
HAL Id: hal-00160626
https://hal.science/hal-00160626v2

Preprint submitted on 10 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Transformations from Crash-Stop to
Permanent Omission

Carole Delporte-Gallet, Hugues Fauconnier, Felix Freiling, Lucia Draque
Penso, Andreas Tielmann

To cite this version:
Carole Delporte-Gallet, Hugues Fauconnier, Felix Freiling, Lucia Draque Penso, Andreas Tielmann.
Automatic Transformations from Crash-Stop to Permanent Omission. 2007. �hal-00160626v2�

https://hal.science/hal-00160626v2
https://hal.archives-ouvertes.fr


1

From Crash-Stop to Permanent Omission:
Automatic Transformation and Weakest Failure

Detectors
Carole Delporte-Gallet1, Hugues Fauconnier1, Felix C. Freiling2,

Lucia Draque Penso2, Andreas Tielmann1

————–
1 University of Paris 7 - Denis Diderot

Laboratoire d’Informatique Algorithmique: Fondements et Applications (LIAFA)
2 University of Mannheim

Laboratory for Dependable Distributed Systems
————–

September 2007

Abstract— This paper studies the impact of omission failures
on asynchronous distributed systems with crash-stop failures.
We provide two different transformations for algorithms, failure
detectors, and problem specifications, one of which is weakest
failure detector preserving. We prove that our transformation
of failure detector Ω [1] is the weakest failure detector for con-
sensus in environments with crash-stop and permanent omission
failures and a majority of correct processes. Our results help
to use the power of the well-understood crash-stop model to
automatically derive solutions for the general omission model,
which has recently raised interest for being noticeably applicable
for security problems in distributed environments equipped with
security modules such as smartcards [2–4].

Index Terms— Fault-Tolerance, Weakest Failure Detectors,
Transformations, Asynchronous Systems, Crash-Stop, Permanent
Omissions.

I. INTRODUCTION

MESSAGE omission failures, which have been intro-
duced by Hadzilacos [5] and been refined by Perry

and Toueg [6], put the blame of a message loss to a specific
process instead of an unreliable message channel. Beyond
the theoretical interest, omission models are also interesting
for practical problems like they arise from the security area:
Assume that some kind of trusted smartcards are disposed
on untrusted processors. If these smartcards execute trusted
algorithms and are able to sign messages, then it is relatively
easy to restrict the power of a malicious adversary to only
be able to drop messages of the trusted smartcards or to stop
the smartcards themselves. Following this approach, omission
models have lead to the development of reductions from
security problems in the Byzantine failure model [7] such
as fair-exchange [3, 4], and secure multiparty computation [2]
to well-known distributed problems in the general omission
model, such as consensus [8], where both process crashes
and message omissions may take place. Apart from that,

Work was supported by grants from Région Ile-de-France.

omission failures can model overflows of local message buffers
in typical communication environments.

The message omission and crash failures are considered
here in asynchronous systems. Due to classical impossibility
results concerning problems as consensus [9] in asynchronous
systems, following the failure detector approach [10], we
augment the system with oracles that give information about
failures.

The extension of failure detectors to more severe failure
models than crash failures is unclear [11], because in these
models failures may depend on the scheduling and on the al-
gorithm. As it is easy to transform the general omission model
into a model with only permanent omissions using standard
techniques like the piggybacking of messages, we consider
only permanent omissions and crashes. This means that if an
omission failure occurs, then it occurs permanently. In this
model, precise and simple definitions for failure detectors can
easily be deduced from the ones in the crash-stop model.

To provide the permanent omission model with the benefits
of a well-understood system model like the crash-stop model,
we give automatic transformations for problem specifications,
failure detectors, and algorithms such that algorithms de-
signed to tolerate only crash-stop failures can be executed
in permanent omission environments and use transformed
failure detectors to solve transformed problems. Specifically,
we give two transformations. At first, one that works in
every environment, but that transforms uniform problems into
problems with only limited uniformity, and at second one
that works only with a majority of correct processes, but
transforms uniform crash-stop problems into their uniform
permanent omission counterpart. An interesting point is the
fact that the transformation of the specification gives for most
of the classical problems the standard specification in the
message omission and crash failure model. For example, from
an algorithmic solution A of the consensus problem with a
failure detector D in the crash-stop model, we automatically
get A′ = trans(A), an algorithmic solution of the consensus



2

problem using D′ = trans(D) in the message omission and
crash failure model.

Moreover, our first transformation preserves also the
“weaker than” relation [1] between failure detectors. This
means that if a failure detector is a weakest failure detector
for a certain (crash-stop) problem, then its transformation is a
weakest failure detector for the transformed problem. We can
use this to show that our transformation of failure detector
Ω [1] is the weakest failure detector for (uniform) consensus
in an environment with permanent omission failures and a
majority of correct processes.

The problem of automatically increasing the fault-tolerance
of algorithms in environments with crash-stop failures has
been extensively studied before [12–15]. The results of Neiger
and Toueg [13], Delporte-Gallet et al. [14], and Bazzi and
Neiger [15] assume in contrast to ours synchronous systems
and no failure detectors. Neiger and Toueg [13] propose
several transformations from crash-stop to send omission, to
general omission, and to Byzantine faults. Delporte-Gallet
et al. [14] transform round-based algorithms with broadcast
primitives into crash-stop-, general omission-, and Byzantine-
tolerant algorithms. Asynchronous systems are considered by
Basu, Charron-Bost, and Toueg [12] but in the context of link
failures instead of omission failures and also without failure
detectors. The types of link failures that are considered by
Basu, Charron-Bost, and Toueg [12] are eventually reliable and
fair-lossy links. Eventually reliable links can lose a finite (but
unbounded) number of messages and fair-lossy links satisfy
that if infinitely many messages are sent over it, then infinitely
many messages do not get lost. To show our results, we extend
the system model of Basu, Charron-Bost, and Toueg [12] such
that we can model omission failures, failure patterns, and
failure detectors. Another definition for a system model with
crash-recovery failures, omission failures, and failure detectors
is given by Dolev et al. [16]. In this model, the existence of
a fully connected component of processes that is completely
detached from all other processes is assumed and only the
processes in this component are declared to be correct.

