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Universal Vertex-IRF Transformation for Quantum Affine Algebras

We construct a universal Vertex-IRF transformation between Vertex type universal solution and Face type universal solution of the quantum dynamical Yang-Baxter equation. This universal Vertex-IRF transformation satisfies the generalized coBoundary equation and is an extension of our previous work to the quantum affine Uq(A (1) r ) case. This solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that the evaluation of this universal solution in the evaluation representation of Uq(A (1) 1 ) gives the standard Baxter's transformation between the 8-Vertex model and the IRF height model.

Introduction

A fundamental result in the study of solutions of the Quantum Yang-Baxter Equation (QYBE) is the work of Belavin-Drinfeld [START_REF] Belavin | Triangle equations and Simple Lie algebras[END_REF]. This fundamental theorem classifies the solutions of the Classical Yang-Baxter Equation (CYBE) with and without spectral parameter. Among these solutions one can single out the elliptic solution associated to A r , which admits an elliptic parametrization in term of the spectral parameter.

An important problem is to construct universal solutions of the QYBE associated to these classical solutions, such that the matricial solutions are just obtained by evaluation of the universal solution under a representation. The (r + 1) × (r + 1) elliptic matricial solutions is known as the Baxter-Belavin solution [START_REF] Baxter | Exactly Solved Models in Statistical Physics[END_REF][START_REF] Belavin | Dynamical symmetries of integrable quantum systems[END_REF]. It took 15 years of work from the Belavin-Drinfeld result to obtain an explicit construction of universal solutions. In order to do so, one has to enlarge the picture to also include solutions of the Quantum Dynamical Yang-Baxter Equation (QDYBE).

The basis of this previous subject was settled in the work of G. Felder [START_REF] Felder | Elliptic Quantum groups[END_REF]. There, it was recognized that the known matricial solutions of Interaction-Round-Faces (IRF) statistical models were matricial solutions of the QDYBE. Among these models, the archetypal ones were defined by Baxter [START_REF] Baxter | Eight-Vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice[END_REF] and Jimbo, Miwa, Okado [START_REF] Jimbo | Solvable lattice models related to the vector representation of classical simple Lie algebras[END_REF]. These models also have an elliptic parametrization.

The analog of the work of Belavin-Drinfeld in the dynamical case was accomplished by Etingof-Varchenko [START_REF] Etingof | Geometry and classification of solutions of the Classical Dynamical Yang-Baxter Equation[END_REF] and O. Schiffmann [START_REF] Schiffmann | On classification of dynamical r-matrices[END_REF], who classified the solutions of the Classical Dynamical Yang-Baxter Equation (CDYBE). The construction of the universal solutions associated to some of these solutions were done in [START_REF] Babelon | Universal Exchange Algebra for Bloch Waves and Liouville Theory[END_REF], [START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF], [START_REF] Arnaudon | Universal Solutions of Quantum Dynamical Yang-Baxter Equations[END_REF], [START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF]: [START_REF] Babelon | Universal Exchange Algebra for Bloch Waves and Liouville Theory[END_REF] contains the first construction of the universal solution of the QDYBE in the sl(2) case; [START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF] contains the construction, in the affine case, of universal solutions of the QDYBE associated to the elliptic IRF models and the Belavin-Baxter solutions; [START_REF] Arnaudon | Universal Solutions of Quantum Dynamical Yang-Baxter Equations[END_REF] introduces a linear equation as a tool for solving the QDYBE; [START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF] obtains a quantization of all solutions of the CDYBE of [START_REF] Schiffmann | On classification of dynamical r-matrices[END_REF] using a modified linear equation. This last work solves in particular the problem of finding explicit universal solutions of the QYBE associated to the classical solutions of the Belavin-Drinfeld theorem without spectral parameter.

A question which is finally little understood is the study of the QDYBE up to all allowed dynamical gauge transformations. For example, if R(x) is a solution of the QDYBE with dynamics h and is h-invariant, R(x) = M 1 (x) -1 M 2 (xq h1 ) -1 R(x) M 1 (xq h2 ) M 2 (x) also satisfies the QDYBE if M (x) commutes with h, but what happens if we do not impose this last assumption?

From [START_REF] Balog | Classical r-matrix and exchange algebra in WZNW and Toda theories[END_REF], one knowns which standard solution of the CDYBE, in the finite dimensional case, can be dynamically gauge transformed to a non dynamical solution of the CYBE: this is possible only in the case of A r , and the non dynamical solution has to be of Cremmer-Gervais's type. In a previous work [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF], we studied this particular problem in the quantum case and gave a construction of the universal solution M (x), that we called Quantum Dynamical coBoundary Element.

Such type of result exists also in the affine case for matrix solutions. It is known [START_REF] Baxter | Eight-Vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice[END_REF][START_REF] Jimbo | Solvable lattice models whose states are dominant integral weights of A (1) r[END_REF] that, in the A (1) r case, a dynamical gauge matrix relates the A (1) r height model of [START_REF] Jimbo | Solvable lattice models related to the vector representation of classical simple Lie algebras[END_REF] (the dynamics of which is the whole Cartan algebra) to the Belavin-Baxter solution [START_REF] Belavin | Dynamical symmetries of integrable quantum systems[END_REF] (the dynamics of which is only along the line generated by the central element). This Vertex-IRF transformation is important because it maps the Belavin-Baxter model which has no h-invariance to a face model which has an h-invariance and for which Bethe Ansatz techniques can then be applied.

For example in the case where r = 1, the Belavin-Baxter solution reduces to the 8-Vertex R-matrix R 8V (z 1 , z 2 ; p), where z 1 , z 2 are the spectral parameters and p is the elliptic nome. The IRF (Interaction-Round-Faces) matrix solution R IRF (z; p, w), in which w is the extra dynamical parameter, corresponds to the Andrews-Baxter-Forrester height model [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF], or solid-on-solid (SOS) model: this model is defined on a square lattice to each site of which one associates a height s such that, if s 1 and s 2 correspond to adjacent sites, one has s 1s 2 = ±1. Interactions 

W s s + ǫ ′ 1 s + ǫ 2 s + ǫ 1 + ǫ 2 z E i1,j1 ⊗ E i2,j2 ,
with ǫ α = 3 -2i α , ǫ ′ α = 3 -2j α , for α = 1, 2 (ǫ α , ǫ ′ α ∈ {1, -1}). In this framework, the Quantum Dynamical Yang-Baxter Equation for R IRF (z; p, w) translates into Baxter's star-triangle relation for the Boltzmann weights W as shown in [START_REF] Felder | Elliptic Quantum groups[END_REF].

In this context, the Vertex-IRF transformation is a 2 × 2 matrix S(z; p, w) which satisfies S 1 (z 1 ; p, w) S 2 (z 2 ; p, wq h1 ) R IRF (z 1 /z 2 ; p, w) = R 8V (z 1 , z 2 ; p) S 2 (z 2 ; p, w) S 1 (z 1 ; p, wq h2 ).

This transformation is usually written in the following form, involving the column vectors Φ (+) (z; p, w) and Φ (-) (z; p, w) of the matrix S(z; p, w):

R 8V (z 1 , z 2 ; p) Φ (l ′ -l) z 1 ; p, wq m ′ -l ′ ⊗ Φ (m ′ -l ′ ) (z 2 ; p, w)

= m W l l ′ m m ′ z 1 z 2 Φ (m ′ -m) (z 1 ; p, w) ⊗ Φ (m-l) z 2 ; p, wq m ′ -m , (1) 
for all values of the heights l, l ′ , m ′ such that |ll ′ | = |m ′l ′ | = 1, where the summation is over values of the height m such that |m -l| = |mm ′ | = 1. This transformation can similarly be expressed in terms of the inverse M(z; p, w) of the matrix S(z; p, w), R IRF (z 1 /z 2 ; p, w) M 1 (z 1 ; p, wq h2 ) M 2 (z 2 ; p, w) = M 2 (z 2 ; p, wq h1 ) M 1 (z 1 ; p, w) R 8V (z 1 , z 2 ; p), which is usually written in terms of the line vectors Φ (+) (z; p, w) and Φ (-) (z; p, w) of the matrix M(z; p, w), Φ (m ′ -l ′ ) z 1 ; p, w ⊗ Φ (l ′ -l) (z 2 ; p, wq m ′ -l ′ ) R 8V (z 1 , z 2 ; p)

= m W l m l ′ m ′ z 1 z 2 Φ (m-l) (z 1 ; p, wq m ′ -m ) ⊗ Φ (m ′ -m) z 2 ; p, w , (2) 
where the summation is taken as in [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF]. This vertex-IRF transformation, first obtained in [START_REF] Baxter | Eight-Vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice[END_REF], is the core of Baxter's solution of the 8-Vertex model.

In the present work, we construct the universal dynamical gauge transformation which relates the universal solutions associated to these two models. The result that we obtain is an extension of our previous work to the affine case.

Our article is organized as follows.

In Section 2 we recall some results on quantum affine algebras. Section 3 contains results on Dynamical Quantum Groups. We introduce the notion of generalized translation datum, and associate to it a linear equation, the triangular solutions of which satisfy the Quantum Dynamical coCycle equation. We formulate the problem of Vertex-IRF transformation and the related Generalized Dynamical coBoundary notion.

In Section 4 we study the universal Vertex-IRF transformation M (x). It admits a Gauss decomposition which can be expressed in terms of infinite products constructed from basic elements C [+] (x) and C [-] (x). We give sufficient conditions on C [±] (x) for M (x) to be a Vertex-IRF transformation, and even stronger to be a generalized Quantum Dynamical coBoundary.

In the case of A

r and for the Belavin-Drinfeld solution, the element C [±] (x) are constructed in Section 5 using particular types of Sevostyanov's characters [START_REF] Sevostyanov | Quantum deformation of Whittaker modules and Toda lattice[END_REF] of twisted version of quantum Borel algebras. Among the sufficient conditions, the "hexagonal relation" requires special attention. Its proof needs the explicit computation of C ± (x). We provide this explicit computation and shows that the hexagonal relation is satisfied.

The last part of this section is devoted to the computation in the A

1 case of the universal Vertex-IRF transformation represented in the evaluation representation. As expected, one recovers the known Vertex-IRF transformation between the 8-Vertex model and the IRF height model.

Results on Quantum Affine Universal Envelopping Algebras 2.1 Definitions and generalities

Let g be a Kac-Moody Lie algebra of simply laced finite type or non twisted simply laced affine type. To g we associate, as usual, a finite dimensional simple simply laced Lie algebra denoted 

ν : • h → • h * . To a root α ∈ • h * one associates the coroot α ∨ = 2 (α,α) • ν -1 (α) = • ν -1 (α), and denote h αi = α ∨ i . Let λ 1 , . . . , λ r ∈ •
h * be the fundamentals weights, i.e. (λ i ) i is the dual basis to (h αi ) i . We denote

• ζ αi = • ν -1 (λ i ). Finally, let Ω• h ∈ • h ⊗ • h be the inverse element to the form (•, •) on • h; we have Ω• h = r i=1 • ζ αi ⊗ h αi .
If g is a non twisted affine Lie algebra, we have g =

• g[t, t -1 ] ⊕ Cd ⊕ Cc as a vector space, where c is the central element and d is the grading element. The Lie algebra structure is defined such that for Laurent homogeneous polynomials

a(t) = a ⊗ t m , b(t) = b ⊗ t n , one has [a(t), b(t)] = [a, b] ⊗ t m+n + Res 0 (a ′ (t), b(t))c, and [d, a(t)] = ta ′ (t), [d, c] = 0. The derived subalgebra g ′ is equal to g[t, t -1 ] ⊕ Cc. The Cartan subalgebra of g is h = • h ⊕ Cc ⊕ Cd. The dual of the Cartan subalgebra is given by h * = • h * ⊕ Cγ ⊕ Cδ,
where γ, δ are defined by the relations γ,

• h = γ, d = δ,
• h = δ, c = 0 and γ, c = δ, d = 1. We denote α 0 = δθ, and h α0 = cθ ∨ . We also define the Cartan matrix of g, with elements a ij = h αi , α j , i, j = 0, . . . , r, and denote g = 1 + r i=1 a i the dual Coxeter number of g. We denote Q = ⊕ r i=0 Zα i the root lattice and Q + = ⊕ r i=0 Z + α i . (•, •) can be extended to a non degenerate symmetric bilinear form on h by (h αi , h αj ) = α i , h αj , (d, h αi ) = δ i,0 , and (d, d) = 0. It defines an isomorphism ν : h → h * .

Let Λ 0 = γ, Λ 1 , . . . , Λ r ∈ h * be the fundamental weights, i.e. Λ i , h αj = δ ij , and Λ i , d = 0.

We define ρ = r i=0 Λ i ; we have ρ =

• ρ + gδ. We denote ζ αi = ν -1 (Λ i ), ζ d = ν -1 (δ) and ̟ = ν -1 (ρ). By construction, (ζ α0 , . . . , ζ αr , ζ d )
is the dual basis of (h α0 , . . . , h αr , d) with respect to (., .), and we have

ζ α0 = d, ζ αi = • ζ αi + a i d, ζ d = c. We denote Ω h the inverse element to the form (•, •) on h, which is given as Ω h = r i=0 ζ αi ⊗ h αi + ζ d ⊗ d = c ⊗ d + d ⊗ c + Ω• h .
Let Γ and ∆ be the Dynkin diagram and root system of g.

