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ABSTRACT 

This paper deals with the characterization of the anisotropy of textured images. It is well 

known that either the dominant direction or the texture anisotropy strongly depends on the 

scale used for the observation. In this paper we propose a new operator for the estimation of 

the dominant direction, the Directional Mean Vector (DMV), which can be computed at any 

observation scale. Then, we present a new indicator for the estimation of the DMV field 

anisotropy. This indicator, called soI , is computed at a given observation scale. soI  is based 

on the computation of the DMV field local differences. It is shown that the evolution of soI  

versus the observation scale gives a curve which simultaneously characterizes the anisotropy 

of the texture and the size of the textural patterns. In order to establish this property, we build 

a specific texture model which allows to assess an analytical expression for soI . Finally, soI  

is applied to the characterization of various images including synthetic textures, Brodatz 

textures and composite material images. 

RESUME 

Ce manuscrit traite de la caractérisation de l'anisotropie des images texturées. Il est avéré que 

l'orientation dominante et l'anisotropie dépendent fortement de l'échelle d'observation. Nous 

proposons ici un nouvel opérateur pour l'estimation de la direction dominante: le Vecteur 

Directionnel Moyen (DMV) qui peut se calculer à des échelles variées. Ensuite, nous 

présentons un nouvel indicateur qui permet l'estimation de l'anisotropie du champ des DMV. 

Cet indicateur, nommé soI , est calculé à une échelle d'observation donnée. Il se fonde sur les 

différences locales du champ des DMV. Nous montrons que l'évolution de soI  en fonction de 

l'échelle d'observation fournit une courbe qui caractérise à la fois l'anisotropie de la texture et 

la taille des motifs texturaux. Afin d'établir ce comportement, nous construisons un modèle 

textural et nous proposons, sur ce modèle, une expression analytique de la valeur d' soI . Enfin, 

soI  est appliqué à la caractérisation de plusieurs types d'images et notamment de textures de 

Brodatz et d'images de matériaux composites. 
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1. INTRODUCTION 

As many natural pictures involve textured regions, the identification of relevant textural 

features has been widely addressed within the scope of either human perception [25] or image 

processing [10][21][33]. In [20], Haralick defines the tone-texture concept as a two-layered 

structure. The first layer specifies the local properties (i.e. tonal primitives) of texture and the 

second layer deals with the spatial interrelationships between the tonal primitives. In order to 

describe this two-level structure, either structural or statistical approaches have been proposed 

[20]. 

Structural approaches are based on the estimation of the parameters which drive the spatial 

arrangement of textural primitives. These primitives and their spatial arrangements are 

assumed to obey explicit or unknown stochastic laws. 

In statistical approaches, the tonal primitive the most frequently used is the image gray level. 

For example, the gray level based textural features are computed on spatial statistics derived 

from cooccurrence matrices [21][20][18] or interaction maps [8][9], or on parameters of 

stochastic texture models, such as Markov Random Fields [10]. As texture deals with the 

spatial arrangement of the gray levels, textural features will often describe geometric 

properties such as roughness, symmetry or directionality [33]. These features can therefore be 

used to describe physical properties of the observed objects. 

In [25], Julesz and Bergen identify the features, which they call textons, involved in 

preattentive vision. Rao and Lohse [33] try to identify the most relevant high level features 

required in the attentive inspection of images. In both approaches anisotropy appears to be an 

obvious feature for texture description. 

In this paper we consider directional textures, i.e. textures which consist, at least partially, of 

directional patterns, and we focus on anisotropy. Let us define the anisotropy as the existence 
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of a unique dominant orientation in the texture. The more the orientation is dominant, the 

more the texture is said anisotropic. 

The notion of anisotropy has been addressed in various papers [22][31] and has proved to be 

useful in practical tasks such as the detection of singular points in seismic pictures [14] or on 

finger tips [24], and the characterization of materials [17]. However, this definition differs 

from others (e.g. [9]) in the sense that the uniqueness of the dominant orientation plays a 

crucial part in the determination of the anisotropy. For instance, the anisotropy of a texture 

being a checkerboard of two definite orientations will decrease from strictly anisotropic when 

the directions are equal, to non anisotropic when the directions are orthogonal. It should be 

noted that the non anisotropic case differs from the strictly isotropic case where the 

orientations are uniformly distributed.  

Another feature of both anisotropy and orientation is their strong dependence on the 

observation scale, as it is shown in Figure 1 for a sinusoidal textured picture. At a small scale, 

as in windows #1, the dominant orientation may be very different from one window to the 

next. Thus, the texture appears to be poorly anisotropic. At a larger scale, as in windows #2, 

the dominant orientation is the same for the entire picture. The texture appears to be much 

more anisotropic. This example illustrates the need to associate anisotropy measurements 

with the scale at which the texture is observed. 

