Carole Delporte-Gallet

Hugues Fauconnier

Felix C Freiling

Lucia Draque Penso

Andreas Tielmann

From Crash-Stop to Permanent Omission: Automatic Transformation and Weakest Failure Detectors

Keywords: Fault-Tolerance, Weakest Failure Detectors, Transformations, Asynchronous Systems, Crash-Stop, Permanent Omissions

.

I. INTRODUCTION

M ESSAGE omission failures, which have been intro- duced by Hadzilacos [START_REF] Hadzilacos | Issues of fault tolerance in concurrent computations (databases[END_REF] and been refined by Perry and Toueg [START_REF] Perry | Distributed agreement in the presence of processor and communication faults[END_REF], put the blame of a message loss to a specific process instead of an unreliable message channel. Beyond the theoretical interest, omission models are also interesting for practical problems like they arise from the security area: Assume that some kind of trusted smartcards are disposed on untrusted processors. If these smartcards execute trusted algorithms and are able to sign messages, then it is relatively easy to restrict the power of a malicious adversary to only be able to drop messages of the trusted smartcards or to stop the smartcards themselves. Following this approach, omission models have lead to the development of reductions from security problems in the Byzantine failure model [START_REF] Lamport | The byzantine generals problem[END_REF] such as fair-exchange [START_REF] Freiling | Optimal randomized omissiontolerant uniform consensus in message passing systems[END_REF][START_REF] Avoine | Gracefully degrading fair exchange with security modules[END_REF], and secure multiparty computation [START_REF] Fort | Trustedpals: Secure multiparty computation implemented with smartcards[END_REF] to well-known distributed problems in the general omission model, such as consensus [START_REF] Chaudhuri | Agreement is harder than consensus: set consensus problems in totally asynchronous systems[END_REF], where both process crashes and message omissions may take place. Apart from that, Work was supported by grants from Région Ile-de-France.

omission failures can model overflows of local message buffers in typical communication environments.

The message omission and crash failures are considered here in asynchronous systems. Due to classical impossibility results concerning problems as consensus [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF] in asynchronous systems, following the failure detector approach [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF], we augment the system with oracles that give information about failures.

The extension of failure detectors to more severe failure models than crash failures is unclear [START_REF] Doudou | Muteness failure detectors: Specification and implementation[END_REF], because in these models failures may depend on the scheduling and on the algorithm. As it is easy to transform the general omission model into a model with only permanent omissions using standard techniques like the piggybacking of messages, we consider only permanent omissions and crashes. This means that if an omission failure occurs, then it occurs permanently. In this model, precise and simple definitions for failure detectors can easily be deduced from the ones in the crash-stop model.

To provide the permanent omission model with the benefits of a well-understood system model like the crash-stop model, we give automatic transformations for problem specifications, failure detectors, and algorithms such that algorithms designed to tolerate only crash-stop failures can be executed in permanent omission environments and use transformed failure detectors to solve transformed problems. Specifically, we give two transformations. At first, one that works in every environment, but that transforms uniform problems into problems with only limited uniformity, and at second one that works only with a majority of correct processes, but transforms uniform crash-stop problems into their uniform permanent omission counterpart. An interesting point is the fact that the transformation of the specification gives for most of the classical problems the standard specification in the message omission and crash failure model. For example, from an algorithmic solution A of the consensus problem with a failure detector D in the crash-stop model, we automatically get A = trans(A), an algorithmic solution of the consensus problem using D = trans(D) in the message omission and crash failure model. Moreover, our first transformation preserves also the "weaker than" relation [START_REF] Chandra | The weakest failure detector for solving consensus[END_REF] between failure detectors. This means that if a failure detector is a weakest failure detector for a certain (crash-stop) problem, then its transformation is a weakest failure detector for the transformed problem. We can use this to show that our transformation of failure detector Ω [START_REF] Chandra | The weakest failure detector for solving consensus[END_REF] is the weakest failure detector for (uniform) consensus in an environment with permanent omission failures and a majority of correct processes.