Thus Γ = • Γ ∪ {α 0 }, ∆ = ( • ∆ + Zδ) ∪ (Z \ {0})δ.
We denote ∆ re the set of real roots and ∆ im the set of imaginary roots. The set of positive

real roots is ∆ + re = • ∆ + ∪ ( • ∆ + Z + * δ)
and the set of positive imaginary roots is ∆ + im = Z + * δ. The multiplicity of a real root is 1 whereas the multiplicity of an imaginary root is dim h. We therefore define ∆

+ im = ∆ + im × {1, . . . , dim h}, and ∆ + = ∆ + re ∪ ∆ + im .
Note that in the case where g is of finite type all the roots are real and the set of imaginary roots is empty.

Let q be a nonzero complex number such that |q| < 1. Let U q (g) be the quantized affine algebra corresponding to g: it is the algebra over C with generators e i , f i , i = 0, 1, . . . , r and q hh ′ = q h ′ h , h, h ′ ∈ h ⊕ C, and with relations q (x+y)z = q xz q yz , x, y, z ∈ h,

q 0 = 1, (3) 
q hh ′ e i = e i q (h+αi(h))(h ′ +αi(h ′ )) , q hh ′ f i = f i q (h-αi(h))(h ′ -αi(h ′ )) , (4) 
e i f j -f j e i = δ ij q hα i -q -hα i q -q -1 , (5) 
1-aij k=0 (-1) k 1 -a ij k q e 1-aij -k i e j e k i = 0, i = j, (6) 
1-aij k=0 (-1) k 1 -a ij k q f 1-aij -k i f j f k i = 0, i = j, (7) 
where

n k q = [n] q ! [k] q ![n -k] q ! , [n] q ! = [1] q [2] q • • • [n] q , [n] q = q n -q -n q -q -1 .
Here we have enlarged the usual version of U q (g) by adjoining the elements q hh ′ , h, h ′ ∈ h, and have extended the action of the roots on h ⊕ C by α(h + λ1) = α(h).

The subalgebra of U q (g) generated by q h , h ∈ h and e i , f i , i = 0, 1, . . . , r, is a Hopf algebra with comultiplication ∆ given by

∆(e i ) = e i ⊗ q hα i + 1 ⊗ e i , ∆(f i ) = f i ⊗ 1 + q -hα i ⊗ f i , ∆(q h ) = q h ⊗ q h . (8) 
Note that U q (g) itself is not a Hopf algebra because formally ∆(q h 2 ) = (q h 2 ⊗ q h 2 ) q 2h⊗h . Therefore one extends the algebra U q (g)⊗U q (g) by adjoining the elements q h⊗h ′ , h, h ′ ∈ h (whose commutations relations with the generators of U q (g) ⊗ U q (g) are straightforward to define) and we denote U q (g) ⊗U q (g) this algebra. We hence obtain a well defined map, morphism of algebra, ∆ : U q (g) → U q (g) ⊗U q (g). Following the usage in the litterature we will still name U q (g) a Hopf algebra. U q (g) is a Q-graded algebra, we will associate to an homogeneous element x ∈ U q (g) its weight x ∈ Q. We define the principal gradation of U q (g) by setting deg

(e i ) = -deg(f i ) = 1, deg(q hh ′ ) = 0. U q (g) is therefore a Z-graded algebra. An homogeneous element x is of degree deg(x) = (x, ρ).
The quantum group U q • g is the Hopf subalgebra of U q (g) generated by e i , f i , i ≥ 1, and

q hh ′ , h, h ′ ∈ • h ⊕ C.
The quantum group U q (g ′ ) is the Hopf subalgebra of U q (g) generated by e i , f i , i ≥ 0, and

q hh ′ , h, h ′ ∈ • h ⊕ Cc ⊕ C.
It is sometimes convenient to view q as a formal parameter and to define an antimorphism of algebra of U q (g) as

q * = q -1 , (e i ) * = f i , (f i ) * = e i , (h αi ) * = h αi , d * = d. (9) 
(This can be made precise by working with U q (g) as being a Hopf algebra over C(q, q -1 ).) Let g be of finite or affine type, we now define different notions associated to the polarisation of U q (g). Let U q (h) be the subalgebra generated by q hh ′ , h, h ′ ∈ h ⊕ C, let U q (b + ) (resp. U q (b -)) be the sub Hopf algebra generated by U q (h), e α , (resp. U q (h), f α ), α ∈ Γ, and let U q (n + ) (resp. U q (n -)) be the subalgebra of U q (g) generated by e α , α ∈ Γ (resp. f α , α ∈ Γ). We have U q (b + ) = U q (n + ) ⊗ U q (h) as a vector space, as well as U q (b -) = U q (h) ⊗ U q (n -). We denote by ι ± : U q (b ± ) → U q (h) the associated projections on the zero-weight subspaces. ι ± are morphisms of algebra, and we define the ideals U ± q (g) = ker(ι ± ). We will need special types of completions of U q (g) and U q (b ± ) which will be defined in the next subsection. In our previous work [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF] we defined these completion using the category of finite dimensional U q (g)-modules when g is finite dimensional. In the case where g is an affine Lie algebra we cannot proceed this way because this would amount to divide out by the relation c = 0.

Let us finally end this subsection by recalling the definition of some functions that we will use throughout the article: the infinite product

(z 1 , . . . , z p ; q 1 , . . . , q n ) ∞ = p k=1 ∞ l1,...,ln=0 (1 -z k q l1 1 . . . q ln n ), (|q 1 | < 1, . . . , |q n | < 1) (10)
the q-theta function,

Θ q (z) = (z, qz -1 , q; q) ∞ , (11) 
and the q-exponential function (which is meromorphic in z)

exp q (z) = e z q = +∞ n≥0 z n (n) q ! = 1 ((1 -q 2 )z; q 2 ) ∞ with (n) q = q n-1 [n] q , (12) 
and which inverse is given by the entire function

(exp q (z)) -1 = e -z q -1 = ((1 -q 2 )z; q 2 ) ∞ . (13) 
We will also sometimes write log q (A) = B instead of A = q B .

PBW basis and R-matrix

U q (g) admits a Poincaré-Birkhoff-Witt (PBW) basis constructed through the use of a normal order of the positive roots. This procedure is recalled in Appendix 7.1, we use the convention and the method of [START_REF] Khoroshkin | Gauss decomposition of trigonometric R-matrices[END_REF].

Let < be a normal (also called convex) order on the set ∆ + in the sense of [START_REF] Khoroshkin | Gauss decomposition of trigonometric R-matrices[END_REF], this means that:

Definition 1. Normal order 1). each non simple root α + β ∈ ∆ + , with α, β ∈ ∆ + not colinear, satisfies α < α + β < β, 2 
). for any simple roots α i , α j ∈

• ∆ + and l, n ≥ 0, k > 0, α i + nδ < kδ < δα j + lδ. (in the finite type case one has only to consider axiom 1.)

We can extend this strict order to a total order on the set ∆ + by

α ≤ β ⇔ α = β or α < β, (14) 
and extend it on ∆ + as follows:

∀α ∈ ∆ + re , ∀(kδ, i) ∈ ∆ + im , α ≤ (kδ, i) ⇔ α < kδ, (15) 
∀ (kδ, i), (k ′ δ, j) ∈ ∆ + im , (kδ, i) ≤ (k ′ δ, j) ⇔ kδ ≤ k ′ δ or (k = k ′ and i < j). (16) 
To each α ∈ ∆ + one associates an element e α ∈ U q (n + ) as explained in Appendix 7.1. Let P be the set of finite increasing sequences of elements of ∆ + ; if γ ∈ P , γ = (γ 1 , . . . , γ n ) with

γ 1 ≤ • • • ≤ γ n ,
we denote e γ = n k=1 e γ k , (e ∅ = 1). We have U q (n + ) = ⊕ γ∈P Ce γ , i.e. e α , α ∈ ∆ + is a PBW basis of U q (n + ). We will denote γ = e γ = n k=1 γ k . The structure coefficients of U q (n + ) are defined by e γ e γ ′ = γ ′′ C γ ′′ γ,γ ′ e γ ′′ , where C γ ′′ γ,γ ′ ∈ C(q), and satisfy the property that for fixed γ ′′ there is only a finite number of couples (γ, γ ′ ) such that C γ ′′ γ,γ ′ = 0 (this is implied by the property that the number of β,

β ′ ∈ Q + satisfying β + β ′ = γ ′′ is finite).
We recall that U q (b + ) = U q (n + ) ⊗ U q (h) as a vector space. U q (h) is defined with a structure of U q (n + ) right-module, by

q hh ′ y = q (h+y(h))(h ′ +y(h ′ )) ( 17 
)
if y is an homogeneous element of U q (n + ) and . y is a morphism of the algebra U q (h). The algebra structure of U q (b + ) can be defined as:

(x ⊗ a)(y ⊗ b) = xy ⊗ (a y)b. (18) 
We will denote U q (n + ) ⊗U q (h) this algebra. This motivates the following definition of completion of U q (b + ): we define a completion (U q (n + ) ⊗U q (h)) c of U q (n + ) ⊗U q (h) as the vector space of maps from P to U q (h); an element x ∈ (U q (n + ) ⊗U q (h)) c is written as x = γ e γ ⊗ x γ , x γ ∈ U q (h).

(U q (n + ) ⊗U q (h)) c can be endowed with a structure of associative algebra by

γ∈P e γ ⊗ x γ • γ ′ ∈P e γ ′ ⊗ y γ ′ = γ ′′ ∈P γ,γ ′ ∈P C γ ′′ γ,γ ′ e γ ′′ ⊗ (x γ e γ ′ )y γ ′ . (19) 
We define (U q (n + )) c as the subalgebra of elements x ∈ (U q (b + )) c such that x γ ∈ C.

Similarly we define f γ = e * γ , γ ∈ P where * is defined by [START_REF] Belavin | Triangle equations and Simple Lie algebras[END_REF]. Then U q (n -) = ⊕ γ∈P Cf γ , and

f γ f γ ′ = γ ′′ (C γ ′′ γ ′ γ ) * f γ ′′ .
We define a left action of U q (n -) on U q (h) as

y q hh ′ = q (h+y(h))(h ′ +y(h ′ )) , (20) 
with y homogeneous element and y . morphism of the algebra U q (h). We define analogously the completion (U q (h) ⊗U q (n -)) c as the vector space of maps from P to U q (h), an element x ∈ (U q (h) ⊗U q (n -)) c being written as

x = γ x γ ⊗ f γ , x γ ∈ U q (h), with γ∈P x γ ⊗ f γ • γ ′ ∈P y γ ′ ⊗ f γ ′ = γ ′′ ∈P γ,γ ′ ∈P (C γ ′′ γ ′ ,γ ) * x γ (f γ y γ ′ ) ⊗ f γ ′′ .
Similarly we define (U q (n -)) c as the subalgebra of elements x ∈ (U q (h)

⊗ U q (n -)) c such that x γ ∈ C. Let γ ∈ P, we define ι + γ : (U q (n + ) ⊗U q (h)) c → U q (h), x → x γ , and ι - γ : (U q (h) ⊗U q (n -)) c → U q (h), x → x γ . The previously defined maps ι ± are ι ± = ι ± ∅ | Uq(b±) . The map U q (n + ) ⊗ U q (h) ⊗ U q (n -) → U q (g), x ⊗ y ⊗ z → xyz
being an isomorphism of vector space, an element x of U q (g) is uniquely written as x = γ,γ ′ e γ x γ,γ ′ f γ ′ where x γ,γ ′ is not zero just for a finite number of (γ, γ ′ ). This suggests the following definition: we define (U q (g)) c as the vector space of maps P ×2 → U q (h), an element x ∈ (U q (g)) c will be expressed as the series x = γ,γ ′ e γ x γ,γ ′ f γ ′ . (U q (g)) c is naturally endowed with a structure of left-right U q (b + ) c -U q (b -) c bimodule by multiplication. Note that it is also endowed with a natural structure of left-right U q (b -)-U q (b + ) module by multiplication.

Note also that U q (n -)⊗U q (h)⊗U q (n + ) → U q (g), x⊗y⊗z → xyz is an isomorphism, therefore we can define U q (g) c(op) as the vector space of maps P ×2 → U q (h). An element x ∈ (U q (g)) c(op) will be written as the series x = γ,γ ′ f γ x γ,γ ′ e γ ′ . (U q (g)) c(op) is naturally endowed with a structure of left-right U q (b -) c -U q (b + ) c bimodule by multiplication. It is also endowed with a structure of left-right U q (b + )-U q (b -) module by multiplication.

We extend the definition of ι ± γ to (U q (g)) c(op) as

ι ± γ : (U q (g)) c(op) → (U q (b ∓ )) c ι + γ (x) = γ ′ f γ ′ x γ ′ ,γ , ι - γ (x) = γ ′ x γ,γ ′ e γ ′ . (21) 
Note however that there is no canonical structure of algebra on (U q (g)) c which would contains U q (g), (U q (b + )) c , (U q (b -)) c as subalgebras.