The observation scale can be seen, in fact, as a generalization of the notions of micro-texture 

and macro-texture, reported in previous works [1] on texture characterization. Indeed, a two-

level structure is often inadequate to describe natural textures which exhibit a continuous 

evolution of anisotropy as a function of scale. 

Several approaches have been proposed to provide an estimation of texture anisotropy. For 

example, spectral analysis tools are frequently used for this purpose. Anisotropy can be 

estimated from the power spectrum density in the Fourier domain. However, as this 

Fig.1 
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estimation is usually performed on the entire picture, it is only valid at large scales. Gabor 

filters [5] deal efficiently with such a limitation, as they compute textural components for 

various scales and orientations. Thus, at a given scale, the variation of those components 

versus the orientation of the filter describes the anisotropy of the texture. 

Chetverikov et al. [8] proposed another approach based on the so-called Extended Grey Level 

Difference Histogram (EGLDH). For a given displacement, the evolution of the EGLDH 

feature versus the orientation is described by a curve called anisotropy indicatrix. The average 

curve for a range of displacements (e.g. short range and long range) can be used to determine 

the dominant orientation when it exists. However, this estimation only takes into account the 

displacement between pixels. On the contrary, the approach we propose in this paper uses a 

definition of the observation scale which involves both the distance between the domains on 

which the orientation is estimated, and the area of these domains. 

The textural spectrum, introduced by He et al. [22] is based on the computation of a local 

texture descriptor. Textural features can be extracted from this spectrum. Among these 

features, the Degree of Direction, computed on a window of a given size, can be used for 

estimating anisotropy at various scales. However, this method can only take into account the 

directions defined by 0°, 45°, 90° and 135° angles, and leads to inaccurate estimations. 

Other authors address the problem of anisotropy by computing descriptors of the local 

gradient field [4][32][34][26][30]. Bigün [4] has shown that seeking anisotropy through a 

principal component analysis of the local power spectrum density is equivalent to analyzing 

the local gradient field. 

We propose in this paper a new orientation-based technique for anisotropy estimation. This 

approach consists of two main steps. Firstly, we estimate the orientation field at a given scale, 

based on the local gradient field. Secondly, we compute a scattering indicator for the 

orientations obtained at the previous stage. Both steps are iterated for various observation 



6 

scales. The set of the scattering measures forms an anisotropy curve which describes the 

anisotropy behavior versus the observation scale. 

The paper is organized as follows. In section 2, we introduce the Directional Mean Vector 

(DMV), an orientation estimator computed at a given scale n. In the third section, we define 

soI , an indicator for anisotropy measurement. In the fourth section we describe a specific 

model for textures which takes into account textural primitives of different sizes. The 

theoretical behavior of the anisotropy indicator soI  is then studied using this model. The 

results are compared to simulation curves obtained on synthetic textures. Finally, in the fifth 

section, this approach is applied to real textures taken from Brodatz’s album [6] and from 

composite material images. 

2. ESTIMATION OF THE MAIN DIRECTION OF A TEXTURE USING THE DIRECTIONAL MEAN 

VECTOR 

This step aims at the construction of a vector field describing the dominant orientations at a 

given observation scale. 

The estimation of a directional trend is achieved by Bigün et al. [3][4] and later by Kass and 

Witkin [26] and Rao [31][34], who propose a formulation for the local dominant orientation 

based on the gradient estimation.  

The approach proposed by Bigün et al. [3][4], is based on the local Fourier transform. It 

consists, through a Principal Component Analysis, in looking for the axis of maximum inertia 

of the local power spectrum. Using the Parseval theorem, this frequential approach can be 

expressed as an eigenvalue decomposition of the covariance matrix of the local gradient field. 

In order to take into account the axial nature of orientations, the formulation proposed by 

Kass and Witkin [26] and Rao [31][34] uses complex representations of the gradients. 

Through a variance-based criterion minimization, they prove that the optimal estimation of 

the dominant orientation is given by the argument of the sum of the squared gradient vectors. 
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This technique turns out to be equivalent to the approaches based on local Fourier transforms, 

such as [3][4]. Indeed, the square gradient formulation is simply a generalization of the 

double argument technique, which was first proposed by Mardia [28] and later by Baschelet 

[2], in the fields of statistics and biology. This technique is described below. 