The problem of automatically increasing the fault-tolerance of algorithms in environments with crash-stop failures has been extensively studied before [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF][START_REF] Neiger | Automatically increasing the fault-tolerance of distributed algorithms[END_REF][START_REF] Delporte-Gallet | The perfectly-synchronised round-based model of distributed computing (to appear)[END_REF][START_REF] Bazzi | Simulating crash failures with many faulty processors (extended abstract)[END_REF]. The results of Neiger and Toueg [START_REF] Neiger | Automatically increasing the fault-tolerance of distributed algorithms[END_REF], Delporte-Gallet et al. [START_REF] Delporte-Gallet | The perfectly-synchronised round-based model of distributed computing (to appear)[END_REF], and Bazzi and Neiger [START_REF] Bazzi | Simulating crash failures with many faulty processors (extended abstract)[END_REF] assume in contrast to ours synchronous systems and no failure detectors. Neiger and Toueg [START_REF] Neiger | Automatically increasing the fault-tolerance of distributed algorithms[END_REF] propose several transformations from crash-stop to send omission, to general omission, and to Byzantine faults. Delporte-Gallet et al. [START_REF] Delporte-Gallet | The perfectly-synchronised round-based model of distributed computing (to appear)[END_REF] transform round-based algorithms with broadcast primitives into crash-stop-, general omission-, and Byzantinetolerant algorithms. Asynchronous systems are considered by Basu, Charron-Bost, and Toueg [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF] but in the context of link failures instead of omission failures and also without failure detectors. The types of link failures that are considered by Basu, Charron-Bost, and Toueg [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF] are eventually reliable and fair-lossy links. Eventually reliable links can lose a finite (but unbounded) number of messages and fair-lossy links satisfy that if infinitely many messages are sent over it, then infinitely many messages do not get lost. To show our results, we extend the system model of Basu, Charron-Bost, and Toueg [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF] such that we can model omission failures, failure patterns, and failure detectors. Another definition for a system model with crash-recovery failures, omission failures, and failure detectors is given by Dolev et al. [START_REF] Dolev | Brief announcement: Failure detectors in omission failure environments[END_REF]. In this model, the existence of a fully connected component of processes that is completely detached from all other processes is assumed and only the processes in this component are declared to be correct.

The omission failure detector defined by Delporte-Gallet et al. [START_REF] Delporte-Gallet | Revisiting failure detection and consensus in omission failure environments[END_REF] that can be implemented in partially synchronous models using some weak timing assumptions, is in comparison with our transformed Ω strictly stronger. However, with a correct majority, both failure detectors can easily be transformed into each other.

To the best of our knowledge, this is the first paper that investigates an automatic transformation to increase the fault tolerance of distributed algorithms in asynchronous systems augmented with failure detectors.

We organize this paper as follows. In Section II, we define our formal system model, in Section III, we define our general problem and algorithm transformations, in Section IV we state and prove our theorems, and finally, in Section V, we summarize and discuss our results.

II. MODEL

The asynchronous distributed system is assumed to consist of n distinct fully-connected processes Π = {p 1 , . . . , p n }. The asynchrony of the system means, that there are no bounds on the relative process speeds and message transmission delays. To allow an easier reasoning, a discrete global clock T is added to the system. The system model used here is derived from that of Basu, Charron-Bost, and Toueg [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF]. It has been adapted to model also failure detectors and permanent omission failures.

1) Algorithms: An algorithm A is defined as a vector of local algorithm modules (or simply modules) A(Π) = A(p 1), . . . , A(p n) . Each local algorithm module A(p i) is associated with a process p i ∈ Π and defined as a deterministic infinite state automaton. The local algorithm modules can exchange messages via send and receive primitives. We assume all messages to be unique.

2) Failures and Failure Patterns: A failure pattern F is a function that maps each value t from T to an output value that specifies which failures have occurred up to time t during an execution of a distributed system. Such a failure pattern is totally independent of any algorithm. A crash-failure pattern

C : T → 2 Π
denotes the set of processes that have crashed up to time t (∀t : C(t) ⊆ C(t + 1)).

Additionally to the crash of a process, it can fail by not sending or not receiving a message. We say that it omits a message. The message omissions do not occur because of link failures, they model overflows of local message buffers or the behavior of a malicious adversary with control over the message flow of certain processes. It is important that for every omission, there is a process responsible for it. As we already mentioned, we consider only permanent omissions and leave the treatment of transient omissions over to the underlying asynchronous communication layer. Intuitively, a process has a permanent send omission if it always fails by not sending messages to a certain other process after a certain point in time. Analogously, a process has a permanent receive omission if it always fails by not receiving messages from a certain other process after a certain point in time. The permanent omissions are modeled via a send-and a receive-omission failure pattern:

O S : T → 2 Π×Π and O R : T → 2 Π×Π If (p s , p d) ∈ O S (t), then process p s has a permanent send- omission to process p d after time t. If (p s , p d) ∈ O R (t)
, then process p d has a permanent receive-omission to process p s after time t. All the failure patterns defined so far can be put together to a single failure pattern

F = (C, O S , O R).
With such a failure pattern, we define a process to be correct, if it experiences no failure at all. We assume that at least one process is correct.