The omission failure detector defined by Delporte-Gallet
et al. [17] that can be implemented in partially synchronous
models using some weak timing assumptions, is in comparison
with our transformed Ω strictly stronger. However, with a cor-
rect majority, both failure detectors can easily be transformed
into each other.

To the best of our knowledge, this is the first paper that
investigates an automatic transformation to increase the fault
tolerance of distributed algorithms in asynchronous systems
augmented with failure detectors.

We organize this paper as follows. In Section II, we define
our formal system model, in Section III, we define our general
problem and algorithm transformations, in Section IV we
state and prove our theorems, and finally, in Section V, we
summarize and discuss our results.

II. MODEL

The asynchronous distributed system is assumed to consist
of n distinct fully-connected processes Π = {p1, . . . , pn}. The

asynchrony of the system means, that there are no bounds on
the relative process speeds and message transmission delays.
To allow an easier reasoning, a discrete global clock T is
added to the system. The system model used here is derived
from that of Basu, Charron-Bost, and Toueg [12]. It has
been adapted to model also failure detectors and permanent
omission failures.

1) Algorithms: An algorithm A is defined as a vector
of local algorithm modules (or simply modules) A(Π) =
〈A(p1), . . . , A(pn)〉. Each local algorithm module A(pi) is
associated with a process pi ∈ Π and defined as a deterministic
infinite state automaton. The local algorithm modules can ex-
change messages via send and receive primitives. We assume
all messages to be unique.

2) Failures and Failure Patterns: A failure pattern F is a
function that maps each value t from T to an output value
that specifies which failures have occurred up to time t during
an execution of a distributed system. Such a failure pattern is
totally independent of any algorithm. A crash-failure pattern

C : T → 2Π

denotes the set of processes that have crashed up to time t
(∀t : C(t) ⊆ C(t + 1)).

Additionally to the crash of a process, it can fail by not
sending or not receiving a message. We say that it omits a
message. The message omissions do not occur because of
link failures, they model overflows of local message buffers
or the behavior of a malicious adversary with control over the
message flow of certain processes. It is important that for every
omission, there is a process responsible for it. As we already
mentioned, we consider only permanent omissions and leave
the treatment of transient omissions over to the underlying
asynchronous communication layer. Intuitively, a process has
a permanent send omission if it always fails by not sending
messages to a certain other process after a certain point in time.
Analogously, a process has a permanent receive omission if
it always fails by not receiving messages from a certain other
process after a certain point in time. The permanent omissions
are modeled via a send- and a receive-omission failure pattern:

OS : T → 2Π×Π and OR : T → 2Π×Π

If (ps, pd) ∈ OS(t), then process ps has a permanent send-
omission to process pd after time t. If (ps, pd) ∈ OR(t), then
process pd has a permanent receive-omission to process ps

after time t. All the failure patterns defined so far can be put
together to a single failure pattern F = (C,OS , OR).

With such a failure pattern, we define a process to be
correct, if it experiences no failure at all. We assume that
at least one process is correct. A process p is crash-correct
(p ∈ cr.-correct(F)) in F , if it does not crash.

A process pd is directly-reachable from another process ps

in F , if for all t ∈ T , (ps, pd) 6∈ OS(t) and (ps, pd) 6∈ OR(t).
A process pd is called reachable from a process ps, if pd

is directly-reachable from ps, or if there exists a process q,
such that pd is reachable from q and q is reachable from ps

(transitive closure). If a process is reachable from some correct
processes, then it is in-connected. Analogously, a process is
out-connected, if some correct processes are reachable from



3

it. If a process p is in-connected and out-connected in a
failure pattern F , then we say that p is connected in F
(p ∈ connected(F)). This means that between connected
processes there is always reliable communication possible.
With a simple relaying algorithm, every message can even-
tually be delivered. Note that it is nevertheless still possible
that connected processes receive messages from disconnected
processes or disconnected processes receive messages from
connected ones. The difference between connected and dis-
connected processes is that the former are able to send and to
receive messages to/from correct processes and therefore are
able to communicate in both directions. It is easy to see that
crash-correct(F) ⊇ connected(F) ⊇ correct(F).

We say that a failure pattern F ′ is an omission equivalent
extension of another failure pattern F (F ≤om F ′), if the set
of crash-correct processes in F is at all times equal to the
set of connected processes in F ′ and there are no omission
failures in F .

We define an environment E to be a set of possible failure
patterns. Ef

c.s. denotes the set of all failure patterns where only
crash-stop faults occur and at most f processes crash. Ef

p.o.

denotes the set of all failure patterns where crash-stop and
permanent omission faults may occur and at most f processes
are not connected (clearly, Ef

c.s. ⊆ Ef
p.o.).