In order to ensure noise robustness, several authors use smoothed gradients. For example, 

Kass and Witkin [26] apply a DoG (Difference of Gaussians) filter before deriving a finite 

difference gradient, while Rao [31][34] uses a simple Gaussian filter. In the context of edge 

detection, Canny [7] and Deriche [12][13] propose optimal gradient filters, also based on the 

derivatives of a Gaussian. 

In order to consider both macrotextures and microtextures [1] with textural patterns barely a 

few pixels wide, we need a gradient estimator which is as local as possible. Indeed, using a 

smooth filter would not be adapted to such thin textural patterns. Moreover, fitting a DoG or a 

Gaussian filter to the size of micro-textural patterns would lead to a very small filter mask. 

This would turn out to be noise sensitive and finally, would be equivalent to using finite small 

size filters.  

Sobel's operator [23] appears to offer a good compromise between noise robustness and mask 

size. For this reason we use Sobel's gradient, except in cases where noise robustness and 

orientation accuracy are crucial. 

Sobel’s operator provides a vector field describing texture orientation at a local scale. Then, 

from this vector field, we have to estimate the directional trend of the texture at any scale, 

which is, in fact, a kind of average orientation. Note that the arithmetic mean cannot be used 

for estimating the mathematical expectation of the arguments of the gradients because in this 

case, arguments are periodic data [28]. Moreover, although the vector arguments are defined 

modulo 2π, we deal with orientations which must be considered modulo π. Indeed, two 

opposite vectors indicate the same orientation, but the arithmetic mean of their argument will 
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produce an orientation orthogonal to the desired vector orientation. Here, we compute an 

appropriate mean orientation derived from directional statistics, as defined in [28]. 

Definition 1 
Let { }θ i i m=1 to 

be the set of arguments of the vectors { } miiv   to1=  considered modulo π. The 

arguments are chosen in [0, π[. Let { }vi i m
'

=1 to 
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no unique dominant orientation as discussed in section 1. 

Let us complete this definition in order to take into account the modulus of each gradient 

vector. This modulus gives information on the confidence associated with the orientation. 

Definition 2 
Let θjrez =  be a realization of the complex random variable Θ= jZ Re , with both R and 

Θ real random variables, Θ considered modulo π. The Directional Mean Vector (DMV) 

associated with the variable Z is given by the complex number 
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where   ⋅  is the mathematical expectation. 

(2) 

The argument of the DMV is an estimation of the dominant orientation of the vector set. 

Moreover, as shown in [28], the modulus of the DMV reflects the confidence we have in the 

orientation estimates.  

In practice, a field of DMVs is computed in the following way. At observation scale n, an 

NN ×  image is divided into windows of size nn× , producing a pavement of (N/n)² windows. 

In each window, the DMV is computed using eq. (2). 

The robustness of the DMV is illustrated with a synthetic texture oriented at 80° (Fig. 2). 

White noise is added to this picture to provide a 0dB SNR. The DMV field is computed for 

Fig.2 
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scales ranging from n=1 to n=32. Fig. 2c shows that the orientations of elementary vectors 

(scale n=1) are strongly affected by the noise. Only 80% of the arguments are in the range 

[27°, 134°]. Using the DMV at scale n=8 and n=32 , this interval is reduced to [74°, 86°] and 

[79°, 81°] respectively. These experiments show that the noise robustness of the DMV 

operator improves as the observation scale increases. 

3. ESTIMATION OF THE ANISOTROPY OF A VECTOR FIELD 

Let now discuss some methods for measuring the scattering of the DMV field. The complex 

moment approach [5] gives the directions of symmetry of a texture as well as a magnitude 

reflecting the scattering around these directions. Other approaches based on angular statistics 

provide indicators for the scattering of an orientation. Mardia showed in [28] that the modulus 

of the resulting vector proposed in equation (1) is sensitive to this scattering. Thereafter, he 

defined a circular variance S0  based on the modulus of the vectors: 

∑
∑
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i
i

v
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A circular standard deviation s0  has also been proposed. 

2
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−

−=  , ∞≤≤ 00 s  . (4) 
Other indicators, reported in [28], [15] and [19], measure the scattering around the circular 

mean for the whole field. They are based on first order statistics only and do not take into 

account the fact that the same angular difference between two vectors will have different 

meanings depending on whether the vectors are close or far. Dealing with second order 

statistics, Davis et al. [11] proposed a generalization of the cooccurrence matrices based on 

the orientations of edges. Later, Kovalev et al. [27] also addressed orientation second-order 

statistics by deriving variograms from the texture orientation field. However, these second-
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order approaches do not deal with the scale of analysis which plays a crucial role in 

estimating the orientation.  