A process p is crash-correct (p ∈ cr.-correct(F)) in F, if it does not crash. A process p d is directly-reachable from another process p s in F, if for all t ∈ T , (p s , p d) ∈ O S (t) and (p s , p d) ∈ O R (t).
A process p d is called reachable from a process p s , if p d is directly-reachable from p s , or if there exists a process q, such that p d is reachable from q and q is reachable from p s (transitive closure). If a process is reachable from some correct processes, then it is in-connected. Analogously, a process is out-connected, if some correct processes are reachable from it. If a process p is in-connected and out-connected in a failure pattern F, then we say that p is connected in F (p ∈ connected(F)). This means that between connected processes there is always reliable communication possible. With a simple relaying algorithm, every message can eventually be delivered. Note that it is nevertheless still possible that connected processes receive messages from disconnected processes or disconnected processes receive messages from connected ones. The difference between connected and disconnected processes is that the former are able to send and to receive messages to/from correct processes and therefore are able to communicate in both directions. It is easy to see that crash-correct(F) ⊇ connected(F) ⊇ correct(F).

We say that a failure pattern F is an omission equivalent extension of another failure pattern F (F ≤ om F), if the set of crash-correct processes in F is at all times equal to the set of connected processes in F and there are no omission failures in F.

We define an environment E to be a set of possible failure patterns. E f c.s. denotes the set of all failure patterns where only crash-stop faults occur and at most f processes crash.

E f p.o.
denotes the set of all failure patterns where crash-stop and permanent omission faults may occur and at most f processes are not connected (clearly, E f c.s. ⊆ E f p.o.). 3) Failure Detectors: A failure detector provides (possibly incorrect) information about a failure pattern [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF]. Associated with each failure detector is a (possibly infinite) range R of values output by that failure detector. A failure detector history FDH with range R is a function from Π × T to R. FDH(p, t) is the value of the failure detector module of process p at time t. A failure detector D is a function that maps a failure pattern F to a set of failure detector histories with range R. D(F) denotes the set of possible failure detector histories permitted by D for the failure pattern F. Note that a failure detector D is specified as a function of the failure pattern F of an execution. However, an implementation of D may use other aspects of the execution such as when messages are arrived and executions with the same failure pattern F may still have different failure detector histories. It is for this reason that we allow D(F) to be a set of failure detector histories from which the actual failure detector history for a particular execution is selected non-deterministically.

Take failure detector Ω [1] as an example. The output of the failure detector module of Ω at a process p i is a single process, p j , that p i currently considers to be crash-correct. In this case, the range of output values is R Ω = Π. For each failure pattern F, Ω(F) is the set of all failure detector histories FDH Ω with range R Ω that satisfy the following property: There is a time after which all the crash-correct processes always trust the same crash-correct process:

∃t ∈ T , ∃p j ∈ cr.-correct(F), ∀p i ∈ cr.-correct(F), ∀t ≥ t : FDH Ω (p, t) = p j
The output of failure detector module Ω at a process p i may change with time, i.e. p i may trust different processes at different times. Furthermore, at any given time t, processes p i and p j may trust different processes.

A local algorithm module A(p i) can access the current output value of its local failure detector module using the action queryFD. 4) Histories: A local history of a local algorithm module A(p i), denoted H[i], is a finite or an infinite sequence of alternating states and events of type send, receive, queryFD, or internal. We assume that there is a function time that assigns every event to a certain point in time and define H[i]/ t to be the maximal prefix of H[i] where all events have occurred before time t. A history H of A(Π) is a vector of local histories H [START_REF] Chandra | The weakest failure detector for solving consensus[END_REF], H [START_REF] Fort | Trustedpals: Secure multiparty computation implemented with smartcards[END_REF], . . . , H[n] .

5) Reliable Links: A reliable link does not create, duplicate, or lose messages. Specifically, if there is no permanent omission between two processes and the recipient executes infinitely many receive actions, then it will eventually receive every message. We specify, that our underlying communication channels ensure reliable links.