3) Failure Detectors: A failure detector provides (possibly
incorrect) information about a failure pattern [10]. Associated
with each failure detector is a (possibly infinite) range R of
values output by that failure detector. A failure detector history
FDH with range R is a function from Π×T to R. FDH(p, t)
is the value of the failure detector module of process p at time
t. A failure detector D is a function that maps a failure pattern
F to a set of failure detector histories with range R. D(F)
denotes the set of possible failure detector histories permitted
by D for the failure pattern F . Note that a failure detector
D is specified as a function of the failure pattern F of an
execution. However, an implementation of D may use other
aspects of the execution such as when messages are arrived
and executions with the same failure pattern F may still have
different failure detector histories. It is for this reason that we
allow D(F) to be a set of failure detector histories from which
the actual failure detector history for a particular execution is
selected non-deterministically.

Take failure detector Ω [1] as an example. The output of the
failure detector module of Ω at a process pi is a single process,
pj , that pi currently considers to be crash-correct. In this case,
the range of output values is RΩ = Π. For each failure pattern
F , Ω(F) is the set of all failure detector histories FDHΩ with
range RΩ that satisfy the following property: There is a time
after which all the crash-correct processes always trust the
same crash-correct process:

∃t ∈ T ,∃pj ∈ cr.-correct(F),
∀pi ∈ cr.-correct(F),∀t′ ≥ t : FDHΩ(p, t′) = pj

The output of failure detector module Ω at a process pi may
change with time, i.e. pi may trust different processes at
different times. Furthermore, at any given time t, processes
pi and pj may trust different processes.

A local algorithm module A(pi) can access the current
output value of its local failure detector module using the
action queryFD.

4) Histories: A local history of a local algorithm module
A(pi), denoted H[i], is a finite or an infinite sequence of
alternating states and events of type send, receive, queryFD, or
internal. We assume that there is a function time that assigns
every event to a certain point in time and define H[i]/t to be
the maximal prefix of H[i] where all events have occurred
before time t. A history H of A(Π) is a vector of local
histories 〈H[1],H[2], . . . ,H[n]〉.

5) Reliable Links: A reliable link does not create, dupli-
cate, or lose messages. Specifically, if there is no permanent
omission between two processes and the recipient executes
infinitely many receive actions, then it will eventually receive
every message. We specify, that our underlying communication
channels ensure reliable links.

6) Problem Specifications: Let Π be a set of processes and
A be an algorithm. We define H(A(Π), E) to be the set of all
tuples (H,F) such that H is a history of A(Π), F ∈ E , and
H and F are compatible, that is crashed processes do not take
any steps after the time of their crash, there are no receive-
events after a permanent omission, etc. A system S(A(Π), E)
of A(Π) is a subset of H(A(Π), E). A problem specification
Σ is a set of tuples of histories and failure patterns, because
(permanent) omission failures are not necessarily reflected in
a history (e.g., if a process sends no messages). A system S
satisfies a problem specification Σ, if S ⊆ Σ. We say that an
algorithm A satisfies a problem specification Σ in environment
E , if H(A(Π), E) ⊆ Σ.

Take consensus as an example (see Table I): It is specified
by making statements about some variables propose and
decide in the states of a history (e.g. the value of decide
has eventually to be equal at all (crash-)correct processes).
This can be expressed as the set of all tuples (H,F) where
there exists a time t and a value v, such that for all pi ∈
cr.-correct(F), there exists an event e in H[i] with time(e) ≤ t
and for all states s after event e, the value of the variable decide
in s is v.

III. FROM CRASH-STOP TO PERMANENT OMISSION

We will give here two transformations: one general trans-
formation for all environments, where we provide only re-
stricted guarantees for disconnected processes, and one for
environments where less than half of the processes may not
be connected, where we are able to provide for all processes
the same guarantees as for the crash-stop case.

To improve the fault-tolerance of algorithms, we simulate a
single state of the original algorithm with several states of the
simulation algorithm. For these additional states, we augment
the original states with additional variables. Since an event of
the simulation algorithm may lead to a state where only the
augmentation variables change, the sequence of the original
variables may stutter. We call a local history H ′[i] a stuttered
and augmented extension of a history H[i] (H[i] ≤sa H ′[i]),
if H[i] and H ′[i] differ only in the value of the augmentation
variables and some additional states caused by differences in



4

these variables (in particular, H[i] ≤sa H[i] for all H[i]). If
H[i] ≤sa H ′[i] for all pi ∈ Π, we write H ≤sa H ′. We
say that a problem specification Σ is closed under stuttering
and augmentation, if (H,F) ∈ Σ and H ≤sa H ′ implies that
(H ′,F) is also in Σ. Most problems satisfy this natural closure
property (e.g. consensus).

A. The General Transformation

1) Transformation of Problem Specifications: To transform
a problem specification, we first show a transformation of a
tuple of a trace and a failure pattern. Based on this transforma-
tion, we transform a whole problem specification. The intuition
behind this transformation is that we demand only something
from processes as long as they are connected. After their
disconnection, processes may behave arbitrary. More formally,
let tc.s.(i) be the time at which process pi crashes in F
(tc.s.(i) = ∞, if pi never crashes). Analogously, let t′p.o.(i)
be the time at which process pi becomes disconnected in F ′
(t′p.o.(i) = ∞, if pi never becomes disconnected). Then:

(H ′,F ′) ∈ trans((H,F))
:⇔ ∀pi ∈ Π : H[i]/tc.s.(i) ≤sa H ′[i]/t′p.o.(i)

and for a whole problem specification:

trans(Σ) := {(H ′,F ′) |
(H ′,F ′) ∈ trans((H,F)) ∧ (H,F) ∈ Σ}

A transformation of non-uniform consensus, where properties
of certain propose- and decision-variables of (crash-)correct
processes are specified would lead to a specification where
the same properties are ensured for the states of connected
processes, because only histories with the same states (dis-
regarding the augmentation variables) are allowed in the
transformation at this processes (see Table I). We also take
the states of processes before they become disconnected into
account, because they (e.g. their initial states for the propose
variables) may also have an influence on the fulfillment of
a problem specification, although they are after their discon-
nection not allowed to have this influence anymore. Since we
impose no restriction on the behavior of processes after their
disconnection, the transformed problem specification allows
them to decide a value that was never proposed (although our
transformation algorithms guarantee that this will not happen).