Clearly, the angular difference between two vectors must be associated with the distance 

separating the corresponding windows. For this reason we propose a new scattering indicator, 

called soI , based on second order statistics. It computes the argument differences between 

neighboring vectors. These differences are weighted by the vector moduli in order to take into 

account the confidence we have in the orientation measurements. 

Definition 3 

Consider the vector field { Gs1

→

... Gsn

→

} from which we want to estimate the anisotropy. 

These vectors are located on a 2-D lattice of sites { s1 ... sn }. Let jiC ,  be the clique 

composed of the neighboring vectors ( Gi

→

, G j

→
) in the 4-neighborhood sense. Examples 

of horizontal and vertical cliques at small and large scales are given in Fig. 1. 

The proposed soI  indicator is then defined by 
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with ( ) ( ) ( ) ( )( )( )Δ θ θ π θ θ θ θ π θ θi j i j i j i jInf Sup, , ,= − − − − − −  where ( ) [ ]2ji 20θ,θ π,∈ . 

The Inf(.) and Sup(.) operations in (6) yield [ ]2/2/),( ππji ,−∈Δ θθ . 

(6) 

soI  gives a scattering estimation expressed in radians, [ ]2/,0 π∈soI . The greater is the soI  

value, the more isotropic the field can be considered to be. Nevertheless, in some very 

particular degenerated cases, with the modulus of each vector falling to zero, soI  may lead to 

indeterminate values. The computation of a confidence index based on the sum of the vector 

moduli can easily overcome this drawback. This confidence index, associated with the Iso(n) 

multiscale curves proposed in next section, allows us to characterize textures. However, as 
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this singular configuration is uncommon in natural textures, the use of the confidence index 

will not be discussed further on. 

4. MULTISCALE ANALYSIS OF TEXTURE ANISOTROPY 

Within a texture, different behaviors may occur depending on the observation scale. For 

example, Fig. 1 presents low anisotropy at medium scales, but it is much more anisotropic at 

larger scales. It appears that texture anisotropy cannot be characterized with a single value at 

a single scale. To deal with this problem, we will define, in this section, the multiscale 

characterization of texture anisotropy as the computation of  Iso  for a large range of scales.  

4.1. Multiscale behavior of Iso(n) 

For a picture of NN ×  pixels observed at a given scale n, the DMV computation yields a 2-D 

field of (N/n)² vectors. Each vector supplies the dominant orientation in the window and its 

corresponding confidence index. At each scale n, Iso is computed from the DMV field. The 

multiscale analysis consists in describing the evolution of the anisotropy measurement Iso 

versus the scale n. The resulting curve Iso(n) describes the multiscale behavior of anisotropy. 

Simple and complex textures 

Fig. 3 presents three configurations of elementary vector fields. For the first class (Fig. 3a), 

orientations are scattered at the lowest observation scales but exhibit much less deviation at 

higher scales. So, Iso(n) is expected to decrease monotonically as a function of scale. Textures 

corresponding to such a vector field will be called simple textures. 

In Fig. 3, the arguments of the vectors are uniformly distributed in [0, 2π].  In such a case, no 

directional trend can be found, and it can be easily shown that °≈π= 51.97rad 12/)(nI so  

whatever the observation scale n. 

The textures corresponding to vector fields of the third class (Fig. 3c) will be called complex 

textures. They consist of a combination of various-sized textural patterns. For example, 

Fig.3 
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complex textures appear when low scale primitives are superimposed on a regular grid or on a 

stochastic pavement. This kind of texture is highly anisotropic at the lowest scales. However, 

as the observation scale tends either to the size of the cell or to any odd multiple of this size, 

the orientation difference between two neighboring vectors reaches a local maximum. This is 

a particular case where two opposite orientations exist in the picture, which is out of the scope 

of our definition of anisotropy, i.e. the presence of a unique dominant orientation in the 

texture. It should be noted that this phenomenon appears only at a specific scale 

corresponding with the size of the pavement. 

Whereas a single measurement seems sufficient to discriminate between simple textures, the 

last comments suggest that complex textures should be studied at various scales to take into 

account the different levels of spatial arrangement. That is why, in the next section, we will 

investigate and analyze the behavior of I nso ( )  on such complex textures. 

We will prove that the I nso ( )  curve, drawn over a large range of scales, allows us to retrieve 

the size of textural patterns. For such a purpose, we will build a specific texture model, 

involving a combination of several grids or pavements, which will allow us to assess the 

analytical behavior of Iso(n). 