In order to construct the space where the R matrix lies, we need a completion of

U q (b + ) ⊗ U q (b -) = U q (n + ) ⊗(U q (h) ⊗ U q (h)) ⊗U q (n -).
The algebra U q (n + ) ⊗U q (h) ⊗2 ⊗U q (n -) admits the following completion: we define the algebra (U q (n + ) ⊗U q (h) ⊗2 ⊗U q (n -)) c as being the set of maps

P ×2 → U q (h) ⊗2 . An element x ∈ (U q (n + ) ⊗U q (h) ⊗2 ⊗U q (n -)) c is written as x = γ,γ ′ (e γ ⊗ 1)(x γ,γ ′ )(1 ⊗ f γ ′ )
, and the algebra law is defined as:

γ,γ ′ (e γ ⊗ 1)(x γ,γ ′ )(1 ⊗ f γ ′ ). β,β ′ (e β ⊗ 1)(y β,β ′ )(1 ⊗ f β ′ ) = γ,γ ′ ,β,β ′ (e γ e β ⊗ 1)(x γ,γ ′ (e β ⊗ 1))((1 ⊗ f γ ′ ) y β,β ′ )(1 ⊗ f γ ′ f β ′ ). (22)
U q (g) is a quasitriangular Hopf algebra: there exists R ∈ (U q (n + ) ⊗U q (h) ⊗2 ⊗U q (n -)) c satisfying to the axioms of quasitriangularity. The explicit expression of the R-matrix in the finite or affine case is given in term of a PBW basis of U q (g) constructed through the use of a normal order of the roots. In the finite case the expression is given in [START_REF] Khoroshkin | Universal R-Matrix for Quantized (Super) Algebras[END_REF]. In the affine case the expression of R is given in [START_REF] Khoroshkin | The universal R-matrix for quantum non-twisted affine Lie algebras[END_REF][START_REF] Damiani | La R-matrice pour les algèbres quantiques de type affine non tordu (The Rmatrix for non-twisted affine quantum algebras)[END_REF].

If g is of affine or finite type, we define K = q Ω h ∈ U q (h) ⊗2 and denote k = q 1 2 m(Ω h ) ∈ U q (h) where m is the multiplication. We have ∆(k) = Kk 1 k 2 . When g is of finite type, the expression of the R-matrix of U q (g) is given by

R = K R, R = < α∈∆ + R α where R α = exp q -1 (q -q -1 ) e α ⊗ f α . ( 23 
)
When g is of affine type, the expression of the R-matrix of U q (g) is given by:

R = K R = K R + re R im R - re (24) 
with

R + re = < α∈∆ + re α<δ R α , R - re = < α∈∆ + re α>δ R α . (25) 
and

R im = exp (q -q -1 ) r i,j=1 n>0 c (n) ij e (i) nδ ⊗ f (j) nδ , (26) 
c (n) ij
being the inverse matrix of the matrix

[n(αi,αj )]q n i,j=1,...,r . It is far from trivial to show that a normal order exists in the affine case. A construction of normal order using the affine Weyl group has been done in [START_REF] Beck | Convex Bases of PBW type for Quantum Affine Algebras[END_REF], and Appendix 7.1 contains elements of this construction in the A

(1) r case.

The U

q (A (1)

) case

We use here the following normal order on the positive roots of U q (A (1) 1 ):

α 1 < α 1 + δ < α 1 + 2δ < • • • < kδ < • • • < α 0 + 2δ < α 0 + δ < α 0 (k ∈ Z + * ). ( 27 
)
Then the expression of the R matrix reads:

R = K → n≥0 e [(q-q -1 ) e α 1 +nδ ⊗f α 1 +nδ ] q -1 × exp n>0 (q -q -1 ) n [2n] q e nδ ⊗ f nδ ← n≥0 e [(q-q -1 ) e α 0 +nδ ⊗f α 0 +nδ ] q -1 . (28) 
Let π be the fundamental two dimensional representation of U q (A 1 ) acting on V = C 2 . Let z ∈ C × , we define the evaluation representation ev z of U q (A (1) 1 ′ ) acting on V as:

ev z (e 1 ) = π(e 1 ) = E 1,2 , ev z (f 1 ) = π(e 1 ) = E 2,1 , ev z (h α1 ) = π(h α1 ) = E 1,1 -E 2,2 ,
ev z (e 0 ) = zπ(f 1 ), ev z (f 0 ) = z -1 π(e 1 ), ev z (h α0 ) = -π(h α1 ) (i.e. ev z (c) = 0).

Using results of Appendix 7.1, we obtain the following action of the PBW basis in the evaluation representation:

ev z (e α1+nδ ) = (-q -1 z) n E 1,2 , ev z (f α1+nδ ) = (-qz -1 ) n E 2,1 , ev z (e α0+nδ ) = z(-q -1 z) n E 2,1 , ev z (f α0+nδ ) = z -1 (-qz -1 ) n E 1,2 , ev z (e ′ nδ ) = z n (-q) 1-n (E 1,1 -q -2 E 2,2 ), ev z (f ′ nδ ) = z -n (-q) n-1 (E 1,1 -q 2 E 2,2 ), ev z (e nδ ) = -(-z) n [n] q n (E 1,1 -q -2n E 2,2 ), ev z (f nδ ) = -(-z) -n [n] q n (E 1,1 -q 2n E 2,2 ).
We define R(z, z ′ ) = (ev z ⊗ ev z ′ )(R), trigonometric solution of the QYBE, also called Rmatrix of the 6-vertex model with spectral parameters z, z ′ . Using the universal expression of the R-matrix [START_REF] Khoroshkin | The universal R-matrix for quantum non-twisted affine Lie algebras[END_REF] and the expression of the evaluation representation on the PBW basis we obtain:

R(z, z ′ ) = q 1 2 f (z/z ′ )      1 0 0 0 0 z ′ -z qz ′ -q -1 z (q-q -1 )z ′ qz ′ -q -1 z 0 0 (q-q -1 )z qz ′ -q -1 z z ′ -z qz ′ -q -1 z 0 0 0 0 1      (29) 
with

f (u) = exp n>0 q n -q -n q n + q -n u n n = (u, q 4 u; q 4 ) ∞ (q 2 u; q 4 ) 2 ∞ . ( 30 
)
2.4 The U q (A (1)

r ) case

We assume now that g = A

r , r ≥ 2. The maximal root of A r is θ = r i=1 α i . The fundamental representation of U q (A r ) acting on V = C r+1 is defined as:

π(e i ) = E i,i+1 , π(f i ) = E i+1,i , π(h αi ) = E i,i -E i+1,i+1 , i = 1, . . . , r. (31) 
This representation extends to a representation of U q (g ′ ) as follows: let z ∈ C × , we define ev z the evaluation representation of U q (g ′ ) acting on V by

ev z (e i ) = π(e i ), ev z (f i ) = π(f i ), ev z (h αi ) = π(h αi ), i = 1, . . . , r, (32) 
ev z (e 0 ) = zE r+1,1 , ev z (f 0 ) = z -1 E 1,r+1 , ev z (c) = 0. (33) 
In Appendix 7.1, we give the image of some elements of the PBW basis of U q (A

r ) under the evaluation.

We will also need the expression of the matrix elements c

(n)
ij , which can be computed exactly. For this we use the fact that the inverse of the r × r matrix

A =         q + q -1 -1 0 . . . . . . . . . . . . 0 -1 q + q -1 -1 0 . . . . . . . 0 0 -1 q + q -1 -1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . 0 -1 q + q -1 -1 0 . . . . . . . . . . . . . . . . . 0 -1 q + q -1         (34) 
is given by

A -1 ij = [min(i, j)] q [r + 1 -max(i, j)] q [r + 1] q . ( 35 
)
Therefore we obtain that

c (n) ij = n[min(i, j)] q n [r + 1 -max(i, j)] q n [n] q [r + 1] q = n [n] 2 q [n min(i, j)] q [n(r + 1 -max(i, j))] q [n(r + 1)] q . ( 36 
)
3 Results on Dynamical Quantum Groups

For x ∈ (C × ) dim h , xq h ∈ (C × ) dim h ⊗ U q (h) is defined as: xq h = (x 1 q hα 1 , . . . , x r q hα r ) if g is of finite type, (x 0 q hα 0 , x 1 q hα 1 , . . . , x r q hα r , x d q d ) if g is of affine type. ( 37 
)
Let us first formulate the dynamical Yang-Baxter equation:

Definition 2. Quantum Dynamical Yang-Baxter Equation (QDYBE) Let V be a h-simple finite dimensional U q (g)-module. A meromorphic function R : (C × ) dim h → End(V ⊗ V ) is said to satisfy the Quantum Dynamical Yang-Baxter Equation if R 12 (x) R 13 (xq h2 ) R 23 (x) = R 23 (xq h1 ) R 13 (x) R 12 (xq h3 ). ( 38 
)
Let l be a subspace of h, R is said to be "of effective dynamics l " if R(x) is of zero l-weight, i.e. commutes with the action of l,

(id ⊗ id ⊗ ν(t))(R 12 (xq h3 )) = R 12 (x) ∀t ∈ l ⊥ . ( (39) 
) 40 
We would like to extend this definition to the notion of universal solutions. This can easily be done when g is of finite type using our previous formalism [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF]. It is more delicate to formulate it rigorously in the affine case. We will only provide a universal formulation of the notion of Quantum Dynamical coCycle which is a closely related concept.

There is however no problem of definition for the classical limit of this equation, the Classical Dynamical Yang-Baxter Equation, the solutions of which have been completely classified under very mild assumptions.

Classical Dynamical r-matrices

We begin with the formulation of the Classical Dynamical Yang-Baxter Equation. If r :

(C × ) dim h → g ⊗2 and g : (C × ) dim h → G, where Lie(G) = g, we denote d 3 r 12 = d dt (r 12 (xe th3 )) t=0 , and d 2 g 1 = d dt (g 1 (xe th2 )) t=0 . Definition 3. Classical Dynamical Yang-Baxter Equation (CDYBE) A map r : (C × ) dim h → g ⊗2 satisfies the CDYBE if [[r(x), r(x)]] -d 3 r 12 (x) -d 1 r 23 (x) + d 2 r 13 (x) = 0, (41) 
where

[[A, A]] = [A 12 , A 13 + A 23 ] + [A 13 , A 23 ]. r is said to be of effective dynamics l ⊂ h if r is l-invariant and if d 3 r 12 ∈ g ⊗2 ⊗ l.
r is said to satisfy the unitarity condition if r 12 (λ) + r 21 (λ) = Ω h . Let r, r ′ be solutions of the CDYBE with effective dynamics l, they are said to be dynamically gauge equivalent if there exists a map g :

(C × ) dim h → L with L ⊂ G and Lie(L) = l such that r ′ = r g = (Ad g ⊗ Ad g )(r + g -1 1 d 2 g 1 -g -1 2 d 1 g 2 ). (42) 
P. Etingof and A. Varchenko have classified in [START_REF] Etingof | Geometry and classification of solutions of the Classical Dynamical Yang-Baxter Equation[END_REF] the unitary solutions of the CDYBE of effective dynamics h up to automorphism of g and up to dynamical gauge equivalence under the assumption that g is a finite dimensional simple Lie algebra. The solutions are in bijection with the subsets X ⊂ Γ. The standard dynamical solution is obtained by taking X = Γ.

O. Schiffmann [START_REF] Schiffmann | On classification of dynamical r-matrices[END_REF] has classified the unitary solutions (g simple finite dimensional) of the CDYBE of effective dynamics l ⊂ h such that l contains a regular semi-simple element (this last assumption forbids to take l = {0} for example). He has shown that the solutions, up to automorphism and dynamical gauge equivalence, are classified by generalized Belavin-Drinfeld triples, i.e. triples of the form (Γ 1 , Γ 2 , T ), where Γ 1 , Γ 2 ⊂ Γ and T : Γ 1 → Γ 2 , preserving the scalar product with l = {Vect{α -T (α), α ∈ Γ 1 }} ⊥ . The classification of [START_REF] Etingof | Geometry and classification of solutions of the Classical Dynamical Yang-Baxter Equation[END_REF] is recovered by taking X = Γ 1 = Γ 2 whereas the classification of Belavin-Drinfeld of unitary non dynamical solutions of classical Yang-Baxter equation is recovered when the triple is nilpotent.

We recall here various definitions and results in the finite type case.