A transformation of uniform consensus leads to a problem
specification where the uniform agreement is only demanded
for processes before their time of disconnection. This means
that it is allowed that after a partitioning of the network, the
processes in the different network partitions come to different
decision values. Another transformation, in which uniform
consensus remains truly uniform is given in Section III-B.

2) Transformation of Failure Detector Specifications: We
allow all failure detector histories for a failure pattern F in
trans(D) that are allowed in the crash-stop version F ′ of F
in D:

trans(D)(F) :=
⋃
F ′

{D(F ′) | F ′ ≤om F}

Consider failure detector Ω [1]. Ω outputs only failure detector
histories that eventually provide the same crash-correct leader
at all crash-correct processes. Then, trans(Ω) outputs these
failure detector histories if and only if they provide a connected
common leader at all connected processes.

pi pj

A

A′

three way handshake layer

relaying layer

m

m

m

m′

m′

Fig. 1. Additional Communication Layers

3) Transformation of Algorithms: In our algorithm trans-
formation, we add new communication layers such that some
of the omission failures in the system become transparent to
the algorithm (see Figure 1). We transform a given algorithm
A into another algorithm A′ = trans(A) in two steps:
• In the first step, we remove the send and receive actions

from A and simulate them with a three-way-handshake
(3wh) algorithm. The algorithm is described in Figure
2. The idea of the 3wh-algorithm is to substitute every
send-action with an exchange of three messages. This
means that to send a message to a certain process, it is
necessary for a process to be able to send and to receive
messages from it. Moreover, while the communication
between connected processes is still possible, processes
that are only in-connected or only out-connected (and not
both) become totally disconnected. Hence, we eliminate
influences of disconnected processes not existing in the
crash-stop case.

• Then, in the second step, we remove the send and receive
actions from the three way handshake algorithm and
simulate them with a relaying algorithm. The idea of the
relay algorithm is to relay every message to all other
processes, such that they relay it again and all connected
processes can communicate with each other, despite the
fact that they are not directly-reachable. It is similar
to other algorithms in the literature [18]. Its detailed
description can be found in Figure 3.

To execute the simulation algorithms in parallel with the
actions from A, we add some new (augmentation) variables
to the set of variables in the states of A. Whenever a step
of the simulation algorithms is executed, the state of the
original variables in A remains untouched and only the new
variables change their values. Whenever a process queries a
local failure detector module D(pi), we translate it to a query
on trans(D)(pi). The relaying layer overlays the network with
the best possible communication graph and the 3wh-layer on



5

top of it cuts the unidirectional edges from this graph.

Algorithm 3wh
1: procedure 3wh-send(m, pj)
2: relay-send([1,m], pj);
3:
4: procedure 3wh-receive(m)
5: relay-receive([l, m′]);
6: if (l = 1) then
7: relay-send([2,m′], sender([l, m′]));
8: m := ⊥;
9: elseif (l = 2) then
10: relay-send([3,m′], sender([l, m′]));
11: m := ⊥;
12: elseif (l = 3) then
13: m := m′;
14: elseif [l,m′] = ⊥ then
15: m := ⊥;

Fig. 2. The Three Way Handshake Algorithm for Process pi.

Algorithm Relay
1: procedure init
2: relayedi := ∅; deliveredi := ∅;
3:
4: procedure relay-send(m, pj)
5: for k := 1 to n do
6: send([m, pj ], pk);
7: relayedi := relayedi ∪ {[m, pj ]};
8:
9: procedure relay-receive(m)
10: receive([m′, pk]);
11: if ([m′, pk] = ⊥) then m := ⊥;
12: elseif (k = i) and (m′ 6∈ deliveredi) then
13: m := m′; deliveredi := deliveredi ∪ {m′};
14: elseif (k 6= i) and ([m′, pk] 6∈ relayedi) then
15: for l := 1 to n do
16: send([m′, pk], pl);
17: relayedi := relayedi ∪ {[m′, pk]}; m := ⊥;

Fig. 3. The Relaying Algorithm for Process pi.

B. The Transformation for n > 2f

If only less than a majority of the processes are discon-
nected (n > 2f), then we only need to adapt the problem
specification to the failure patterns of the new environment.
We indicate this adaptation of a problem specification with
the index p.o. and specify it in the following way:

Σp.o. := {(H,F) | ∃(H,F ′) ∈ Σ ∧ F ′ ≤om F}

If we adapt consensus to omission failures, then we get
Consensusp.o. as in Table I. The failure detector specifications

can be transformed as in Section III-A. The algorithm transfor-
mation trans2 works similar as in the previous section, but we
add an additional two-way-handshake (2wh) layer between the
relaying layer and the 3wh layer. The algorithm is described
in Figure 4 and is similar to an algorithm in the literature
[12]. The idea of the algorithm is to broadcast every message
to all other processes and to block until f + 1 processes
have acknowledged the message. In this way, disconnected
processes block forever (since they receive less than f + 1
acknowledgements) and connected processes can continue.
Thus, we emulate a crash-stop environment.