4.2. Theoretical behavior of Iso(n) in the case of a specific  texture model 

As shown in the previous section, textures often result from the combination of textural 

primitives of different sizes. Textural primitive identification should therefore be defined as a 

recursive process of texture partitioning. Here, we propose a specific texture model in which 

we replace the textural feature notion by the concept of labeled region. 

The modeling process involves two steps, the pavement process, which will determine the 

spatial arrangement at large scales, and the labeling of this pavement at lower scales (Fig. 4a-

b). 

Fig.4 
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Separable textural model 

The theoretical analysis of I nso ( )  in a general case is not a realistic goal. In order to obtain an 

analytical expression for I nso ( ) , we will restrict the texture model to that of a single separable 

pavement, associated with a scalar labeling process. 

A 2-D pavement is called separable when its 2-D boundary process can be separated into two 

1-D boundary processes. This definition leads to a rectangular pavement or tessellation (Fig. 

4c). 

Labeling is obtained by assigning a random real value to the argument of each DMV. Under 

these conditions, the modulo-π problem involved in the use of arguments is neglected. 

We will show in section 4.3.4 that the theoretical results obtained under these two constraints 

are in agreement with experimental results obtained on non-separable pavements.  

Pavement process 

The field is divided into rectangular cells according to a 2-D process separable into the x and 

y axis, where ρh  and ρv  are the horizontal and vertical pavement frequencies. The width of 

the cell containing the point (x,y) is described by the random variable Ωh (x,y). ωh (x,y) is a 

realization of Ωh (x,y). Its probability density function and mathematical expectation are 

respectively 
h

pΩ  and hρ/1 . Similarly, Ωv (x,y), ωv  (x,y) and vpΩ  describe the cell height. 

Labeling process 

Let Θ(x,y) be the zero-mean random variable describing the orientation of the texture at the 

point (x,y), and σΘ
2  its variance. θ(x,y) is a realization of this process. Note that the same 

orientation is assigned to all the points within a cell. 



14 

4.3. Theoretical behavior of Iso(n) for a separable textural model 

4.3.1. A simplified indicator, Isa2Dh 

The separable textural model having been established, we will now derive an analytical 

expression for a simplified anisotropy indicator. Let define the random variable α as a scalar 

expression of the DMV.  

∫∫=
),(
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1),(
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yx θα . 
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of the Euclidian 2-D space, centered around the point ( , )x y . Here nh  and nv  are respectively 

the horizontal and vertical observation scales.  

Let the simplified anisotropy indicator hsaI D2  be defined as follows: 

2
00 ),( Zyx ∈∀ , ( )I n n x y x n ysa h h v h2

2
0 0 0 0

2

D ( , ) ( , ) ( , )= − +α α . (8) 
hsaI D2  is very similar to I nso ( ) , defined in (5), but presents some differences: 

- hsaI D2  is based on scalar data instead of a vector field; 

- the computation is limited to horizontal cliques but the extension to vertical cliques is 

obvious; 

- the measurement computed for the whole set of cliques is replaced by the mathematical 

expectation computed for only one clique, but for an infinite number of realizations of the 

generating process. This means that both the pavement and the labeling processes are 

assumed to be ergodic and stationary. 

These restrictions make the analytical study of anisotropy possible. The results obtained with 

hsaI D2  by simulations in section 4.3.4 appear to be similar to those computed using I nso ( )  on 

complex textures. 
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4.3.2. Analytical expression of Isa2Dh 

In the case of a separable two-dimensional pavement we can obtain an analytical expression 

for I sa h2
2

D  (see the appendix): 
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(9) 

2
Dh2saI  does not depend on the analytical expression of the probability density function of the 

directional labeling process Θ but only on 

- the observation scale ( nh , nv ), 

- the pavement process distributions, hpΩ  and vpΩ , and particularly their horizontal and 

vertical mean frequencies, ρh  and ρv , 

- the variance σΘ
2  of the directional labeling process. 

In the next sections, we will verify these theoretical results by simulating synthetic texture 

models. A similar study was carried out by Schachter et al. [35] who derived an expression 

for the expected spatial squared grey-level difference in the case of specific texture models as 

the Poisson Line and the Rotated Checkerboard models. Later, Modestino et al. [29] also 

addressed the modeling of second-order features in the case of synthetic textures. They 

derived mathematical expressions for the autocorrelation function, the power spectral density 

and the 2-D-joint probability density function in the case of Poisson Line models and in the 

case of generic separable models, which include the Checkerboard mentioned above and the 

Poisson pavement model which will be studied in the next paragraph. 