Definition 4. Let g be of finite type, a Belavin-Drinfeld triple is given by T = (Γ 1 , Γ 2 , T ), where Γ 1 , Γ 2 are subsets of Γ, and T : Γ 1 → Γ 2 is a bijection satisfying:

1. (T α, T α ′ ) = (α, α ′ ), ∀α, α ′ ∈ Γ 1 . (43) 2. T is "nilpotent" i.e. ∀α ∈ Γ 1 , ∃k ∈ N, T k (α) ∈ Γ 1 , T k+1 (α) / ∈ Γ 1 . ( 44 
)
We define σ

± : Γ → Γ by σ + (α) = T (α), if α ∈ Γ 1 , σ + (α) = 0, if α ∈ Γ \ Γ 1 (resp. σ -(α) = T -1 (α), if α ∈ Γ 2 , σ -(α) = 0, if α ∈ Γ \ Γ 2 ). σ ± extends to σ ± : b ± → b ± morphism of Lie algebra defined by: σ + (e α ) = e T (α) , σ + ( • ζ α ) = • ζ T (α) for α ∈ Γ 1 , and 0 otherwise (resp. σ -(f α ) = f T -1 (α) , σ -( • ζ α ) = • ζ T -1 (α) for α ∈ Γ 2 and 0 otherwise).
If T is a Belavin-Drinfeld triple, one defines A T to be the subset of 2 h of elements s satisfying

∀α ∈ Γ 1 , 2((T α -α) ⊗ id)(s) = ((α + T α) ⊗ id)(Ω h ) ( 45 
)
A T is an affine space of dimension n T = k(k-1) 2 , k = |Γ \ Γ 1 |. (T , s) with s ∈ A T is called Belavin-Drinfeld quadruple.
To such a quadruple is associated an element r T,s ∈ g ⊗2 defined by:

r T,s = r + s + α∈∆ + +∞ l=1 (α, α) 2 (σ + ) l (e α ) ∧ f α , where r = 1 2 Ω h + α∈∆ + (α,α)
2 e α ∧ f α is the standard classical r-matrix. We denote r 0 = 1 2 Ω h + s and r 0 αβ = (α ⊗ β)(r 0 ). The constraints imposing s to be in A T translates into

r 0 αβ + r 0 βα = (α, β), ∀α, β ∈ Γ, (46) 
r 0 T (α)β + r 0 βα = 0, ∀α ∈ Γ 1 , ∀β ∈ Γ. (47) 
Due to (44), every γ ∈ Γ can be expressed uniquely in the form γ = T -m (α) for a certain nonnegative integer m and α

∈ Γ \ Γ 1 . As a result, if δ = T -l (β) for 0 ≤ l, β ∈ Γ \ Γ 1 , (46)(47) implies r 0 γδ -r 0 αβ =      ( T -1 (α) + • • • + T l-m (α) , β ) if l < m, -( β + T -1 (β) + • • • + T m-l+1 (β) , α ) if m < l, 0 if m = l. (48) 
As soon as we have chosen the n T numbers r 0 αβ for all α, β ∈ Γ \ Γ 1 obeying only to (46), we can then determine completely the remaining coefficients of r 0 by using (48) without any new constraint. The element r 0 determined in such a way fullfills necessarily (46) and (47).

Theorem 1. Belavin-Drinfeld 1). If (T , s) is a Belavin-Drinfeld quadruple, r T,s satisfies the CYBE and the unitarity relation.

2). {r ∈ g ⊗2 , [[r, r]] = 0, r 12 +r 21 = Ω g }/Aut(g) is in bijection with ( T {r T,s , s ∈ A T })/Aut(Γ).
The examples of Belavin-Drinfeld quadruple corresponding to k = r and k = 1 are easily described:

• k=r. Γ 1 = Γ 2 = ∅, A ∅ = 2 h. • k=1. In this case g = A r . Γ 1 = {α 2 , . . . , α r }, Γ 2 = {α 1 , . . . , α r-1 } and T (α i ) = α i-1 .
This triple is called the shift and dim A ∅ = 0. The admissibility conditions have a unique solution :

s = 1 2 r-1 j=1 • ζ j ∧ • ζ j+1 . Definition 5. A generalized Belavin-Drinfeld is T = (Γ 1 , Γ 2 , T ), where Γ 1 , Γ 2 are subsets of Γ and T : Γ 1 → Γ 2 is a bijection satisfying: (T α, T α ′ ) = (α, α ′ ), ∀α, α ′ ∈ Γ 1 .
The nilpotence condition is not imposed. One defines the space of dynamics by l(T ) = (Vect{α -

T (α), α ∈ Γ 1 }) ⊥ .

Theorem 2. (O. Schiffmann)

To each generalized Belavin-Drinfeld triple T is associated a solution r T of the CDYBE satisfying the unitarity condition.

One still defines T : n + → n + Lie algebra morphism by the same definition as previously but T is now no more nilpotent. One defines the Cayley transform of T, C T : l ⊥ → l ⊥ , by:

(α -T (α), C T (y)) = (α + T (α), y), ∀α ∈ Γ 1 .
C T is skewsymmetric and one can define

r T (x) = r - 1 2 (C T ⊗ id)Ω l ⊥ + a(x) -a(x) 21 , ∀x ∈ (C × ) dim h with a(x) = α∈∆ + +∞ l=1 (α, α) 2 ( r j=1 x -2l • ζj ,α j )T l (e α ) ∧ f α .
Moreover each unitary solution of the CDYBE of effective dynamics l with l containing a semi simple regular element is, up to automorphism of g and up to dynamical gauge transformation lying in L ⊂ G with Lie(L) = l, in the previous list.

The solution associated to T = (Γ, Γ, id) is called the standard solution of the CDYBE. Remark 3.1. If T is nilpotent, then the sum defining a(x) is finite. In this case one can associate

to each element s ∈ A T a dynamical gauge transformation g s (x) = r j=1 x 2( • ζ j ⊗id)(s) j
. One has r gs T = r T ,s . Remark 3.2. A construction of a solution of the CDYBE associated to any generalized Belavin-Drinfeld triple of a symmetrizable Kac Moody algebra (in particular of affine type) has been done in [START_REF] Etingof | Twisted traces of intertwiners and quantum dynamical Rmatrices corresponding to generalized Belavin-Drinfeld triples[END_REF] (but no complete classification theorem is known in this case).

Quantum Dynamical coCycles Equation and Quantum Dynamical Yang-Baxter Equation

As first understood by O. Babelon [START_REF] Babelon | Universal Exchange Algebra for Bloch Waves and Liouville Theory[END_REF], a universal solution of the QDYBE equation can be obtained from a solution of the Quantum Dynamical coCycle Equation. In the finite type case, we refer to [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF] for a precise statement.

In the present work we will only define precisely the notion of Universal Quantum Dynamical coCycle Equation.

Let g be of finite or affine type, we denote D ± (h) the following commutative algebra:

D ± (h) = C[x ∓2 1 , . . . , x ∓2 r ] if g is of finite type, C[x ∓2 0 , x ∓2 1 , . . . , x ∓2 r , x ∓2 d ] if g is of affine type. ( 49 
)
Let F (n) (h) be the field of fractions of the commutative algebra U q (h) ⊗n ⊗ D -(h). F (1) (h) is endowed with a structure of right U q (n + )-module (resp. left U q (n -)-module) algebra by extending the action of U q (n + ) (resp. of U q (n -)) on U q (h) and by acting trivially on D -(h).

As a result we can define the extension of algebras (U q (n + ) ⊗F (1) 

(h)) c = (U q (b + ) ⊗ F (0) (h)) c , and (F (1) (h) ⊗U q (n -)) c = (F (0) (h) ⊗ U q (b -)) c
. By extension we denote (U ± q (g) ⊗ F (0) (h)) c the subalgebra of (U q (b ± ) ⊗ F (0) (h)) c which is the kernel of ι ± ∅ . Analogously we can define (U q (g) ⊗ F (0) (h)) c and (U q (g) ⊗ F (0) (h)) c(op) .

We also define (U q (n + ) ⊗F (2) (h) ⊗U q (n -)) c as the set of maps from P ×2 → F (2) (h) with the same algebra law as [START_REF] Felder | Algebraic Bethe ansatz for the elliptic quantum group E τ,η (sl 2 )[END_REF]. We will extend the principal gradation on

U q (b ± ) ⊗ F (0) (h) by deg(x ⊗ y) = deg(x), x ∈ U q (b ± ), y ∈ F (0) (h) \ {0}. Theorem 3. Quantum Dynamical Cocycle Equation (QDCE) Let F (x) ∈ (U q (n + ) ⊗F (2) (h) ⊗U q (n -)) c , the elements (ι + γ ⊗ id ⊗ ι - γ ′ ) (∆ ⊗ id)(F (x)) F 12 (xq h3 ) and (ι + γ ⊗ id ⊗ ι - γ ′ ) (id ⊗ ∆)(F (x)) F 23 (x)
are well defined for all γ, γ ′ ∈ P and are lying in

(1 ⊗ U q (g) ⊗ 1)F (3) (h). F (x) is a Quantum Dynamical coCycle if F (x) is an invertible element satisfying the Quantum Dynamical coCycle Equation, (ι + γ ⊗ id ⊗ ι - γ ′ ) (∆ ⊗ id)(F (x)) F 12 (xq h3 ) = (ι + γ ⊗ id ⊗ ι - γ ′ ) (id ⊗ ∆)(F (x)) F 23 (x) , ∀γ, γ ′ ∈ P. ( 50 
)
Let l be a subset of h, F (x) is said to be of effective dynamics

l if F (x) is l-invariant and if (id ⊗ id ⊗ ν(t))(F 12 (xq h3 )) = F 12 (x) , ∀t ∈ l ⊥ .
If F (x) is a Quantum Dynamical coCycle and R is the standard universal R-matrix of U q (g), then one formally defines

R(x) = F 21 (x) -1 R 12 F 12 (x). (51) 
In the case where g is of finite type, R(x) can be rigourously defined in the sense of [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF] and satisfies the universal QDYBE. Indeed, in this case, for every finite dimensional representations

π, π ′ of U q (g) acting on V, V ′ , (π ⊗ π ′ )(R(x)) is an element of End(V ⊗ V ′ ) ⊗ C(x 2 1 , . . . , x 2 r )
, and the Universal Dynamical Yang-Baxter equation on R(x) makes sense.

In the case where g is of affine type, and if π is a finite dimensional h-simple representation of U q (g) such that (π ⊗ π)(R(x)) is a meromorphic function of x, then (π ⊗ π)(R(x)) satisfies the QDYBE. If (π ⊗ π)(F (x)) is of effective dynamics l then (π ⊗ π)(R(x)) is also of effective dynamics l.

The explicit construction, in the finite dimensional case, of the universal Dynamical coCycle corresponding to the standard solution of the QDYBE has been done in [START_REF] Arnaudon | Universal Solutions of Quantum Dynamical Yang-Baxter Equations[END_REF] by means of an auxiliary linear equation, the ABRR equation. In the affine case, for the example of the standard IRF solution and for the vertex solution of Belavin-Baxter type (case of A (1) r ), the construction of the Dynamical coCycle has been achieved by M. Jimbo, H. Konno, S. Odake, J. Shiraishi in [START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF]. The former construction has been extended to any generalized Belavin-Drinfeld triple in [START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF], whereas the latter has been extended to the affine case and to any generalized Belavin-Drinfeld triple being an automorphism of Γ by P. Etingof, O. Schiffmann and A. Varchenko in [START_REF] Etingof | Traces of intertwiners for quantum groups and difference equations, II[END_REF]. All these methods are using a linear equation of modified ABRR type for the construction of F (x).

We provide here a general construction of Quantum Dynamical Cocycles, using a method which generalizes known methods such as [START_REF] Arnaudon | Universal Solutions of Quantum Dynamical Yang-Baxter Equations[END_REF][START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF][START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF].

In the course of the proof we will need additional spaces that we now introduce. We define (U q (b + ) ⊗ U q (g) ⊗ F (0) (h)) c(op) as being the vector space of series

x = γ,γ ′ ,γ ′′ ∈P ×3 (e γ ⊗ 1)x γ,γ ′ ,γ ′′ (1 ⊗ f γ ′ e γ ′′ ) with x γ,γ ′ ,γ ′′ ∈ F (2) (h). We define (U + q (g) ⊗ U q (g) ⊗ F (0) (h)) c(op)
as being the subspace of elements x such that x ∅,γ ′ ,γ ′′ = 0. We can analogously define the vectorspace

(U q (b + ) ⊗ U q (g) ⊗p ⊗ F (0) (h)) c(op) and (U + q (g) ⊗ U q (g) ⊗p ⊗ F (0) (h)) c(op)
We also analogously define (U q (g) ⊗ U q (b -) ⊗ F (0) (h)) c(op) as being the vector space of series op) as being the subspace of elements x such that x γ,γ ′ ,∅ = 0. Definition 6. Generalized Translation Quadruple A generalized translation quadruple is a collection (θ + , θ -, ϕ 0 , S (1) ) such that 1. θ ± : U q (b ± ) → U q (b ± ) ⊗ U q (h) ⊗ D ± (h) are morphisms of algebra preserving the degree.

γ,γ ′ ,γ ′′ ∈P ×3 (f γ e γ ′ ⊗ 1)a γ,γ ′ ,γ ′′ (1 ⊗ f γ ′′ ) with a γ,γ ′ ,γ ′′ ∈ F (2) (h). We define (U q (g) ⊗ U - q (g) ⊗ F (0) (h)) c(
We can therefore extend θ ± to (U q (b ± ) ⊗ F(h) (0) ) c by F (h) (0) -linearity (and continuity).

It will be convenient to denote, for

v ∈ U q (b ± ) ⊗ F(h) (0) , θ ± [x] (v) = θ ± (v)
this fraction. Note that because of the degree preserving property we have θ

± (U ± q (g)) ⊂ U ± q (g) ⊗ F(h) (0) , θ ± (U q (h)) ⊂ U q (h). 2. ∀u ∈ U q (h), ∀v ∈ U q (b ± ) we have [ (θ ± θ ∓ -id)(u) , θ ± (v) ] = 0. ( 52 
)
3. ϕ 0 and S (1) are invertible elements of U q (h) ⊗2 such that log q (ϕ 0 ) and log q (S (1) ) belong to h ⊗2 .