6) Problem Specifications: Let Π be a set of processes and A be an algorithm. We define H(A(Π), E) to be the set of all tuples (H, F) such that H is a history of A(Π), F ∈ E, and H and F are compatible, that is crashed processes do not take any steps after the time of their crash, there are no receiveevents after a permanent omission, etc. A system S(A(Π), E) of A(Π) is a subset of H(A(Π), E). A problem specification Σ is a set of tuples of histories and failure patterns, because (permanent) omission failures are not necessarily reflected in a history (e.g., if a process sends no messages). A system S satisfies a problem specification Σ, if S ⊆ Σ. We say that an algorithm A satisfies a problem specification Σ in environment E, if H(A(Π), E) ⊆ Σ. Take consensus as an example (see Table I): It is specified by making statements about some variables propose and decide in the states of a history (e.g. the value of decide has eventually to be equal at all (crash-)correct processes). This can be expressed as the set of all tuples (H, F) where there exists a time t and a value v, such that for all p i ∈ cr.-correct(F), there exists an event e in H[i] with time(e) ≤ t and for all states s after event e, the value of the variable decide in s is v.

III. FROM CRASH-STOP TO PERMANENT OMISSION

We will give here two transformations: one general transformation for all environments, where we provide only restricted guarantees for disconnected processes, and one for environments where less than half of the processes may not be connected, where we are able to provide for all processes the same guarantees as for the crash-stop case.

To improve the fault-tolerance of algorithms, we simulate a single state of the original algorithm with several states of the simulation algorithm. For these additional states, we augment the original states with additional variables. Since an event of the simulation algorithm may lead to a state where only the augmentation variables change, the sequence of the original variables may stutter. We call a local history H [i] a stuttered and augmented extension of a history

H[i] (H[i] ≤ sa H [i]), if H[i]
and H [i] differ only in the value of the augmentation variables and some additional states caused by differences in these variables (in particular,

H[i] ≤ sa H[i] for all H[i]). If H[i] ≤ sa H [i]
for all p i ∈ Π, we write H ≤ sa H . We say that a problem specification Σ is closed under stuttering and augmentation, if (H, F) ∈ Σ and H ≤ sa H implies that (H , F) is also in Σ. Most problems satisfy this natural closure property (e.g. consensus).

A. The General Transformation 1) Transformation of Problem Specifications: To transform a problem specification, we first show a transformation of a tuple of a trace and a failure pattern. Based on this transformation, we transform a whole problem specification. The intuition behind this transformation is that we demand only something from processes as long as they are connected. After their disconnection, processes may behave arbitrary. More formally, let t c.s. (i) be the time at which process p i crashes in F (t c.s. (i) = ∞, if p i never crashes). Analogously, let t p.o. (i) be the time at which process p i becomes disconnected in F (t p.o. (i) = ∞, if p i never becomes disconnected). Then:

(H , F) ∈ trans((H, F)) :⇔ ∀p i ∈ Π : H[i]/ tc.s.(i) ≤ sa H [i]/ t p.o. (i)
and for a whole problem specification:

trans(Σ) := {(H , F) | (H , F) ∈ trans((H, F)) ∧ (H, F) ∈ Σ}
A transformation of non-uniform consensus, where properties of certain propose-and decision-variables of (crash-)correct processes are specified would lead to a specification where the same properties are ensured for the states of connected processes, because only histories with the same states (disregarding the augmentation variables) are allowed in the transformation at this processes (see Table I). We also take the states of processes before they become disconnected into account, because they (e.g. their initial states for the propose variables) may also have an influence on the fulfillment of a problem specification, although they are after their disconnection not allowed to have this influence anymore. Since we impose no restriction on the behavior of processes after their disconnection, the transformed problem specification allows them to decide a value that was never proposed (although our transformation algorithms guarantee that this will not happen). A transformation of uniform consensus leads to a problem specification where the uniform agreement is only demanded for processes before their time of disconnection. This means that it is allowed that after a partitioning of the network, the processes in the different network partitions come to different decision values. Another transformation, in which uniform consensus remains truly uniform is given in Section III-B.