In the appendix, Theorem 1 gives an expression of  2
D2 hsaI  as a function of the autocorrelation 

D2ααR  of the 2D process α (eq. 7). Note that Modestino et al. [29] have established a 

formulation for the autocorrelation function in the case of the checkerboard model and the 
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Poisson pavement model. However, their results are not applicable in our case since we deal 

with the autocorrelation of the average field α and not with the autocorrelation of Θ. 

4.3.3. Application to a “Poisson” pavement process 

In the Poisson pavement, the horizontal and vertical boundaries of the rectangular boxes obey 

a Poisson law with mean frequency ρh=ρv=ρ. In Fig. 4d, we give an example of such a 

pavement, filled with a textural labeling process composed of parallel lines with sinusoidal 

amplitude. 

The observation window is square (nh=nv=n). Let γ=ρn=ρnh=ρnv. The analytical value of  

Isa h2
2

D  is then given by 

[ ]γγγγγ γγγγ
γ
σ

γ 3222
4

2
2

Dh2  5 67 2534)( −−−−−Θ −−++−+−= eeeeeI sa . (10) 

The evolution of hsaI D2  is given in Fig. 5. The low values of Isa h2
2

D  at very small scales reflect 

the perfect anisotropy of the textural model within the pavement. Additionally, at a larger 

scale, the curve shows a local maximum. The location of this local maximum depends only on 

the mean size 1/ρ of the pavement. Indeed, as the observation scale gets close to the mean 

size of the pavement, the local dispersion of orientations tends to the variance of the labeling 

process. Finally, hsaI D2  converges to zero as the scale grows. This behavior is in accordance 

with the existence of a directional tendency and reveals strong anisotropy at large scales. 

4.3.4. Simulation results. 

Simulations were performed using synthetic pictures based both on a Poisson pavement and 

on a non separable Voronoi pavement. Results are depicted in Fig. 5.   

Comparing sa2DhI  with soI  

One can check that dissimilarities appear between hsaI D2  and soI . At a very low scale, the soI  

curve does not originate at 0°. This is due to spurious DMVs, on the boundaries of the cells, 

Fig.5 
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that increase the isotropy estimation. As the scale grows, the "low pass effect" of the DMV 

operator tends to overcome this drawback. 

At large scales, soI  is lower than hsaI D2 . In fact, DMVs are equal to 0 on the ridge and in the 

valley of the texture. No direction can be computed for those sites and the variance of 

directions tends to underestimate the theoretical value. 

Despite these two differences, the experimental soI  curve is very similar to the theoretical 

one. Thus, the hypotheses used for the calculation of Isa h2D  are confirmed. 

Characterizing synthetic images using Voronoi pavement 

Other simulation experiments were performed with synthetic textures, based on a non-

separable Voronoi pavement, i.e. occupancy model [35], and textural labeling (Fig. 4b). 

Indeed, as mentioned in [35], Voronoi pavements appear to be more appropriate to model 

natural texture forming processes involving growth from initial seeds. If we compare the 

results obtained with a Voronoi pavement to those previously obtained with the separable 

pavement (with the same parameters), we can see that the «Voronoi» curve behaves like the 

«Poisson» curve. 

We also proposed in [17] a cyclostationary separable pavement model similar to the 

checkerboard used in [29]. The resulting curve was proven to be even closer to the Voronoi 

model than the Poisson model. The last remark confirms the choice of a separable pavement 

to derive the computation of the analytical expression of Isa h2D , since it leads to results 

similar to the non-separable case. 

5. APPLICATION 

In this section, we will present the results of the computation of the I nso ( )  curve for various 

classes of images. 
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5.1 Brodatz textures 

Fig. 7 presents the results obtained on the natural textures d68, d24, d93, d71 of Fig. 6 [6].  

For low scales, the behavior of these curves can be explained by the local gradient 

uncertainty, which is typical for natural textures. The asymptotic values of I nso ( )  for larger 

scales reflect the visual perception of the anisotropy of these textures (see section 4.1). 

Moreover, d71 and d93 curves show local maxima which reveal the existence of clusters with 

homogeneous orientation, e.g.  hair tuft or wood fibers.  

Fig. 8 shows the I nso ( )  curves computed on Brodatz textures d34, d52, d64, d17 of Fig. 6. 

Texture d64 is composed of parallel lines with horizontal or vertical orientation superimposed 

on a quasi-regular rectangular pavement. For such a texture the anisotropy estimation does 

not range monotonically from high values at low scales to low values at high scales. In fact, 

this texture is highly anisotropic at the lowest scales whereas, when the observation scale 

tends to the size of the cells or to any odd multiple of this size, the curve rises to 66°. Finally, 

at larger scales Iso decreases, reflecting the predominance of the horizontal direction. 