Algorithm 2wh
1: procedure init
2: receivedi := ∅; Acki := 0;
3:
4: procedure 2wh-send(m, pj)
5: relay-send([m, pj , ONE], pk) to all other pk;
6: Acki := 1;
7: while (Acki ≤ f ) do
8: relay-receive([m′, pk, num]));
9: if (num = TWO) and (m′ = m)
10: and (k = j) then inc(Acki);
11: elseif (num = ONE) then
12: add [m′, pk, num] to receivedi;
13:
14: procedure 2wh-receive(m))
15: m := ⊥; relay-receive(m′);
16: if (m′ 6= ⊥) then add m′ to receivedi;
17: if ([m′′, pk, ONE] ∈ receivedi) for any m′′, pk then
18: relay-send([m′′, pk, TWO],
19: sender([m′′, pk, ONE]));
20: if (k = i) then m := m′′;

Fig. 4. The Two Way Handshake Algorithm for Process pi.

IV. RESULTS

In our first theorem, we show that for any algorithm A,
for any failure detector D, and for any problem specification
Σ, trans(A) using trans(D) solves trans(Σ) in a permanent
omission environment if and only if A using D solves Σ in
a crash-stop environment. This theorem does not only show
that our transformation works, it furthermore ensures that we
do not transform to a trivial problem specification, but to an
equivalent one, since we prove both directions.

Theorem 1: Let Σ be a problem specification closed under
stuttering and augmentation. Then, if A is an algorithm using
a failure detector D and A′ = trans(A) is the transformation
of A using trans(D), it holds that:

∀f with 0 ≤ f ≤ n : (H(A(Π), Ef
c.s.) ⊆ Σ

⇔ (H(A′(Π), Ef
p.o.) ⊆ trans(Σ)

Proof: We divide up the proof into two parts. Let Sc.s. :=
(H(A(Π), Ef

c.s.) and Sp.o. := (H(A′(Π), Ef
p.o.) and assume

that A′ = trans(A).



6

Consensus trans(Consensus) Consensusp.o.

Validity: The decided value The decided value The decided value
of every process of every connected of every process
must have been process must have must have been
proposed. been proposed. proposed.

Non-Uniform No two cr.-correct No two connected No two connected
Agreement: processes decide processes decide processes decide

differently. differently. differently.
Uniform No two processes No two processes No two processes

Agreement: decide differently. decide differently decide differently.
before their dis-
connection.

Termination: Every cr.-correct Every connected Every connected
process eventually process eventually process eventually
decides. decides. decides.

TABLE I
TRANSFORMATIONS OF THE CONSENSUS PROBLEM

“⇒”: Assume that Sc.s. ⊆ Σ. By constructing for a
given (H,F) in Sp.o. a tuple (H ′,F ′) in Sc.s. with
(H,F) ∈ trans((H ′,F ′)), we can show that Sp.o. ⊆
trans(Sc.s.) (Proposition 1). In this construction, we
remove the added communication layers from H and
use the properties of our two send-primitves to prove
the reliability of the links in H ′. We ensure “No
Loss” with the relaying algorithm and “No Creation”
with the three way handshake algorithm. As we
know from the definition of trans, that trans(Sc.s.) ⊆
trans(Σ), we can conclude that Sp.o. ⊆ trans(Σ).

“⇐”: Assume that Sp.o. ⊆ trans(Σ). We construct
(H ′,F ′) for all (H,F) in Sc.s., such that (H ′,F ′)
is in Sp.o. ⊆ trans(Σ). We can use this to prove that
Sc.s. ⊆ Σ (Proposition 2).

Proposition 1: Sp.o. ⊆ trans(Sc.s.) Proof: The propo-
sition is equivalent to

(H,F) ∈ Sp.o. ⇒ (H,F) ∈ trans(Sc.s.)

From the definition of trans follows:

(H,F) ∈ Sp.o. ⇒ ∃(H ′,F ′) ∈ Sc.s. :
∀pi ∈ Π : H ′[i]/t′c.s.(i)

≤sa H[i]/tp.o.(i) (1)

We will in the following construct a new history H ′ and a
failure pattern F ′ from H and F which satisfy equation (1):

(a) At first, we undo step 2 of the transformation and remove
the variables, additional states, and events of the relaying
algorithm from H . This means, that every time a relay-
send or relay-receive event in H occurs, this event is
substituted by an send/receive event of the underlying
communication channel. We let the inserted events take
place at the time when the relay events have been
completed (since a process may take several steps to
accomplish the relaying task). We call the intermediate
history we get after this H1.

(b) Then, we undo step 1 and remove the variables, ad-
ditional states, and events of the three way handshake
algorithm from H1 (in the same way as above). We call
this intermediate history H2.

(c) After that, we construct F ′, such that F ′ ≤om F . To
build H ′ from H2, we substitute every query on a failure
detector trans(D) in H2 with a query on D in H ′ and
remove all states and events for every process pi that
occur after the time when pi crashes in F ′.

The schedule of the construction is illustrated in Figure 5.
From the construction of H ′ and F ′ it is clear, that ∀pi ∈
Π : H ′[i]/t′c.s.(i)

≤sa H[i]/tp.o.(i). It remains to show, that
(H ′,F ′) ∈ Sc.s.. This means, that at most f processes crash
in F ′ (Lemma 1), H ′ is a history of A(Π) using D (Lemma
2), and all links in H ′ are reliable according to F ′ (Lemma
3).

Lemma 1: At most f processes crash in F ′. Proof:
Follows immediately from (c).

Lemma 2: H ′ is a history of A(Π) using D. Proof:
All events and states are from A(Π), because all additional
events and states have been removed. If algorithm A makes
use of a failure detector D, then trans(D)(F) = D(F ′) (Since
F ′ ≤om F).