4. θ ± , ϕ 0 and S (1) satisfy to the following properties:

θ ± [xq h 2 ]1 = (Ad ϕ 0 ) ∓1 • θ ± [x]1 , (53) 
θ + [x]1 ( R) = Ad ϕ 0 • θ - [x]2 ( R), (54) 
θ + [x]1 (ϕ 0 ) = θ - [x]2 (ϕ 0 ) = ϕ 0 , (55) 
as well as

θ + [x]1 (S (1) 
12

) = θ - [x]2 (S (1) 12 ), (56) 
K 12 S
(1) -1 12

S

(1)

21 θ + [x]1 (K 12 S (1) 12 S 
(1) -1 21

) ϕ 0 12 , θ + [x]1 (v) = 0, ∀v ∈ U q (b + ). ( 57 
)
For k ≥ 1, we will also define 

S (k) 12 , W (k) 12 ∈ U q (h) ⊗2 as S (k) 12 = (θ + [x]1 ) k-1 (S (1 
) -1 . A generalized translation quadruple is of effective dynamics l ⊂ h if moreover ∀u ∈ U q (b ± ), θ ± [xq h 2 ]1 (u) ∈ U q (b ± ) ⊗ U q (l) ⊗ F (0) (h). ( 58 
)
Definition 7. A generalized translation quadruple (θ + , θ -, ϕ 0 , S (1) ) is non degenerate if 1. the restriction of (id

-θ -) to U - q (g) is invertible. 2. the restriction of (id ⊗3 -Ad (id⊗∆)(ϕ (0)-1 ) •θ + 1 ) to (U + q (g)⊗U q (g) ⊗2 ⊗F (0) (h)) c(op) is invertible. Remark 3.3. Let us remark that (57) implies that 0 = K 12 S (1) -1 12 S (1) 21 θ + [x]1 (K 12 S (1) 12 S 
(1) -1 21

) ϕ 0 12 , θ + [x]1 ( R 13 ) = K 12 S (1) -1 12 S (1) 21 θ + [x]1 (K 12 S (1) 12 S 
(1) -1 21

ϕ 0 12 ) , θ + [x]1 ( R 13 ) (due to (55)) = K 12 S
(1) -1 12

S

(1)

21 (K 32 S (1) 
32 S

(1) -1 23

ϕ 0 32 ) -1 , θ + [x]1 ( R 13 ) (h-invariance of R) = K 12 S
(1) -1 12

S

(1)

21 (K 32 S (1) 
32 S

(1) -1 23

ϕ 0 32 ) -1 , θ - [x]3 ( R 13 ) (due to (54)) = θ - [x]3 (K 32 S (1) -1 32 S (1) 23 ) -1 (K 32 S (1) 
32 S

(1) -1 23

ϕ 0 32 ) -1 , θ - [x]3 ( R 13 ) (h-invariance of R). As a consequence, θ - [x]1 (K 12 S (1) -1 12 S (1) 21 ) (K 12 S (1) 12 S 
(1) -1 21

) ϕ 0 12 , θ - [x]1 (v) = 0, ∀v ∈ U q (b -). ( 59 
) Remark 3.4. If θ + | Uq(h) is invertible with θ -| Uq (h)
as inverse, we will denote S (0) = θ - [x]1 (S (1) ) and W (0) = S (0) S (1) -1 . In this case (57) can be rewritten as

Kθ + [x]1 (K)ϕ 0 12 (W (1) 
12

W (0) 21 ) -1 , θ + [x]1 (v) = 0, ∀v ∈ U q (b + ). ( 60 
)
The following fundamental result holds:

Theorem 4. Let (θ + , θ -, ϕ 0 , S (1) ) be a given non degenerate generalized translation quadruple, the linear equation

J(x) = W (1) θ - [x]2 R J(x) (61) 
admits a unique solution J(x) ∈ (U q (n + ) ⊗F

h ⊗U q (n -)) c , under the assumption that

(ι + ∅ ⊗ ι - ∅ )( J (x)) = 1 ⊗ 1, ( 62 
)
where J 12 (x) = S

(1) 12

-1 J 12 (x). This solution satisfies the QDCE (50). This solution can also be expressed as the infinite product

J 12 (x) = +∞ k=1 J (k) 12 (x) with J (k) 12 (x) = (θ - [x]2 ) k S (1) -1 12 R 12 S (1) 
12 .

Moreover, such a cocycle J(x) is of dynamics l if the quadruple is of effective dynamics l.

Remark 3.5. This solution J(x) is of zero degree because R is of degree zero and θ -preserves the degree.

Remark 3.6. Due to (54), (55), (56), the expression (63) of J (k) (x) can be rewritten as:

J (k) 12 (x) = Ad (ϕ 0 12 ) -k • (θ + [x]1 ) k S (1) -1 12 R 12 S (1) 
12 .

(64)

It follows immediately that a solution J(x) of (61), (62) satisfies also the following linear equations:

θ + [x]1 (J 12 (x)) = Ad ϕ 0 12 • θ - [x]2 (J 12 (x)), (65) 
J 12 (x) = W (1) 12 
Ad (ϕ 0 12 ) -1 • θ + [x]1 R 12 J 12 (x) . (66) 
Proof: Since θ ± preserves the degree, the proof of Proposition 3.1 of [START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF] can be straightforwardly applied to our case. The linear equation on

J(x) is id ⊗ id -θ - [x]2 (S (1)-1 12 
RS (1) 12 ) θ - [x]2 ( J(x)) = 0. ( 67 
)
This equation can be written as a system of linear equations, triangular in term of the degree on the second space as in [START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF]. If we write J(x) = n≥0 J n where J n is of degree -n on the second space, the linear equation can be written as:

(id ⊗ (id -θ -))( J n ) = i 0≤p<n a i θ - 2 ( J p ) with a i ∈ (U q (n + ) ⊗ U q (n -))U q (h) ⊗2 . ( 68 
)
The existence and uniqueness of the solution is a consequence of the initial condition J 0 = 1 ⊗2 and the invertibility of the linear operator (idθ -) restricted to U - q (g) ⊗ F(h) (0) .

It is easy to see, using (56), that a solution of (61),(62) can be represented as an infinite product of the form (63). The convergence of this product holds in the following sense: for all γ, γ ′ ∈ P , a γ,γ ′ = (ι

+ γ ⊗ ι - γ ′ )( +∞ k=1 J (k) 12 (x)
) is a formal series in x 2 0 , . . . , x 2 r , x 2 d with coefficients in U q (h) ⊗2 . The uniqueness of the solutions of the linear equation (61) implies that this formal series defines a unique element of F (2) (h). We will use heavily the representation in term of infinite product because it highlights the computations.

Let now J(x) be the solution of (61), (62), we will show that it satisfies the QDCE. Let us consider the element

Y 123 (x) = (id ⊗ ∆)(J(x) -1 ) (∆ ⊗ id)(J(x)) J 12 (xq h3 ), ( 69 
)
in order to prove that Y 123 (x) = J 23 (x), i.e. that J(x) is solution of the QDCE (50), we first notice that Y 123 (x) satisfies the following properties:

ϕ (0) 12 ϕ (0) 13 
-1 θ + [x]1 (Y 123 (x)) ϕ (0) 12 ϕ (0) 13 = Y 123 (x), (70) 
W (1) 23 θ - [x]3 R 23 Y 123 (x) = Y 123 (x), (71) 
(ι + ∅ ⊗ id ⊗ ι - ∅ )(S (1) -1 23 
Y 123 (x)) = 1 ⊗3 , ( 72 
)
∀γ ′ = ∅, (ι + ∅ ⊗ id ⊗ ι - γ ′ )(S (1) -1 23 
Y 123 (x)) ∈ (1 ⊗ U + q (g) ⊗ 1)(1 ⊗ F (2) (h)), (73) 
∀γ = ∅, ∀γ ′ , (ι + γ ⊗ id ⊗ ι - γ ′ )(S (1) -1 23 
Y 123 (x)) ∈ (1 ⊗ U q (g) ⊗ 1)(F (3) (h)) . (74) 
The last three properties mean that the element S

(1) -1 23

Y 123 (x) -1 ⊗3 lies in an extension of 1 ⊗ U + q (g) ⊗ U - q (g) ⊕ U + q (g) ⊗ U q (g) ⊗ U q (b -) ⊗ F (0) (h).
The proof of these properties can be found in Appendix 7.2 (cf. Lemma 16, Lemma 17, Lemma 18).

Using then the fact that the kernel of (id ⊗3 -Ad (id⊗∆)(ϕ (0)-1 ) • θ + 1 ) is zero and property (70), we deduce that Y 123 (x) = 1 ⊗ Z(x) for a certain Z(x) ∈ 1 ⊗2 ⊕ (U + q (g) ⊗ U - q (g))F ) (2) (h) c . Using now the property (71) and the fact that ker(θ -id) ∩ (U - q (g) ⊗ F (0) (h)) c = {0}, we obtain that Z(x) = J(x).

We will emphasize special classes of generalized translation quadruples for which the analysis of the Quantum Dynamical Gauge Transformation can be described in a simple way.

Definition 8. Generalized Translation Datum

A generalized translation datum is a collection (θ + , θ -, ϕ 0 , ϕ + , ϕ -, S (1) ), where (θ + , θ -, ϕ 0 , S (1) ) is a generalized translation quadruple, and ϕ + , ϕ -are invertible elements of U q (h) ⊗2 such that

log q (ϕ ± ) ∈ h ⊗2 , (75) 
∆ • θ ± [x] = Ad ϕ ± • θ ± [x] ⊗ θ ± [x] • ∆. ( 76 
)
A generalized translation datum is said to be of effective dynamics l ⊂ h if the corresponding generalized translation quadruple is of effective dynamics l.

Definition 9. Vertex and IRF types

A generalized translation datum is said of Vertex type if it is of effective dynamics l ⊂ Cc in the affine case and l = 0 in the finite dimensional case.

A generalized translation datum is of Restricted Vertex type if it is of vertex type and moreover satisfies, ∀v ∈ U q (b + ),

ϕ 0 , v 2 = 0, (77) 
ϕ + , θ + [x]2 (v) = 0, (78) 
K -1 (θ + [x] ⊗ θ + [x] )(K) ϕ + 21 , θ + [x]2 (v) = 0. ( 79 
)
A generalized translation datum is said to be of IRF type if it is of effective dynamics l = h and

θ ± | Uq(h) = id. ( 80 
)
A generalized translation datum is of Restricted IRF type if it is of IRF type and moreover satisfies, ∀v ∈ U q (b -),

(ϕ 0 ) -1 ϕ -, θ - [x]1 (v) = 0, (81) 
ϕ - 21 (ϕ 0 12 ) -1 , θ - [x]1 (v) = 0. ( 82 
)
A restricted Vertex type generalized translation datum is said to be non degenerate if it is associated to a non degenerate generalized quadruple and if moreover the operator (id - op) is invertible. Although it would be very interesting to classify the generalized translation data we will adopt in this paper a more modest goal and show that the notion of generalized translation data encompass the relevant Vertex and IRF examples.

Ad W (1) 12 (ϕ 0 12 ) -1 • θ + 1 ) defined on (U + q (g) ⊗ U q (g) ⊗ F (0) (h)) c(

Basic examples of Quantum Dynamical coCycles

Quantization of Belavin-Drinfeld classical r-matrices

We show here that the formalism of Generalized Translation quadruple introduced in Definition 6 gives an explicit quantization of classical r-matrices associated to any Belavin-Drinfeld triple. We think that this construction simplifies the work of [START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF] in the case of a nilpotent generalized Belavin-Drinfeld triple.

Let T = (Γ 1 , Γ 2 , T ) be a Belavin-Drinfeld triple, we define ϕ 0 = 1 and set θ ± [x] = σ ± . The effective dynamics is therefore l = {0}. The non degeneracy condition on θ ±

[x] is implied by the nilpotence condition (44) of T, equation ( 52) is implied from the definitions of σ ± and equation ( 54) is a consequence of the fact that T preserves the scalar product.

It remains to compute S (1) such that all the axioms of a generalized Translation quadruple are satisfied.

Having defined S (1) = q s+m , with s ∈ 2 h, m ∈ Sym(h ⊗2 ), the relation (57) is strictly equivalent to the requirement that s is solution of (45) (m being not constrained by this relation).

Indeed, denoting Ω•

h = α,β∈Γ Ω αβ • ζ α ⊗ • ζ β , and s = α,β∈Γ s αβ • ζ α ⊗ • ζ β , the equation (57) is equivalent to (Ω αβ -2s αβ ) • ζ α ⊗ • ζ β + (Ω αβ + 2s αβ ) • ζ T (α) ⊗ • ζ β , e T (γ) ⊗ 1 = 0, ∀γ ∈ Γ 1 , i.e. (Ω αβ -2s αβ ) + (Ω T -1 (α)β + 2s T -1 (α)β ) = 0, ∀β ∈ Γ, ∀α ∈ Γ 2 .
Changing α to α ′ = T -1 (α) in the previous relation we obtain the relation (45), i.e.