2) Transformation of Failure Detector Specifications: We allow all failure detector histories for a failure pattern F in trans(D) that are allowed in the crash-stop version F of F in D:

trans(D)(F) := F {D(F) | F ≤ om F}
Consider failure detector Ω [START_REF] Chandra | The weakest failure detector for solving consensus[END_REF]. Ω outputs only failure detector histories that eventually provide the same crash-correct leader at all crash-correct processes. Then, trans(Ω) outputs these failure detector histories if and only if they provide a connected common leader at all connected processes. 3) Transformation of Algorithms: In our algorithm transformation, we add new communication layers such that some of the omission failures in the system become transparent to the algorithm (see Figure 1). We transform a given algorithm A into another algorithm A = trans(A) in two steps:

• In the first step, we remove the send and receive actions from A and simulate them with a three-way-handshake (3wh) algorithm. The algorithm is described in Figure 2. The idea of the 3wh-algorithm is to substitute every send-action with an exchange of three messages. This means that to send a message to a certain process, it is necessary for a process to be able to send and to receive messages from it. Moreover, while the communication between connected processes is still possible, processes that are only in-connected or only out-connected (and not both) become totally disconnected. Hence, we eliminate influences of disconnected processes not existing in the crash-stop case. • Then, in the second step, we remove the send and receive actions from the three way handshake algorithm and simulate them with a relaying algorithm. The idea of the relay algorithm is to relay every message to all other processes, such that they relay it again and all connected processes can communicate with each other, despite the fact that they are not directly-reachable. It is similar to other algorithms in the literature [START_REF] Srikanth | Simulating authenticated broadcasts to derive simple fault-tolerant algorithms[END_REF]. Its detailed description can be found in Figure 3. To execute the simulation algorithms in parallel with the actions from A, we add some new (augmentation) variables to the set of variables in the states of A. Whenever a step of the simulation algorithms is executed, the state of the original variables in A remains untouched and only the new variables change their values. Whenever a process queries a local failure detector module D(p i), we translate it to a query on trans(D)(p i). The relaying layer overlays the network with the best possible communication graph and the 3wh-layer on top of it cuts the unidirectional edges from this graph. for l := 1 to n do 16:

send([m , p k], p l); 17:

relayed i := relayed i ∪ {[m , p k]}; m := ⊥;

B. The Transformation for n > 2f

If only less than a majority of the processes are disconnected (n > 2f), then we only need to adapt the problem specification to the failure patterns of the new environment. We indicate this adaptation of a problem specification with the index p.o. and specify it in the following way:

Σ p.o. := {(H, F) | ∃(H, F) ∈ Σ ∧ F ≤ om F}
If we adapt consensus to omission failures, then we get Consensus p.o. as in Table I. The failure detector specifications can be transformed as in Section III-A. The algorithm transformation trans 2 works similar as in the previous section, but we add an additional two-way-handshake (2wh) layer between the relaying layer and the 3wh layer. The algorithm is described in Figure 4 and is similar to an algorithm in the literature [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF]. The idea of the algorithm is to broadcast every message to all other processes and to block until f + 1 processes have acknowledged the message. In this way, disconnected processes block forever (since they receive less than f + 1 acknowledgements) and connected processes can continue. Thus, we emulate a crash-stop environment.

Algorithm 2wh 1: procedure init 2:

received i := ∅; Ack i := 0; 3: 4: procedure 2wh-send(m, p j) 5:

relay-send([m, p j , ONE], p k) to all other p k ; 6:

Ack i := 1; 7:

while

(Ack i ≤ f) do 8:
relay-receive([m , p k , num])); 9:

if (num = TWO) and (m = m) 10:

and (k = j) then inc(Ack i); IV. RESULTS In our first theorem, we show that for any algorithm A, for any failure detector D, and for any problem specification Σ, trans(A) using trans(D) solves trans(Σ) in a permanent omission environment if and only if A using D solves Σ in a crash-stop environment. This theorem does not only show that our transformation works, it furthermore ensures that we do not transform to a trivial problem specification, but to an equivalent one, since we prove both directions.

Theorem 1: Let Σ be a problem specification closed under stuttering and augmentation. Then, if A is an algorithm using a failure detector D and A = trans(A) is the transformation of A using trans(D), it holds that:

∀f with 0 ≤ f ≤ n : (H(A(Π), E f c.s.) ⊆ Σ ⇔ (H(A (Π), E f p.o.) ⊆
From the definition of connected follows:

∃c ∈ correct(F), t nr(F ,c,pj) ≥ t j > t r > t s (4) ∃c ∈ correct(F), t nr(F ,pj ,c) ≥ t j > t r > t s [START_REF] Hadzilacos | Issues of fault tolerance in concurrent computations (databases[END_REF] If we put all paths together, we have: with (2) & (4) : ∃c ∈ correct(F), t nr(F ,c,pi) > t s [START_REF] Perry | Distributed agreement in the presence of processor and communication faults[END_REF] with (3) & (5) : ∃c ∈ correct(F), t nr(F ,pi,c) > t s [START_REF] Lamport | The byzantine generals problem[END_REF] Equations (6) and (7) imply t i > t s .