The same behavior occurs for textures d34 and d52. For the corresponding curves the 

maximum values are reached at different scales depending on the underlying grid size. 

Moreover, the hexagonal grid of texture d34 leads to a lower maximum value than do the 

rectangular grids of textures d52 and d64. 

Texture d17 is much more complex. At low scales, it is composed of small horizontal and 

vertical stitches. These stitches are woven to form patterns oriented at 45° or 135°. The 

I nso ( )  curve computed on this texture shows two peaks. The first one corresponds to the size 

of the horizontal and vertical stitches, whereas the second one is related to the width of the “V 

pattern” of this canvas texture. 

These results show that I nso ( )  curves accurately characterize the anisotropy of textures for all 

possible scales. Moreover, in the case of complex textures composed of textural patterns of 

Fig.6 

Fig.8 

Fig.7 
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various sizes, the local maxima of I nso ( )  curves reflect the size of those patterns. These 

comments are in agreement with the perceptual conclusions and the theoretical results 

presented in section 4.3. 

Note 

Our method can be sensitive to translation. This phenomenon occurs when the size of the 

patterns is close to the scale (e.g. d34, d64). In order to avoid this drawback, we have 

implemented Iso with various shifts of the set of windows.  

5.2 Images from composite material  

We have tested the texture anisotropy approach in analyzing composite materials. Physical 

properties of the material strongly depend upon the anisotropy of the atomic layers composing 

this material. We used pictures obtained through Transmission Electronic Microscopy where 

the pixel width corresponds to 0.3 Å. Samples of six different materials were tested using 7 to 

20 pictures for each sample. By an optical, very large-scale method, these materials had 

previously been classified into 3 sets: "A" or rather anisotropic, "I" or rather isotropic, "AI" or 

intermediate. Moreover, some materials were subjected to a thermal post-treatment  (T), 

whereas others were not (nT). Examples of images for such materials are given in Fig. 9. 

The I nso ( )  curves of these samples at different scales (Fig. 10) show that anisotropy at a local 

scale is stronger for thermal-treated materials than for non-treated materials. This fact is in 

accordance with the physical behavior of these materials. Moreover, the large scale 

anisotropy allows us to separate class I from class A and, indeed, gives intermediate values 

for the "A.I" material class. 

Finally, we observe that the curves obtained for the material "AI(T)" and "I(T)" are similar to 

those obtained with synthetic paved textures (Fig. 6). According to the complex textural 

model designed in section 4.2, these curves reveal the existence of clusters observed only 

with those two kinds of material.  

Fig.9 

Fig.10 
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6. CONCLUSION 

We have proposed a new indicator I nso ( ) , dedicated to multiscale texture anisotropy 

estimation. This indicator is based on the local variations of a vector field which characterizes 

the orientation of the texture at a given observation scale n. The vector field is provided by 

computing the Directional Mean Vectors (DMV). 

The computation of I nso ( )  for various values of n yields a curve which is very representative 

of texture anisotropy from local to global scales. As I nso ( )  reflects the local orientation 

differences of the field, it does not depend on long term variations (higher than n) which are 

not relevant at the particular scale n.  

On simple directional textures Iso(n) is expected to range monotonically from high values at 

low scales to low values at large scales. A single measurement is sufficient to discriminate 

between such simple textures. On the contrary, complex textures which consist of a 

combination of different levels of spatial arrangement, have to be studied at various scales. 

For this purpose, we have designed a complex texture model and, using this model, we 

established the theoretical behavior of Iso(n). It has been shown that Iso(n) reliably reflects the 

evolution of the anisotropy versus the scale. Moreover, the local maxima of the curves reveal 

the size of the patterns involved in the textures.   

Finally, we have applied the I nso ( )  indicator associated with the DMV field to various kinds 

of directional textures. This approach leads to a good characterization of the pictures studied, 

whether they were synthetic or natural. I nso ( )  has proved to be a useful tool for the 

characterization of composite materials, using small-sized samples. 

This approach could be extended to other frameworks. A set of I nso ( )  values computed at 

various scales can be used for texture classification or image segmentation 
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APPENDIX 

Theorem 1 

Let ( ) ),().,(, 0000D2 yyxxyxyxR ++αα=αα  be the autocorrelation function of the random 

variable α for the horizontal distance x and the vertical distance y.  

Then ( ) ( )( )0,0,02),( D2D2
2

D2 hvhhsa nRRnnI αααα −= . 