(Ω T (α ′ )β -2s T (α ′ )β ) + (Ω α ′ β + 2s α ′ β ) = 0, ∀β ∈ Γ, ∀α ′ ∈ Γ 1 .
It remains to show that, having fixed a particular Belavin-Drinfeld quadruple (T , s), there

always exists m = α,β∈Γ m αβ • ζ α ⊗ •
ζ β solution of (56), i.e. such that

s αβ + m αβ = 0, α ∈ Γ \ Γ 2 , β ∈ Γ 2 , (83) 
s αβ + m αβ = 0, β ∈ Γ \ Γ 1 , α ∈ Γ 1 , (84) 
s αβ + m αβ = s T (α)T (β) + m T (α)T (β) , α ∈ Γ 1 , β ∈ Γ 1 . ( 85 
)
Let us describe the set of solutions of these equations and show that it is not empty. We define

A 0 1 = {(α, β), β ∈ Γ \ Γ 1 , α ∈ Γ 1 }, A 0 2 = {(α, β), α ∈ Γ \ Γ 2 , β ∈ Γ 2 }, (86) 
A 0 = A 0 1 ∪ A 0 2 , B 0 = A 0 ∩ (Γ 1 × Γ 1 ), (87) 
B k+1 = {(T (α), T (β)), for (α, β) ∈ B k ∩(Γ 1 × Γ 1 )}. ( 88 
)
Note that, since ((Γ

\ Γ i ) × Γ i ) ∩ (Γ i × (Γ \ Γ i )) = ∅ for i = 1, 2, (β, α) / ∈ A 0 if (α, β) ∈ A 0 . Therefore, ∀(α, β) ∈ A 0 , we have m αβ = -s αβ , and m βα = m αβ .
The condition (45) implies that, ∀α, β ∈ Γ 1 , s αβ = s T (α)T (β) . Indeed,

s αβ -s T (α)T (β) = (s αβ -s T (α)β ) -(s βT (α) -s T (β)T (α) ) = 1 2 (α + T (α), β) - 1 2 (β + T (β), T (α))) = 1 2 (α, β) - 1 2 (T (β), T (α)) = 0. ( 89 
)
Because of this property, we have m T (γ)T (δ) = m γδ , for (γ, δ) ∈ B k ∩ (Γ 1 × Γ 1 ). For any (γ, δ) ∈ B k , there exists (α, β) ∈ B 0 such that γ = T k (α), δ = T k (β); as a result, m γδ = m αβ = -s αβ . Compatibility of our definitions has to be checked as soon as there exist k < l such that B k ∩ B l = ∅. Indeed, for such k < l, let (γ, δ) ∈ B k ∩ B l , and (α, β), (α ′ , β ′ ) two elements of B 0 such that γ = T k (α) = T l (α ′ ), δ = T k (β) = T l (β ′ ). To be consistent, our definition requires that s αβ = s α ′ β ′ . This relation is satisfied since α ′ = T k-l (α), β ′ = T k-l (β) and s αβ = s T k-l (α)T k-l (β) . Note finally that, due to the nilpotency of T , there exists an integer N such that B N = ∅. Therefore m αβ and m βα are fixed for (α, β) in A 0 (∪ N k=1 B k ), the other coefficients being unconstrained.

As a conclusion, the previous study shows that it is possible to build a generalized translation quadruplet associated to any Belavin-Drinfeld Quadruple leadind to an explicit quantization of the corresponding classical r-matrix.

Let us now give the explicit expression of J in the cases of the Belavin-Drinfeld triples already discussed.

-Γ 1 = Γ 2 = ∅:

We define θ ±

[x] = i • ǫ, where ǫ is the counit and i is the trivial embedding of C in U q (g), and ϕ 0 = 1, S (1) = q s , s ∈ 2 (h). We have J(x) = 1 and l = {0}.

-Cremmer-Gervais's solution:

Let g = A r with r ≥ 2 and let us choose the following generalized translation datum:

θ + [x] (e i ) = e i-1 , θ + [x] (e 1 ) = 0, θ - [x] (f i ) = f i+1 , θ - [x] (f r ) = 0, ( 90 
) θ + [x] (ζ αi ) = ζ αi-1 , θ + [x] (ζ α1 ) = 0, θ - [x] (ζ αi ) = ζ αi+1 , θ - [x] (ζ αr ) = 0, (91) 
and

ϕ 0 = 1, S (1) = q r-1 i=1 ζ α i ⊗ζ α i+1 , ϕ + = q -ζ α r-1 ⊗ζ αr , ϕ -= q -ζ α 1 ⊗ζ α 2 . ( 92 
)
The effective dynamics is l = {0}. The expression of J(x) is the same as the one given in [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF].

Standard IRF solutions

We define A(h) the commutative Hopf algebra generated by x h i , h ∈ h + C1, with i = 1, . . . , r in the finite case and i = 0, 1, . . . , r, d in the affine case, and with the relations

x h+h ′ i = x h i x h ′ i . We define B(x) ∈ A(h) ⊗ U q (h) by B(x) =        k 2 r j=1 x 2 • ζ α j j if g is of finite type, k 2 r j=0 x 2ζ α j j x 2ζ d d if g is of affine type. (93)
It satisfies the relations:

∆(B(x)) = B 1 (x)B 2 (x)K 2 , B 1 (xq h2 ) = B 1 (x)K 2 . (94) 
The standard IRF type solution is obtained with the following non degenerate generalized translation datum:

θ ± [x] = Ad ±1 B(x) , ϕ + = K 2 , ϕ -= ϕ 0 = K -2 , S = 1. ( 95 
)
If g is a simple finite dimensional Lie algebra, then l = h, and the generalized linear difference equation is the ABRR equation has been written and solved in [START_REF] Arnaudon | Universal Solutions of Quantum Dynamical Yang-Baxter Equations[END_REF].

In the case where g is an affine algebra, this solution does not depend on x d because x 2ζ d d commutes with R. As a result this solution, which is a priori of effective dynamics h, is also of

effective dynamics l = ⊕ r i=0 Ch i = • h ⊕ Cc.
The formula (63) for the twist J(x) in the affine case has been obtained in [START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF].

Belavin-Baxter Elliptic Vertex solutions

In the work [START_REF] Etingof | Traces of intertwiners for quantum groups and difference equations, II[END_REF], the quantization of r-matrices associated to a generalized Belavin-Drinfeld triplet of an affine Lie algebra when T is an automorphism has been constructed. It is possible to obtain a Vertex solution (i.e. with the dynamics reduced to l = Cc) in the affine type case only if the corresponding Belavin-Drinfeld triple is such that Γ 1 = Γ 2 = Γ and T does not leave invariant any proper sub-diagram of the Dynkin diagram. As a consequence, in this case, g = A

(1) r and T = T ℵ has to be a rotation sending node ⌊i⌋ on node ⌊i + ℵ⌋, with 1 ≤ ℵ ≤ r prime to (r + 1), where ⌊k⌋ denotes the unique element of {0, . . . , r} congruent to k mod (r + 1).

We define such a datum in the following way. We denote p(x) ∈ D -(h) the component of x along q c , i.e. p(x) = r i=0 x i . The morphisms θ ±

[x] are defined as

θ ± [x] = Ad D ± (p(x)) • σ ± , with D + (p) = p 2̟ r+1 , D -(p) = p -2̟ r+1 q -2 r+1 c̟ , (96) 
and σ ± are defined as

σ + (e i ) = e ⌊i-ℵ⌋ , σ -(f i ) = f ⌊i+ℵ⌋ , (97) 
σ + (ζ αj ) = ζ α ⌊j-ℵ⌋ + v j ζ d , σ -(ζ αj ) = ζ α ⌊j+ℵ⌋ -v ⌊j+ℵ⌋ ζ d , σ ± (c) = c, (98) 
with

v j = 1 2(r + 1) j(r + 1 -j) -⌊j -ℵ⌋(r + 1 -⌊j -ℵ⌋) . (99) 
With this value of v j we have (σ

± ) ⊗2 (Ω h ) = Ω h . Note that (98) is equivalent to σ ± (h αi ) = h α ⌊i∓ℵ⌋ , σ ± (̟) = ̟. (100) 
Note that, because of the presence of p ± 2̟ r+1 in the definition of D ± , θ ± actually maps U q (b ± ) to

U q (b ± ) ⊗ D ± (h), where D ± (h) = C[x ∓2 0 , . . . , x∓2 r ] with xr+1 i = x i .
We will therefore prove that the axioms of a generalized datum are satisfied after having replaced D ± (h) by D ± (h), which corresponds to a minor generalization of the axioms. The only non trivial property is the proof non degeneracy of this generalized datum. The restriction of (θ -id) to U ± (g) ⊗ F (0) (h) is invertible as a direct consequence of the identity

(1 -θ -) -1 = +∞ n=0 (θ -) n = r n=0 Ad n D -(p) 1 -Ad r+1 D -(p) (σ -) n . (101) 
We will also choose:

ϕ 0 = q -2 r+1 ̟⊗c , ϕ + = 1, ϕ -= q -2 r+1 (̟⊗c+c⊗̟) . (102) 
One can proceed analogously for the non degeneracy condition on θ + .

Concerning the expression of S

(1)

12 , a precise analysis of the constraints leads to the solution (123) as we will see. In the particular case ℵ = 1, it gives log q (S (1)

12 ) = - r i=0 ζ αi ⊗ (ζ αi -ζ α ⌊i+1⌋ ) + r i=0 ⌊i⌋ r + 1 (ζ αi ⊗ c -c ⊗ ζ α ⌊i+1⌋ ) - 1 2(r + 1) (̟ ⊗ c + c ⊗ ̟). (103) 
In order to explain the choice of such a datum, it is convenient to introduce the following notations.

Let κ 0 , . . . , κ r , κ d be the canonical basis vectors of C r+2 , and κ 0 , . . . , κ r , κ d the dual basis vectors. Let (E ν µ ) µ,ν∈{0,...,r,d} be the canonical basis of (r + 2) × (r + 2) matrices defined by

E ν µ = κ µ t κ ν , obeying E ν µ E σ ρ = E σ µ δ ν,ρ .
We denote by I r+2 the identity matrix and by P n the projectors

P n = n i=0 E i i . The Cartan matrix of A (1)
r is extended to an (r + 2)

× (r + 2) matrix A = r i,j=0 a ij E j i = 2P r+1 -Y -t Y where Y = r i,j=0 δ i,⌊j-1⌋ E j i . We define A = A + E 0 d + E d 0 . (104) 
Let Θ ± be the matrix of σ ± in the basis ζ α0 , . . . , ζ αr , ζ d . Let σ + defined on h as in (98), we therefore have:

Θ + = Y ℵ + E d d + r i=0 v i E i d = Y ℵ + E d d + κ d . t v, where t v = r i=0 v i κ i . We now
prove that the corresponding choice of v i is equivalent to (σ + ) ⊗2 (K) = K. This last condition is equivalent to

Θ + A t Θ + = A, (105) 
which reduces to the following equations on v:

Av = ( t Y ℵ -I r+2 )κ 0 and t v( t Y ℵ + I r+2 )κ 0 = 0. ( 106 
)
In order to solve these equations, let us introduce

T = - 1 2(r + 1) r l=1 l(r + 1 -l)Y l . ( 107 
)
We have

AT = T A = Π, with Π = P r+1 - 1 r + 1 w. t w, (108) 
where w = r i=0 κ i and Π is an orthogonal projector, commuting with Y , of kernel Cw ⊕ Cκ d . As a consequence, we obtain that the solution of the relations (106) is given by

v = T ( t Y ℵ -I r+2 )κ 0 = - 1 2(r + 1) r j=0 ⌊j -ℵ⌋(r + 1 -⌊j -ℵ⌋) -j(r + 1 -j) κ j , (109) 
which justifies the choice (99) for v j . The action (100) of σ + on h αj , 0 ≤ j ≤ r, and on ̟ follows then directly from the fact that

Θ + A i µ = r j=0 Y ℵ i j A + E d 0 j µ , µ ∈ {0, . . . , r, d}, i ∈ {0, . . . , r}, (110) 
(Θ + -I r+2 )w = 0. ( 111 
)
Note that the kernel of Θ + I r+2 is generated by κ d and w.