Lemma 5: (No Creation in H .) For all messages m, if p j receives m from p i in H , then p i sends m to p j in H . Proof: We know, that there is no creation in H. In our construction, send events of the same layer can only decrease in the local history of crashed processes in step (c) (after the time of their crash). But since Lemma 4 shows that messages that are sent from a process that is already disconnected in F (and therefore crashed in F) can only be received by processes that are already disconnected too, the corresponding receive events also get lost in H .

Lemma 6: (No Duplication in H .) For all messages m: p j receives m from p i at most once.

Proof: In the 3whalgorithm, no message is delivered more than once and in the relay-algorithm, every message received is remembered in a variable delivered i (lines 12-13 in Figure 3).

Lemma 7: (No Loss in H according to F .) For all messages m, if p i sends m to p j and p j executes receive actions infinitely often, then p j receives m from p i .

Proof: In the removed relaying algorithm, after every relay-send event, the message m is relayed by A(p i) to all other processes (lines 5-6 in Figure 3). If a connected process (in F) receives such a relayed message, it checks in lines 12-13 whether it is the recipient and has not yet delivered it (and relay-delivers m in this case). Otherwise, it propagates m further to all other processes (lines [START_REF] Delporte-Gallet | The perfectly-synchronised round-based model of distributed computing (to appear)[END_REF][START_REF] Bazzi | Simulating crash failures with many faulty processors (extended abstract)[END_REF][START_REF] Dolev | Brief announcement: Failure detectors in omission failure environments[END_REF].

Since p i is at the time of the in step (a) in H 1 inserted sendevent out-connected in F (otherwise, p i would have already crashed in F), there is a path of directly-reachable connected processes to a (totally) correct process in F. A correct process will receive m and relay it (possibly indirectly) to A(p j), since p j is in-connected in F (because it takes infinitely many steps in (H , F)).

Proposition 2: S c.s. ⊆ Σ Proof: Assume (H, F) ∈ S c.s. . We then build a new history H from H and simulate all links according to the specification of the three-way-handshake and the relay algorithm such that (H , F) ∈ trans((H, F)) and

(H , F) ∈ S p.o. ⊆ trans(Σ) (F ∈ E f c.s. implies that F ∈ E f p.o
). This means, that there exists a (H , F) ∈ Σ, with (H , F) ∈ trans((H , F)).

Since in both, F and F occur only crash failures, F = F and therefore for all p i , H

[i] ≤ sa H [i].
Together with the fact that Σ is closed under stuttering and augmentation, we can conclude that (H , F) ∈ Σ. H and H differ only in the augmentation variables that are not relevant for the fulfillment of trans(Σ), therefore: (H, F) ∈ Σ.

Our second theorem shows, that with a majority of connected processes (n > 2f), trans 2 can be used to solve the adaptation of a problem to the general omission model.

∀(H, F) ∈ S p.o. , ∃(H , F) ∈ S c.s. : (H ≤ sa H) ∧ (F ≤ om F) (8)
To show this, we construct (H , F) ∈ S c.s. for a given (H, F) ∈ S p.o. in the following way: We first remove the variables, events, and states of the relay-algorithm, then remove the same for the 2wh-algorithm, and then remove the 3wh-algorithm to get H . F is a failure pattern, such that F ≤ om F. We need to show, that (H , F) fulfills the properties of equation

(D)(F) = D(F) (Since F ≤ om F).
every tuple (H, F) ∈ H(T D→D (Π), E), H is equivalent to a failure detector history FDH in D (F). We call the problem specification that arises in emulating D , Probl(D). In the following theorem, we show that trans preserves the weakest failure detector property for non-uniform1 failure detectors. Proof: Since we know, that Ω is a weakest failure detector for non-uniform Consensus [START_REF] Chandra | The weakest failure detector for solving consensus[END_REF] and Ω is clearly nonuniform, together with Theorem 3, trans(Ω) is a weakest failure detector for non-uniform trans(Consensus). Since nonuniform trans(Consensus) is strictly weaker than uniform Consensus p.o. , trans(Ω) is especially necessary for uniform Consensus p.o. . To show that trans(Ω) is sufficient for uniform Consensus p.o. , we can simply use Theorem 2, since we know that Ω is sufficient for uniform Consensus with a majority of correct processes.