Lemma 3: All links in H ′ are reliable according to F ′.
Proof: We have to show the three properties of reliable links,
namely: No Creation (Lemma 5), No Duplication (Lemma 6),
and No Loss (Lemma 7).

To prove lemma 5, we first need to show the auxiliary
lemma 4:

Lemma 4: Let ts be the time a send event from A(pi) to
A(pj) in H2 occurs, tr be the time of the corresponding
receive event in H2, tj be the time when pj becomes discon-
nected in F , and ti be the time when pi become disconnected
in F . Then:

ts ≥ ti ⇒ tr ≥ tj

Proof: In the following, when we write tnr(F,p,q), we
mean the point in time when process p is not longer reachable
from process q in F (for any p, q, and F).

The above lemma is equivalent to: tr < tj implies ts < ti.
At first, we observe that ts < tr. Assume tr < tj . Since A(pj)
receives the message, we can conclude:

tnr(F,pj ,pi) > tr > ts (2)



7

H −→ H1 −→ H2 −→ H ′

(a): undo step 2 (b): undo step 1 (c): crash not
(the relaying) (the 3wh) connected processes

Fig. 5. Construction of H′

Since the in H2 removed 3wh-algorithm is only allowed to
3wh-deliver messages after having received a [3,m] message
(line 12 in Figure 2), which is only sent from a process after
having on his part received a [2,m] message (line 11), we are
sure that after the 3wh-send event, A(pi) was able to receive
the [2,m] message from A(pj) and therefore:

tnr(F,pi,pj) > ts (3)

From the definition of connected follows:

∃c ∈ correct(F), tnr(F,c,pj) ≥ tj > tr > ts (4)
∃c′ ∈ correct(F), tnr(F,pj ,c′) ≥ tj > tr > ts (5)

If we put all paths together, we have:

with (2) & (4) : ∃c ∈ correct(F), tnr(F,c,pi) > ts (6)
with (3) & (5) : ∃c′ ∈ correct(F), tnr(F,pi,c′) > ts (7)

Equations (6) and (7) imply ti > ts.
Lemma 5: (No Creation in H ′.) For all messages m, if pj

receives m from pi in H ′, then pi sends m to pj in H ′.
Proof: We know, that there is no creation in H . In our
construction, send events of the same layer can only decrease
in the local history of crashed processes in step (c) (after the
time of their crash). But since Lemma 4 shows that messages
that are sent from a process that is already disconnected in
F (and therefore crashed in F ′) can only be received by
processes that are already disconnected too, the corresponding
receive events also get lost in H ′.

Lemma 6: (No Duplication in H ′.) For all messages m: pj

receives m from pi at most once. Proof: In the 3wh-
algorithm, no message is delivered more than once and in the
relay-algorithm, every message received is remembered in a
variable deliveredi (lines 12-13 in Figure 3).

Lemma 7: (No Loss in H ′ according to F ′.) For all mes-
sages m, if pi sends m to pj and pj executes receive actions
infinitely often, then pj receives m from pi. Proof: In the
removed relaying algorithm, after every relay-send event, the
message m is relayed by A(pi) to all other processes (lines
5-6 in Figure 3). If a connected process (in F) receives such
a relayed message, it checks in lines 12-13 whether it is the
recipient and has not yet delivered it (and relay-delivers m
in this case). Otherwise, it propagates m further to all other
processes (lines 14-16).

Since pi is at the time of the in step (a) in H1 inserted send-
event out-connected in F (otherwise, pi would have already
crashed in F ′), there is a path of directly-reachable connected
processes to a (totally) correct process in F . A correct process
will receive m and relay it (possibly indirectly) to A(pj), since
pj is in-connected in F (because it takes infinitely many steps
in (H ′,F ′)).

Proposition 2: Sc.s. ⊆ Σ Proof: Assume (H,F) ∈
Sc.s.. We then build a new history H ′ from H and simulate all
links according to the specification of the three-way-handshake
and the relay algorithm such that (H ′,F) ∈ trans((H,F)) and
(H ′,F) ∈ Sp.o. ⊆ trans(Σ) (F ∈ Ef

c.s. implies that F ∈ Ef
p.o).

This means, that there exists a (H ′′,F ′′) ∈ Σ, with (H ′,F) ∈
trans((H ′′,F ′′)).

Since in both, F ′′ and F occur only crash failures, F ′′ = F
and therefore for all pi, H ′′[i] ≤sa H ′[i]. Together with the
fact that Σ is closed under stuttering and augmentation, we
can conclude that (H ′,F) ∈ Σ. H ′ and H differ only in the
augmentation variables that are not relevant for the fulfillment
of trans(Σ), therefore: (H,F) ∈ Σ.

Our second theorem shows, that with a majority of con-
nected processes (n > 2f ), trans2 can be used to solve the
adaptation of a problem to the general omission model.

Theorem 2: If A is an algorithm using a failure detector
D and A′ = trans2(A) is the transformation of A using
trans2(D) and Σ is closed under stuttering and augmentation,
then it holds that:

∀f with f < n/2 : (H(A(Π), Ef
c.s.) ⊆ Σ

⇒ (H(A′(Π), Ef
p.o.) ⊆ Σp.o.