Let ϕ 0 be given as in (102). We now show that S

12 exits and give an explicit expression of it. Let us denote log q (S (k) ) = µ,ν=0,...,r,d

ς (k) µ ν ζ αµ ⊗ ζ αν , S (k) = µ,ν=0,...,r,d ς (k) µ ν E ν µ , ∀k ∈ N. (112) 
The equation ( 60) can be solved as

W (0) 12 = K 12 (ϕ 0 12 ϕ 0 21 ) 1/2 , (113) 
which can be rewritten as:

(1 -Θ + )S (0) = A + Φ, with Φ = - 1 (r + 1) (κ d . t w + w.κ d ). ( 114 
)
Because t w(1 -Θ + ) = 0, we must have t w(A + Φ) = 0, which is the case for the choice ϕ 0 = q -2 r+1 ̟⊗c . In order to solve (114), let us define

Ω (ℵ) = - 1 r + 1 r l=1 lY ℵl , (115) 
then

Ω (ℵ) (1 -Y ℵ ) = (1 -Y ℵ )Ω (ℵ) = r r + 1 P r+1 - 1 r + 1 r l=1 Y ℵl = Π. ( 116 
)
(1 -Θ + ) admits the following quasiinverse

(Ω (ℵ) -κ d . t v (Ω (ℵ) ) 2 )(1 -Θ + ) = (1 -Θ + )(Ω (ℵ) -κ d . t v (Ω (ℵ) ) 2 ) = Π (ℵ) , (117) 
where

Π (ℵ) = Π -κ d . t v Ω (ℵ) (118) 
is a projector commuting with Θ + with kernel reducing to Cw ⊕ Cκ d . As a consequence, we have

Π (ℵ) S (0) = (Ω (ℵ) -κ d . t v (Ω (ℵ) ) 2 )(A + Φ). ( 119 
)
A direct computation shows that the right handside of the previous equation satisfies

Θ + Π (ℵ) (Ω (ℵ) -κ d . t v (Ω (ℵ) ) 2 )(A + Φ) t Θ + = Π (ℵ) (Ω (ℵ) -κ d . t v (Ω (ℵ) ) 2 )(A + Φ) , ( 120 
)
which is equivalent to θ + [x]1 (S (0) 12 ) = θ - [x]2 (S (0) 12 
). As a result we obtain that a solution of ( 56) and ( 57) is

S (0) = Ω (ℵ) A + κ d . κ 0 - 1 r + 1 t w Ω (ℵ) + Ω (ℵ) κ 0 - 1 r + 1 w .κ d + κ 0 T Ω (ℵ) κ 0 E d d . (121)
However, any element of the form Z = (x w. t w + y κ d . t w + z w.κ d + t κ d .κ d ), for x, y, z, t ∈ C, is such that Π (ℵ) Z = 0 and Θ + Z t Θ + = Z, and therefore can be freely added to the previous choice of S (0) . Using the basic property stating that Ω (ℵ) w = t Ω (ℵ) w = -r 2 w we can choose a simpler expressions for S (0) , for example

S (0) = Ω (ℵ) A + κ d .κ 0 Ω (ℵ) + Ω (ℵ) κ 0 .κ d . (122) 
However, we will choose x = y = z = 0 and t = -(κ 0 T Ω (ℵ) Y ℵ κ 0 ) in order to obtain the following expression for S (1)

S (1) = Θ + S (0) = Y ℵ Ω (ℵ) A + κ d .κ 0 Π Y ℵ Ω (ℵ) + Y ℵ Ω (ℵ) Π κ 0 .κ d . ( 123 
)
This special choice of S (1) satisfies

A + S (1) + t S (1) = 0, i.e. K S (1) 12 S 
(1)

21 = 1 ⊗ 1. ( 124 
)
It will be convenient to decompose S

(1)

12 as follows:

S (1) 12 = S(1)
12 O

(1)

12 P

(1)

12

Q (1) 12 , (125) 
with S(1)

12 = q r i,j=0 (Y ℵ Ω (ℵ) A) i j ζ α i ⊗ζ α j , O (1) 
12 = q r i=0 (ΠY ℵ Ω (ℵ) ) 0 i ζ d ⊗ζ α i , (126) 
P (1) 12 = q r i=0 (ΠY ℵ Ω (ℵ) ) i 0 ζ α i ⊗ζ d , Q (1) 12 = 1. ( 127 
)
It is possible to compute explicitely S

(1)

12 , but we only give the expression of S(1) 12 in the general case: let ℵ ′ be the positive integer in [0, r] such that ℵℵ ′ = 1 mod (r + 1),

Y ℵ Ω (ℵ) A = - 1 r + 1 Y ℵ r l=0 lY ℵl (2 -Y -t Y ) = - 1 r + 1 Y ℵ r u=0 ⌊uℵ ′ ⌋Y u (2 -Y -t Y ) = r u=0 χ ℵ (u)Y u+ℵ , (128) 
with χ ℵ : Z → {0, 1, -1}, the function defined by

χ ℵ (u) = - 1 r + 1 (2⌊uℵ ′ ⌋ -⌊(u + 1)ℵ ′ ⌋ -⌊(u -1)ℵ ′ ⌋). ( 129 
)
In the particular case where ℵ = 1 we can simplify the expression of S (1) because Ω (1) A = P r+1 -t Y, and we find (103).

The universal formula for the twist J(x) has been first obtained by [START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF] in the case where ℵ = 1 and for any ℵ in [START_REF] Etingof | Traces of intertwiners for quantum groups and difference equations, II[END_REF].

If V is an irreducible finite dimensional representation of U q (g) then by a theorem of V. Chari and A. Pressley [START_REF] Chari | Quantum Affine Algebras and Their Representations[END_REF] this representation is such that q c is represented by 1 (there is no twisting by an outer automorphism sending q c to -q c because the presentation of U q (g) we are using contains the whole q h ). This theorem explains the terminology we are using: indeed in a finite dimensional irreducible representation of U q (g), c is represented by 0, we therefore obtain that the expression of the dynamical R-matrix of vertex type in irreducible finite dimensional representations has no dynamics and therefore is a matrix solution of the Yang-Baxter equation, which is called Vertex solution in the mathematical physics litterature.

Vertex-IRF transformation and Quantum Dynamical coBoundary Problem

Let R(x) (resp. R(x)) be End(V ⊗2 ) solutions of the Quantum Dynamical Yang-Baxter Equation. R(x) and R(x) are said to be related by a dynamical gauge transformation if there exists a meromorphic map M :

(C × ) dim h → GL(V ) such that R(x) M 1 (xq h2 ) M 2 (x) = M 2 (xq h1 ) M 1 (x) R(x). ( 130 
)
In the case where R(x) is of Vertex type and R(x) is of IRF type, this dynamical gauge transformation, if it exists, is called Vertex-IRF transformation.

We have the following proposition [START_REF] Etingof | Vertex-IRF transformations and quantization of dynamical rmatrices[END_REF] Proposition 1. If R is a solution of the QDYBE of effective dynamics l, and if M :

(C × ) dim h → GL(V ) is such that [M (x), h] = 0, ∀h ∈ l, then a sufficient condition for R(x) = M 2 (xq h1 ) M 1 (x) R(x) M 2 (x) -1 M 1 (xq h2 ) -1 (131)
to satisfy the QDYBE of effective dynamics l ⊃ l is that

[h 1 + h 2 , R 12 (x)] = 0, ∀h ∈ l. ( 132 
)
Little is known on the existence of dynamical gauge transformation between universal solutions of the QDYBE.

This problem is of course simpler to address in the classical setting: Let r, r : (C × ) dim h → g ⊗2 be given solutions of the CDYBE. These two solutions are said to be dynamically gauge equivalent if there exists m : (C × ) dim h → G, with Lie(G) = g, such that

r(x) = m 1 (x) -1 m 2 (x) -1 r(x) + 1 2 α∈Γ A α (x) ∧ h α m 1 (x) m 2 (x), ( 133 
)
where A = α∈Γ A α dx α is a flat connection defined as

A α = x α (∂ α m)m -1 ∈ g.
But even in the classical case little is known. We can only state two important results related to this problem:

1) In the case where g is of finite type, a classification of CDYBE of effective dynamics l, where l contains a regular semi simple element, up to dynamical gauge transformation subject to the constraint that m(x) ∈ L has been obtained in [START_REF] Schiffmann | On classification of dynamical r-matrices[END_REF] and is in one to one correspondence with generalized Belavin-Drinfeld Triple.

2) The theorem of [START_REF] Balog | Classical r-matrix and exchange algebra in WZNW and Toda theories[END_REF]: if r is the standard solution of the CDYBE associated to g (l = h), then there exists a dynamical gauge transformation connecting r to r with l = {0} if and only if g = A r and r is the Cremmer-Gervais solution.

A partial solution to the quantum version of the above results is known: The explicit quantization of the solutions of the CDYBE associated to any generalized Belavin-Drinfeld triple of a finite dimensional simple Lie algebra has been done in [START_REF] Etingof | Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras[END_REF].

The construction of the universal Vertex-IRF transform between the universal standard solution of the QDYBE and the universal Cremmer-Gervais solution has been done in our previous work [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF].

Instead of working at the level of solutions of the QDYBE, we can also formulate the notion of dynamical gauge transformation at the more fundamental level of solutions of the QDCE.

Let F (x), F (x) be Universal Quantum Dynamical Cocycles. F (x) and F (x) are said to be related by a dynamical gauge transformation if there exists M (x) in a completion of (A⊗ U q (g)), with A a commutative algebra containing

F (0) (h) such that M (x) is invertible, (134) 
F (x) = ∆(M (x)) F (x) M 2 (x) -1 M 1 (xq h2 ) -1 . ( 135 
)
This definition is formal at the present time because the product of the right handside has to be defined. Nonetheless this formal definition implies that if π is a finite dimensional h-semisimple representation such that π(M (x)) is meromorphic then the associated solutions R(x), R(x) of the QDYBE are related by this gauge transformation.

In our previous work [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF], we studied the case where g is finite dimensional and F is constant (l = {0}). In that case, such a dynamical gauge transformation M was called a Quantum Dynamical coBoundary.

By extension, if g is of affine type, a dynamical gauge transformation relating an IRF type solution F (x) of the QDCE and a solution F (x) of the QDCE with effective dynamics l = Cc will be called a generalized Quantum Dynamical Coboundary. A generalized Dynamical coBoundary is of course a Vertex-IRF transform.

We now precise the meaning of the Generalized Quantum Dynamical coBoundary.

Definition 10. Let F (x), F (x) ∈ (U q (n + ) ⊗F (2) (h) ⊗U q (n -)) c , zero degree solutions of the quantum dynamical coCycle equation, an element M (x) ∈ (F (0) (h) ⊗ U q (g)) c(op) such that (M (x) ∅,∅ ) is invertible, is said to be a generalized Quantum Dynamical coBoundary, if the following equation hold:

∆(M (x)) F (x) = F (x)M 1 (xq h2 )M 2 (x), ( 136 
)
in the sense that:

∀γ, γ ′ ∈ P, (ι + γ ⊗ ι - γ ′ ) ∆(M (x)) F (x) = (ι + γ ⊗ ι - γ ′ ) F (x)M 1 (xq h2 )M 2 (x) . ( 137 
)
Due the zero degree property of F (x) and

F (x), (id ⊗ ι - γ ′ )(∆(M (x)) F (x)) is a well defined element of (F (0) (h) ⊗ U q (g)) c ⊗ (F (0) (h) ⊗ U q (b + )) c , whereas (ι + γ ⊗ id)(F (x)M 1 (xq h2 )M 2 (x)) is a well defined element of (F (0) (h) ⊗ U q (b -)) c ⊗ (F (0) (h) ⊗ U q (g)) c .

Gauss Decomposition of Generalized Quantum Dynamical coBoundary

Let F (x) and J(x) be quantum dynamical cocycles associated respectively with the generalized translation data (θ + , θ -, ϕ 0 , ϕ + , ϕ -, S (1) ) of Restricted IRF type, and (θ + , θ -, ϕ 0 , ϕ + , ϕ -, S (1) ) of Restricted Vertex type. We will prove in this section a generalization of our previous result [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF] giving sufficient conditions for the existence of a Generalized Quantum Dynamical Coboundary between these quantum Dynamical Cocycles.

Let

M (0) (x) ∈ A(h) ⊗ U q (h) and C [±1] (x) ∈ 1 ⊕ F 0 (h) ⊗ U ± q (g) c , we define M (±) (x) ∈ 1 ⊕ F 0 (h) ⊗ U ± q (g) c by M (±) (x) = +∞ k=1 C [±k] (x) ±1 , with C [+k] (x) = θ + [x] k-1 C [+1] (x) , C [-k] (x) = θ - [x] ) k-1 C [-1] (x) . (138) 
We define

M (x) ∈ A(h) ⊗ F (0) (h) ⊗ U q (g) c as M (x) = M (0) (x) M (-) (x) -1 M (+) (x). (139) 
Let Γ (±) such that log q (Γ (±) ) ∈ h ⊗2 and define

Λ (+) 12 = W (1) 12 θ + [x]1 K -1 Γ (+) 21 , (140) Λ 
(-) 12 = K Γ (-) 21 . (141) 
Theorem 5. We assume that the previous F (x) and J(x) are associated to non degenerate generalized translation datum. The following algebraic relations on M (0) (x) and C [±1] (x) are sufficient conditions to ensure that M (x) is a solution of the generalized Quantum Dynamical coBoundary Equation:

∆ M (0) (x) = S (1) 12 S 
(1) -1 12

M (0) 1 (xq h2 ) M (0) 2 (x), (142) 
∆ C [±1] (x) = Ad Γ (±) 12 C [±1] 1 (x) Ad Λ (±) 12 C [±1] 2 (x) , (143) 
C [±1] 1 (xq h2 ) = Ad [S (1) -1 12 Γ (±) 12 ] C [±1] 1 (x) , (144) 
Ad Λ (-) 12 C [-1] 2 (x) Ad Γ (+) 12 C [+1] 1 (x) W (1) 
12 Ad -1

ϕ 0 12 • θ + [x]1 R = θ - [x]2 R Ad Γ (+) 12 C [+1] 1 (x) W (1) 
12

Ad θ + [x]1 (Λ (-) 12 ) C [-1] 2 (x) . (145) 
Proof: From the property (142) of M (0) (x) ∈ U q (h) and the zero h-weight property of F (x), it results that M (x) satisfies the generalized dynamical coBoundary equation if and only if the equality U (x) = V (x) holds with

U (x) = ∆(M (+) (x)) J 12 (x) M (+) 2 (x) -1 S (1) -1 12 , (146) 
V (x) = ∆(M (-) (x)) F 12 (x) S (1) -1 12 S (1) 12 M 
(-)

1 (xq h2 ) -1 M (+) 1 (xq h2 ) M (-) 2 (x) -1 S (1) -1 12 . (147) 
Note that because of the degree zero property of J(x) and F (x), U (x) (resp. V (x)) are well defined elements of (U q (b + )⊗U q (g)⊗F (0) (h)) c(op) (resp. (U q (g)⊗U q (b -)⊗F (0) (h)) c(op) . Because of their expressions, it is clear that

U (x) ∈ 1 ⊗2 ⊕ (U + q (g) ⊗ U q (g) ⊗ F (0) (h)) c(op) . (148) 
Note however that we do not have

V (x) ∈ 1 ⊗2 ⊕ (U q (g) ⊗ U - q (g) ⊗ F (0) (h)) c(op) . (149) 
Note that if the theorem holds, i.e. U (x) = V (x), it will constrain U (x) and V (x) to belong to (U q (n + ) ⊗F (2) (h) ⊗U q (n -)) c . The proof of the theorem is decomposed in several lemmas.