V. CONCLUSION

We have given transformations for algorithms, failure detectors, and problem specifications, so crash-stop resilient algorithms can be automatically enhanced to tolerate the more severe general omission failures, highly applicable in practical settings running security problems. Furthermore we have shown that trans(Ω) is the weakest failure detector for consensus in an environment with permanent omission failures where less than half of the processes may crash. Additionally, we have proven that our transformation preserves the weakest failure detector property for all non-uniform failure detectors.

As an open problem, we think that it would be interesting to replace the requirement of a correct majority in our second transformation with a failure detector Σ [START_REF] Delporte-Gallet | The weakest failure detectors to solve certain fundamental problems in distributed computing[END_REF] that will also be sufficient. Apart from that, it may be possible to give more specific transformations that are less general, but also less communication expensive than our transformation.

Fig. 1 .

 1 Fig. 1. Additional Communication Layers

Algorithm 3wh 1 : 4 :Fig. 2 . 4 :

 1424 Fig.2. The Three Way Handshake Algorithm for Process p i .

Fig. 3 .

 3 Fig. 3. The Relaying Algorithm for Process p i .

Fig. 4 .

 4 Fig. 4. The Two Way Handshake Algorithm for Process p i .

Theorem 2 :

 2 If A is an algorithm using a failure detector D and A = trans 2 (A) is the transformation of A using trans 2 (D) and Σ is closed under stuttering and augmentation, then it holds that: ∀f with f < n/2 : (H(A(Π), E f c.s.) ⊆ Σ ⇒ (H(A (Π), E f p.o.) ⊆ Σ p.o. Proof: Let S c.s. := (H(A(Π), E f c.s.) and S p.o. := (H(A (Π), E f p.o.) and assume that A = trans(A). It is sufficient to show, that

Theorem 3 :

 3 For all f with 1 ≤ f ≤ n: If a non-uniform failure detector D is a weakest failure detector for Σ in E f c.s. and Σ is closed under stuttering and augmentation, then trans(D) is a weakest failure detector for trans(Σ) in E f p.o. . Proof: If D is a weakest failure detector for Σ in E f c.s. , then trans(D) is sufficient for trans(Σ) in E f p.o. (Theorem 1). It remains to show that trans(D) is also necessary. Assume a failure detector D is sufficient for trans(Σ) in E f p.o. . Clearly, Σ ⊆ trans(Σ) (since H ≤ sa H for all H). Therefore, D is sufficient for Σ in E f c.s. , and moreover, D is reducible to D in E f c.s. (since D is a weakest failure detector for Σ in E f c.s.). This means that it is possible to emulate D using D (i.e. a problem specification Probl(D) that is equivalent to D). If the reduction algorithm is T D →D , then trans(T D →D) using trans(D) emulates trans(Probl(D)) in E f p.o. (Theorem 1) and since D is non-uniform, the transformation of the problem specification, trans(P robl(D)) is equivalent to the transformation of the failure detector trans(D) (trans does not change the meaning of Probl(D) since only the states of connected processes matter). Therefore, D is reducible to trans(D) in E f p.o. . With Theorem 1, 2, and 3 we are able to show, the following: Theorem 4: trans(Ω) is a weakest failure detector for uniform Consensus p.o. with a majority of correct processes.

 [START_REF] Chaudhuri | Agreement is harder than consensus: set consensus problems in totally asynchronous systems[END_REF]. From the construction it is clear, that H ≤ sa H and F ≤ om F. It remains to show, that (H , F) ∈ S c.s. . This means, that at most f processes crash in F (Lemma 8), H is a history of A(Π) using D (Lemma 9), all links are reliable in (H , F) (Lemma 14), and H and F are compatible (Lemma 13). All events and states are from A(Π), because all additional events and states have been removed. If algorithm A makes use of a failure detector D, then trans

Lemma 8

: At most t processes crash in F . Proof: Follows immediately from F ≤ om F.

Lemma 9: H is a history of A(Π) using D.

Proof:

A non-uniform failure detector D outputs always the same set of histories for two failure patterns F and F in which correct(F) = correct(F) (i.e. D(F) = D(F)).

From the definition of trans follows:

We will in the following construct a new history H and a failure pattern F from H and F which satisfy equation (1):

(a) At first, we undo step 2 of the transformation and remove the variables, additional states, and events of the relaying algorithm from H. This means, that every time a relaysend or relay-receive event in H occurs, this event is substituted by an send/receive event of the underlying communication channel. We let the inserted events take place at the time when the relay events have been completed (since a process may take several steps to accomplish the relaying task). We call the intermediate history we get after this H 1 . (b) Then, we undo step 1 and remove the variables, additional states, and events of the three way handshake algorithm from H 1 (in the same way as above). We call this intermediate history H 2 .