Proof: Let Sc.s. := (H(A(Π), Ef
c.s.) and Sp.o. :=

(H(A′(Π), Ef
p.o.) and assume that A′ = trans(A). It is suf-

ficient to show, that

∀(H,F) ∈ Sp.o.,∃(H ′,F ′) ∈ Sc.s. :
(H ′ ≤sa H) ∧ (F ′ ≤om F) (8)

To show this, we construct (H ′,F ′) ∈ Sc.s. for a given
(H,F) ∈ Sp.o. in the following way: We first remove
the variables, events, and states of the relay-algorithm, then
remove the same for the 2wh-algorithm, and then remove
the 3wh-algorithm to get H ′. F ′ is a failure pattern, such
that F ′ ≤om F . We need to show, that (H ′,F ′) fulfills the
properties of equation 8. From the construction it is clear,
that H ′ ≤sa H and F ′ ≤om F . It remains to show, that
(H ′,F ′) ∈ Sc.s.. This means, that at most f processes crash
in F ′ (Lemma 8), H ′ is a history of A(Π) using D (Lemma
9), all links are reliable in (H ′,F ′) (Lemma 14), and H ′ and
F ′ are compatible (Lemma 13).

Lemma 8: At most t processes crash in F ′. Proof:
Follows immediately from F ′ ≤om F .

Lemma 9: H ′ is a history of A(Π) using D. Proof:
All events and states are from A(Π), because all additional
events and states have been removed. If algorithm A makes
use of a failure detector D, then trans(D)(F) = D(F ′) (Since
F ′ ≤om F).



8

Lemma 10: Connected processes take infinitely many steps.
Proof: The only possibility for a process to block is in line
7 of the 2wh-algorithm in Figure 4. Since n > 2f , even after
the disconnection of all f possibly faulty processes, every
connected process receives acknowledgements from n−f > f
connected processes and therefore never blocks in line 7.

Lemma 11: Every process 2wh-sends at most one message
after its disconnection. Proof: If pi is disconnected after
some time, it either does not receive messages from connected
processes or connected processes do not receive messages
from it. If it does not receive messages from connected
processes, then after a 2wh-send event, it receives at most f
acknowledgements (from the disconnected ones) and therefore
waits forever in line 7 of the 2wh-algorithm in Figure 4. If the
connected processes do not receive messages from it and pi

2wh-sends a message, also at most f processes will receive the
ONE-message and answer with a TWO-message. Therefore,
process pi will block forever in line 7.

Lemma 12: The state of a process in H ′ does not change
after its disconnection. Proof: With the 3wh-algorithm,
we can ensure that a process does not receive messages from
connected processes (Lemma 4). With Lemma 11, no process
sends more than one message after its disconnection (and
this message is not sufficient for a 3wh). Therefore, this
send event is not visible to other processes and the internal
state of a disconnected process cannot be influenced after its
disconnection.

Lemma 13: H ′ and F ′ are compatible. Proof: We
show, that every connected process takes infinitely many
steps (Lemma 10), and that the state of a process after its
disconnection does not change anymore in H ′ (Lemma 12).

Lemma 14: All links in H ′ are reliable according to F ′.
Proof: We have to show the three properties of reliable links,
namely: No Creation (Lemma 15), No Duplication (Lemma
16), and No Loss (Lemma 17).

Lemma 15: No Creation in H ′. Proof: There is no
loss in H and the send events in the same layer never decrease.

Lemma 16: No Duplication in H ′. Proof: In the relay-
and the 3wh-handshake algorithm, there is no duplication
(Lemma 6). In the 2wh-algorithm, only one ONE message
with the correct id is sent for every 2wh-send.

Lemma 17: No Loss in H ′. Proof: We know from
Lemma 7, that there is no loss between connected processes
without the 2wh-algorithm. With Lemma 10, we know con-
nected processes take infinitely many steps and make therefore
infinitely many receive actions. It remains to show, that
disconnected processes stop sending and receiving messages
after their disconnection (Lemma 12).

1) Weakest Failure Detectors: A failure detector [1] is
a weakest failure detector for a problem specification Σ in
environment E , if it is necessary and sufficient. Sufficient
means, that there exists an algorithm using this failure detector
that satisfies Σ in E , whereas necessary means, that every
other sufficient failure detector is reducible to it. A failure
detector D is reducible to another failure detector D′, if
there exists a transformation algorithm TD→D′ , such that for

every tuple (H,F) ∈ H(TD→D′(Π), E), H is equivalent to a
failure detector history FDH in D′(F). We call the problem
specification that arises in emulating D′, Probl(D′). In the
following theorem, we show that trans preserves the weakest
failure detector property for non-uniform1 failure detectors.

Theorem 3: For all f with 1 ≤ f ≤ n: If a non-uniform
failure detector D is a weakest failure detector for Σ in
Ef

c.s. and Σ is closed under stuttering and augmentation, then
trans(D) is a weakest failure detector for trans(Σ) in Ef

p.o..
Proof: If D is a weakest failure detector for Σ in Ef

c.s.,
then trans(D) is sufficient for trans(Σ) in Ef

p.o. (Theorem 1).
It remains to show that trans(D) is also necessary.

Assume a failure detector D′ is sufficient for trans(Σ) in
Ef

p.o.. Clearly, Σ ⊆ trans(Σ) (since H ≤sa H for all H).
Therefore, D′ is sufficient for Σ in Ef

c.s., and moreover, D′ is
reducible to D in Ef

c.s. (since D is a weakest failure detector for
Σ in Ef

c.s.). This means that it is possible to emulate D using
D′ (i.e. a problem specification Probl(D) that is equivalent to
D). If the reduction algorithm is TD′→D, then trans(TD′→D)
using trans(D′) emulates trans(Probl(D)) in Ef

p.o. (Theorem
1) and since D is non-uniform, the transformation of the
problem specification, trans(Probl(D)) is equivalent to the
transformation of the failure detector trans(D) (trans does
not change the meaning of Probl(D) since only the states
of connected processes matter). Therefore, D′ is reducible to
trans(D) in Ef

p.o..
With Theorem 1, 2, and 3 we are able to show, the following:

Theorem 4: trans(Ω) is a weakest failure detector for uni-
form Consensusp.o. with a majority of correct processes.