Proof. As the pavement and the labeling process are stationary, I n nsa h h v2
2

D ( , ) does not depend 

on the coordinates of the point ( , )x y0 0 . Let us evaluate I n nsa h h v2
2

D ( , ) at the point 

2/,2/ 00 vh nynx == . We have 
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In the 1D case we also obtain ( ) ( )( )I n R R nsa1
2

1 12 0 0 0D D D( ) , ,= −αα αα . (11) 

Theorem 2 

Let Θ be the random variable describing the labeling process and σΘ
2  its variance. Let nh , nv  

be the horizontal and vertical observation scales and α be the random variable describing the 

mean direction of the observation window. 

Let finally ( )R dαα1Dv  be the 1-D autocorrelation function for α in the vertical direction and 

for the distance d and let I nsa1D ( )  be the 1-D anisotropy indicator for α in the horizontal 

direction  at the observation scale n. Then ( )I n n R I nsa h h v v sa h h2
2

2 1 1
21

0D D D( , ) ( )= × ×
σ αα

Θ

. 

Proof 

),( yxα can be written as 
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∫∫∫ ∫
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then ∫∫∫∫ −−θ=−−θ=α
²²

.).,().,(.).,().,(),(
RR

dvduvyuxhvudvduyvxuhvuyx . 

i.e. ),)((),( yxhyx ⊗Θ=α , where ⊗  denotes the convolution product. (13) 

( )21D2 ,ττααR  can be expressed as ( ) ( )21D2D221D2 ,, τττταα hhRRR ⊗= ΘΘ . (14) 

Let us compute the first term ( )RΘΘ2 1 2D τ τ, . Let M et N be two points such that MN
→

=
⎛
⎝
⎜

⎞
⎠
⎟

τ
τ

1

2
. 

Then ( )R x y P x y x y PM M M M N NΘΘ2 1 2
2 1D 1 1τ τ θ θ θ, ( , ) ( , ) ( , ) ( )= × + × −  

where P1 is the probability to have no boundary between M and N. 

The labeling process Θ is stationary, zero mean, with variance σΘ
2 . 

So ( )R PΘΘ Θ2 1 2
2

D 1τ τ σ, = × . 

We can write ))0()0((
211 =∧== ττ BAPP , where the random variables 

1τ
A  and 

2τ
B  are the 

number of horizontal boundaries in an interval of width τ1, and the number of vertical 

boundaries in an interval of height τ2. As the pavement process is separable, horizontal and 

vertical boundaries are independent. Thus 

( ) )0()0(, 21
2

21D2 =×=×= ΘΘΘ ττσττ BPAPR . (15) 

For a 1-D context we get ( ) )0(2
Dh1 =×= ΘΘΘ τστ APR  and ( )R P BΘΘ Θ1

2 0Dv τ σ τ= × =( )  

Then, we can write ( ) ( ) ( )2Dv11Dh1221D2
1, ττ
σ

ττ ΘΘΘΘ
Θ

ΘΘ ××= RRR . (16) 

The autocorrelation of the 2D labeling process depends on the horizontal and the vertical 

autocorrelations of the corresponding 1D labeling process. 

Let us proceed in the same way for the autocorrelation of the function h(x,y) (12). 
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Here Rhh h1D ( )τ  and Rhh v1D ( )τ  are the autocorrelation functions for h(x,y) in the 1-D case. 

Then from (14),(16) and (17), we get ( ) ( ) ( )2D11D1221D2
1, ττ
σ
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. (18) 

Finally, from theorem 1 and (18) we have: 
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Now, let us derive general formulations for ( )Rαα1 0D  and I nsa1
2

D ( ) . 

We know that ( ) )0(2
D1 =×= ΘΘΘ τστ APR , where Aτ is the random variable associated with 

the number of pavement boundaries in the interval of length τ. 

Let η be an observation point randomly sampled on the axis considered and let L be the 

stochastic variable "size of the pavement containing η". 

The probability density of the random variable L is given by 
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We now have to determine the value of I nsa1
2

D ( ) . From (11) we know that 
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Fig. 1: Sinusoidal texture 
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Fig. 2: DMV for an anisotropic noisy texture (picture size 256x256 pixels, SNR=0dB) 
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Fig. 3: Examples of vector fields (a, b, c) and expected I nso ( )  curves (d, e, f).  
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Fig. 4: Pavement and labeling processes 
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Fig. 5: Analytical curves and simulation results on a separable Poissonian pavement. 
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Fig. 8: I nso ( )  curves for complex  textures 
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Fig. 9: Examples of composite material textures 
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Fig. 10: I nso ( )  curves for composite material images 
 

 


