atrats for t > s > r〉The new generators are 
onjugate of the 
lassi
al Artin generators we use inthe �rst se
tion, indeed:
ats = (σt−1σt−2 . . . σs+1)σs (σt−1σt−2 . . . σs+1)

−1This new presentation gives birth to a new monoid denoted by BBKL+
n .This monoid is a homogeneous right Gaussian monoid (and even a Garsidemonoid) hen
e it satis�es the 
onditions of se
tion 2.1. We 
an then 
omputeits growth fun
tion.

13



Example (Growth fun
tion of BBKL+
4 ). The generators of BBKL+

4 are a43, a42,
a41, a32, a31 and a21 and they are submitted to relations:

a43a32 = a32a42 = a42a43 a41a32 = a32a41

a43a31 = a31a41 = a41a43 a43a21 = a21a43

a42a21 = a21a41 = a41a42

a32a21 = a21a31 = a31a32We observe that a43a32a21 is the least 
ommon multiple of the six generatorsand get:
F (t) =

1

1 − 6t + 10t2 − 5t3
(2.10)Referen
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