Proof: Since we know, that Ω is a weakest failure
detector for non-uniform Consensus [1] and Ω is clearly non-
uniform, together with Theorem 3, trans(Ω) is a weakest
failure detector for non-uniform trans(Consensus). Since non-
uniform trans(Consensus) is strictly weaker than uniform
Consensusp.o., trans(Ω) is especially necessary for uniform
Consensusp.o.. To show that trans(Ω) is sufficient for uniform
Consensusp.o., we can simply use Theorem 2, since we know
that Ω is sufficient for uniform Consensus with a majority of
correct processes.

V. CONCLUSION

We have given transformations for algorithms, failure de-
tectors, and problem specifications, so crash-stop resilient
algorithms can be automatically enhanced to tolerate the
more severe general omission failures, highly applicable in
practical settings running security problems. Furthermore we
have shown that trans(Ω) is the weakest failure detector for
consensus in an environment with permanent omission failures
where less than half of the processes may crash. Additionally,
we have proven that our transformation preserves the weakest
failure detector property for all non-uniform failure detectors.

As an open problem, we think that it would be interesting
to replace the requirement of a correct majority in our second
transformation with a failure detector Σ [19] that will also be

1A non-uniform failure detector D outputs always the same set of histories
for two failure patterns F and F ′ in which correct(F) = correct(F ′) (i.e.
D(F) = D(F ′)).



9

sufficient. Apart from that, it may be possible to give more
specific transformations that are less general, but also less
communication expensive than our transformation.

REFERENCES

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure
detector for solving consensus,” in Proceedings of the 11th Annual
ACM Symposium on Principles of Distributed Computing (PODC’92),
M. Herlihy, Ed. Vancouver, BC, Canada: ACM Press, 1992, pp. 147–
158. [Online]. Available: citeseer.ist.psu.edu/chandra96weakest.html

[2] M. Fort, F. Freiling, L. D. Penso, Z. Benenson, and D. Kesdogan, “Trust-
edpals: Secure multiparty computation implemented with smartcards,”
in ESORICS ’06: 11th European Symposium On Research In Computer
Security. Hamburg, Germany: Springer-Verlag, 2006, pp. 34–48.

[3] F. Freiling, M. Herlihy, and L. D. Penso, “Optimal randomized omission-
tolerant uniform consensus in message passing systems,” in 9th Interna-
tional Conference on Principles of Distributed Systems (OPODIS), Dec.
2005.

[4] G. Avoine, F. C. Gärtner, R. Guerraoui, and M. Vukolic, “Gracefully
degrading fair exchange with security modules.” in The 5th European
Dependable Computing Conference (EDCC), 2005, pp. 55–71.

[5] V. Hadzilacos, “Issues of fault tolerance in concurrent computations
(databases, reliability, transactions, agreement protocols, distributed
computing),” Ph.D. dissertation, Harvard University, 1985.

[6] K. J. Perry and S. Toueg, “Distributed agreement in the presence of
processor and communication faults,” IEEE Trans. Softw. Eng., vol. 12,
no. 3, pp. 477–482, 1986.

[7] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982.

[8] S. Chaudhuri, “Agreement is harder than consensus: set consensus
problems in totally asynchronous systems,” in Proceedings of Principles
of Distributed Computing 1990, 1990.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[10] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267,
1996. [Online]. Available: citeseer.ist.psu.edu/chandra96unreliable.html

[11] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper, “Muteness fail-
ure detectors: Specification and implementation.” in EDCC, ser. Lecture
Notes in Computer Science, J. Hlavicka, E. Maehle, and A. Pataricza,
Eds., vol. 1667. Springer, 1999, pp. 71–87.

[12] A. Basu, B. Charron-Bost, and S. Toueg, “Simulating reliable links with
unreliable links in the presence of process crashes,” in Proceedings in
the 10th International Workshop on Distributed Algorithms (WDAG96),
1996, pp. 105–122.

[13] G. Neiger and S. Toueg, “Automatically increasing the fault-tolerance
of distributed algorithms,” Journal of Algorithms, vol. 11, no. 3, pp.
374–419, 1990.

[14] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and B. Pochon, “The
perfectly-synchronised round-based model of distributed computing (to
appear),” Information & Computation, 2007.

[15] R. A. Bazzi and G. Neiger, “Simulating crash failures with many
faulty processors (extended abstract),” in WDAG ’92: Proceedings of
the 6th International Workshop on Distributed Algorithms. London,
UK: Springer-Verlag, 1992, pp. 166–184.

[16] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi, “Brief announcement:
Failure detectors in omission failure environments,” in Symposium on
Principles of Distributed Computing, 1997, p. 286. [Online]. Available:
citeseer.ist.psu.edu/dolev96failure.html

[17] C. Delporte-Gallet, H. Fauconnier, and F. C. Freiling, “Revisiting failure
detection and consensus in omission failure environments.” in ICTAC,
2005, pp. 394–408.

[18] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms.” Distributed Computing, vol. 2,
no. 2, pp. 80–94, 1987.

[19] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos,
P. Kouznetsov, and S. Toueg, “The weakest failure detectors to solve
certain fundamental problems in distributed computing,” in PODC ’04:
Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing. New York, NY, USA: ACM Press, 2004, pp.
338–346.