(c) After that, we construct F , such that F ≤ om F. To build H from H 2 , we substitute every query on a failure detector trans(D) in H 2 with a query on D in H and remove all states and events for every process p i that occur after the time when p i crashes in F .

The schedule of the construction is illustrated in Figure 5.

From the construction of H and F it is clear, that ∀p i ∈ Π :

. This means, that at most f processes crash in F (Lemma 1), H is a history of A(Π) using D (Lemma 2), and all links in H are reliable according to F (Lemma 3).

Lemma 1: At most f processes crash in F . Proof: Follows immediately from (c).

Lemma 2: H is a history of A(Π) using D.

Proof: All events and states are from A(Π), because all additional events and states have been removed. If algorithm A makes use of a failure detector D, then trans(D)(F) = D(F) (Since F ≤ om F).

Lemma 3: All links in H are reliable according to F . Proof: We have to show the three properties of reliable links, namely: No Creation (Lemma 5), No Duplication (Lemma 6), and No Loss (Lemma 7).

To prove lemma 5, we first need to show the auxiliary lemma 4:

Lemma 4: Let t s be the time a send event from A(p i) to A(p j) in H 2 occurs, t r be the time of the corresponding receive event in H 2 , t j be the time when p j becomes disconnected in F, and t i be the time when p i become disconnected in F. Then:

Proof: In the following, when we write t nr(F ,p,q) , we mean the point in time when process p is not longer reachable from process q in F (for any p, q, and F).

The above lemma is equivalent to: t r < t j implies t s < t i . At first, we observe that t s < t r . Assume t r < t j . Since A(p j) receives the message, we can conclude:

Lemma 10: Connected processes take infinitely many steps. Proof: The only possibility for a process to block is in line 7 of the 2wh-algorithm in Figure 4. Since n > 2f , even after the disconnection of all f possibly faulty processes, every connected process receives acknowledgements from n-f > f connected processes and therefore never blocks in line 7.

Lemma 11: Every process 2wh-sends at most one message after its disconnection.

Proof: If p i is disconnected after some time, it either does not receive messages from connected processes or connected processes do not receive messages from it. If it does not receive messages from connected processes, then after a 2wh-send event, it receives at most f acknowledgements (from the disconnected ones) and therefore waits forever in line 7 of the 2wh-algorithm in Figure 4. If the connected processes do not receive messages from it and p i 2wh-sends a message, also at most f processes will receive the ONE-message and answer with a TWO-message. Therefore, process p i will block forever in line 7.

Lemma 12: The state of a process in H does not change after its disconnection.

Proof: With the 3wh-algorithm, we can ensure that a process does not receive messages from connected processes (Lemma 4). With Lemma 11, no process sends more than one message after its disconnection (and this message is not sufficient for a 3wh). Therefore, this send event is not visible to other processes and the internal state of a disconnected process cannot be influenced after its disconnection.

Lemma 13: H and F are compatible. Proof: We show, that every connected process takes infinitely many steps (Lemma 10), and that the state of a process after its disconnection does not change anymore in H (Lemma 12). Lemma 15: No Creation in H . Proof: There is no loss in H and the send events in the same layer never decrease.

Lemma 16: No Duplication in H .

Proof: In the relayand the 3wh-handshake algorithm, there is no duplication (Lemma 6). In the 2wh-algorithm, only one ONE message with the correct id is sent for every 2wh-send.

Lemma 17: No Loss in H . Proof: We know from Lemma 7, that there is no loss between connected processes without the 2wh-algorithm. With Lemma 10, we know connected processes take infinitely many steps and make therefore infinitely many receive actions. It remains to show, that disconnected processes stop sending and receiving messages after their disconnection (Lemma 12).

1) Weakest Failure Detectors: A failure detector [START_REF] Chandra | The weakest failure detector for solving consensus[END_REF] is a weakest failure detector for a problem specification Σ in environment E, if it is necessary and sufficient. Sufficient means, that there exists an algorithm using this failure detector that satisfies Σ in E, whereas necessary means, that every other sufficient failure detector is reducible to it. A failure detector D is reducible to another failure detector D , if there exists a transformation algorithm T D→D , such that for