We first show that U (x) satisfies a linear equation and deduce from it the triangular property of U (x).

Lemma 1. U (x) obeys the following linear relation:

U 12 (x) = Ad Γ (+) 12 C [+1] 1 (x) Ad [W (1) 12 (ϕ 0 12 ) -1 ] • θ + [x]1 R U 12 (x) . (150) 
Proof: From the definition (146) of U (x), one has,

Ad -1 ϕ 0 12 • θ + [x]1 R 12 U 12 (x) = Ad -1 ϕ 0 12 • θ + [x]1 R 12 ∆(M (+) (x)) J 12 (x) M (+) 2 (x) -1 S (1)-1 12 = Ad -1 ϕ 0 12 • θ + [x]1 K -1 ∆ ′ (M (+) (x)) K W (1) -1 12 × W (1) 
12 Ad -1

ϕ 0 12 • θ + [x]1 R 12 J 12 (x) × Ad -1 ϕ 0 12 • θ + [x]1 M (+) 2 (x) -1 S (2)-1 12 
= Ad -1

ϕ 0 12 • θ + [x]1 K -1 ∆ ′ (M (+) (x)) K W (1) -1 12 × J 12 (x) M (+) 2 (x) -1 S (1)-1 12 W (1) 12 , 
in which the last equality follows from (77) and from the fact that J(x) satisfies the linear equation (66). Therefore, it remains to prove that

∆(M (+) (x)) = Ad Γ (+) 12 C [+1] 1 (x) Ad [W (1) 12 (ϕ 0 12 ) -1 ] • θ + [x]1 K -1 ∆ ′ (M (+) (x)) K . (151) 
Using (143), and defining

ϕ [±k] = k i=1 θ ± [x] ⊗ θ ± [x] i-1 (ϕ ± ), (152) 
we have (from eq (76))

∆(M (+) (x)) = +∞ k=0 Ad ϕ [+k] 12 • θ + [x] ⊗ θ + [x] k ∆ C [+1] (x) = +∞ k=0 P [+k] 12 (x) P [+k] 12 (x) ,
with, for k ≥ 0,

P [+k] 12 (x) = Ad ϕ [+k] 12 • θ + [x] ⊗ θ + [x] k Ad Γ (+) 12 C [+1] 1 (x) , (153) 
P [+k] 12 (x) = Ad ϕ [+k] 12 • θ + [x] ⊗ θ + [x] k Ad Λ (+) 12 C [+1] 2 (x) . (154) 
The infinite product expression of ∆ ′ (M (+) (x)) can be written in a similar way and can be reorganized as

∆ ′ (M (+) (x)) = +∞ k=0 P [+k] 21 (x) P [+k] 21 (x) = P [+0] 21 (x) +∞ k=1 P [+(k-1)] 21 (x) P [+k] 21 (x) . 
which is equivalent to the hexagonal relation (145). Therefore, U(x) and U (x) are both in 1 ⊗2 ⊕ (U + q (g) ⊗ U q (b) -⊗ F (0) (h)) c and obey the same linear relation (150). From Lemma 2, this equation admits a unique solution, which means that

U (x) = U (x). Lemma 5. U (x) -1 V (x) is an element of 1 ⊗2 ⊕ (U q (g) ⊗ U - q (g) ⊗ F (0) (h)) c
which obeys the linear relation

U 12 (x) -1 V 12 (x) = Ad S (1)
M (x) of the Quantum Dynamical Coboundary Equation along the line proposed in Theorem 5. We therefore have to determine C [±1] (x) and M (0) (x) such that the set of axioms (142)-(145) are satisfied.

From now on, we will denote, similarly as in our previous article [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF],

C [+] (x) := C [+1] (x), C [-] (x) := (θ - [x] ) -1 (C [-1] (x)) = Ad B(x) (C [-1] (x)
), and we will choose

Λ (±) 12 = S (1) 
12 , Γ

(±) 12 = K ±1 S (1) 21 , (171) 
as a special solution of ( 140)-( 141). The conditions (142)-(145) become

∆(M (0) (x)) = S (1) -1 12 
M (0) 1 (xq h2 ) M (0) 2 (x), (172) 
K -1 12 ∆(C [±] (x)) K 12 = Ad S (1)
21

C [±] 1 (x) Ad [K ∓1 12 S (1) 12 ] C [±] 2 (x) , (173) 
C [±] 1 (xq h2 ) = Ad [S (1) -1 12 S (1) 
21 K12] C

[±]

1 (x) , (174) 
C [-] 2 (x) C [+] 1 (xq h2 ) Ad B2(x) • θ - [x]2 S (1) -1 12 R 12 S (1) 12 
= S

(1) -1 12

R 12 S (1) 12 C 
[+] 1 (xq h2 ) C [-] 2 (x). ( 175 
)
Our aim is now to solve this set of equations in the case where g = A

r , the A r case was already done in [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF].

Gauss decomposition of Quantum Dynamical Coboundaries and

Sevostyanov's characters in the U q (A

r ) standard case

In the following, we develop a method enabling us to find solutions to the system of equations ( 172)-(175), in order to obtain a universal Vertex-IRF transformation. We will show that, with the use of characters of a twisted version of U q (n ± ), which first appeared in [START_REF] Sevostyanov | Quantum deformation of Whittaker modules and Toda lattice[END_REF], we can effectively construct C [±] (x) satisfying automatically the equations (173), (174). This is a serious improvement of our previous work [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF] where the formulas for C [±] (x) were simply guessed. The hexagonal relation is then proved, when it holds, by verifying it in tensor products of extended evaluation representations.

Definition 11. Let ω ∈ h ⊗2 , we define the algebra U q (n ± ) ω as follows:

• U q (n + ) ω is the subalgebra of U q (b + ) generated by {ẽ i = q -(αi⊗id)(ω) e i , i = 0, . . . , r}.

• U q (n -) ω is the subalgebra of U q (b -) generated by { fi = f i q (αi⊗id)(ω) , i = 0, . . . , r}.

The introduction of these algebras aims at fixing a bad property of U q (n + ) compared to U (n + ): U q (n + ) does not admit any non trivial one dimensional representations. This is in far contrast with the fact that any (a i ) ∈ (C × ) r+1 defines a character of U (n + ) by assigning e i → a i . We will see that there exists ω such that the space of characters of U q (n ± ) ω is C r+1 .

A property, which is trivial to show but will be important in the sequel, is:

∀γ ∈ P, q ω (e γ ⊗ f γ )q -ω ∈ U q (b + ) ⊗ U q (n -) ω , (176) 
q ω (f γ ⊗ e γ )q -ω ∈ U q (b -) ⊗ U q (n + ) ω . ( 177 
)
Lemma 6. Let us suppose that there exists M (0) (x) ∈ A(h) ⊗ U q (h) invertible satisfying (172) and the additional condition

M (0) 1 (xq h2 ) 2 = M (0) 1 (x) 2 S (1) 12 S 
(1) -1 21

K -1 , (178) 
and assume that ǫ + is a character of U q (n -) ω-, with ω -= log q (K 12 S

(1) 21 ), and that ǫ -is a character of U q (n + ) ω+ , with ω + = log q (S (1) 21 ). Then the following elements

C [+] (x) = M (0) (x) -2 (id ⊗ ǫ + ) K 12 S (1) 21 R 12 K -1 12 S (1) -1 21 
M (0) (x) 2 (179) = (id ⊗ ǫ + ) M (0) 2 (x) 2 S (1) -1 12 R 12 S (1) 12 M 
(0)

2 (x) -2 , (180) 
C [-] (x) = M (0) (x) -2 (id ⊗ ǫ -) S (1) 
21 R -1 21 S

(1) -1 21

M (0) (x) 2 (181) = (id ⊗ ǫ -) M (0) 2 (x) 2 K -1 12 S (1) -1 12 R -1 21 S (1) 
12

K 12 M (0) 2 (x) -2 ), (182) 
obey the properties (173), (174). We will denote in the following a

+ i = ǫ + ( fi ) and a - i = ǫ -(ẽ i ).
Proof: Let us first remark that the expressions (180) and (179) (resp. ( 181) and ( 182)) are equivalent due to the weight zero property of the R-matrix and to the formulae (172) and (178).

Using the quasitriangularity and the weight zero property of the R-matrix, it is easy to show that

(∆ ⊗ id) S (1) -1 12 R 12 S (1) 12 = Ad [K12 S (1)
21 ] S

(1) -1 13

R 13 S (1) 13 
Ad S

(1) -1 23

R 23 S (1) 23 , (183) 
(∆ ⊗ id) S (1) 
21 R -1 21 S

(1) -1 21

= Ad S (1) -1 12 S (1) 
31 R -1 31 S

(1) -1 31

Ad [K12 S (1) -1 21 ] S (1) 
32 R -1 23 S

(1) -1 32

.

(184)

Applying (id ⊗2 ⊗ (ǫ + • Ad M (0) (x) -2
)) to (183) and using (180) one obtains the equation ( 173) on C + (x). Analogously using (184) with ( 172) and (181) we obtain the equation (173) on C -(x). Using (181), ( 179) and (178), we deduce (174).

Lemma 7. An invertible solution M (0) (x) ∈ A[h] ⊗ U q (h) solution of the equations (172), ( 178) is given by:

M (0) (x) 2 = k -1 m(S (1)-1 ) µ=0,...,r,d x -ζ αµ +[id⊗ν(ζ αµ )-ν(ζ αµ )⊗id](log q (S (1) )) µ . ( 185 
)
This expression can be simplified when the relation KS

(1) 21 = 1 ⊗2 holds and we have

M (0) (x) 2 = µ=0,...,r,d x -ζ αµ +[id⊗ν(ζ αµ )-ν(ζ αµ )⊗id](log q (S (1) )) µ . ( 186 
)
We now prove

Lemma 8. Let ω = µ,ν=0,...,r,d ω µ,ν ζ αµ ⊗ ζ αν ∈ h ⊗2 .
The space of characters of U q (n ± ) ω is in bijection with C r+1 when the following condition is satisfied ∀i, j ∈ Γ, i = j,

1-aij k=0 q k(ωji-ωij ) (-1) k 1 -a ij k q = 0, ( 187 
)
which is equivalent to ω ijω ji ∈ {a ij , a ij + 2, . . . , -a ij }.

Proof: Trivial computation from the Serre's relations.

Proposition 2. Let us assume that g = A

r , ℵ = 1, and let S (1) be given by (103). Let us define ω -= log q (K 12 S

(1) 21 ) =log q (S (1) 12) and ω + = log q (S (1) 21 ), then the space of characters of U q (n -) ω-and U q (n + ) ω+ are both in bijection with C r+1 .

Proof: In particular, when a ij = 0, the condition of the previous lemma is satisfied if (ω ± ) ij = 0. From the explicit expression of S (1) this condition holds.

In particular when ℵ = 1 we obtain

ẽi = q (ζ α i -ζ α ⌊i-1⌋ + ⌊i-1⌋ r+1 c+ 1 2(r+1) c) e i , fi = f i q (ζ α i -ζ α ⌊i+1⌋ -⌊i⌋ r+1 c+ 1 2(r+1) c) . (188) 
It is not clear at all whether the previous construction now allows us to solve the hexagonal relation (175). The meaning of this relation is still mysterious for us and it is clear, at least in the finite dimensional situation [START_REF] Buffenoir | Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras[END_REF], that the hexagonal relation can only be verified for very specific vertex Generalized Translation Data and for specific g (we remind the reader that in the finite dimensional case g has to be A r whereas the vertex Generalized Translation Data is necessarily of Cremmer-Gervais type).

We will show that the hexagonal relation can be proved in the case g = A

r and when J(x) is the Belavin-Baxter solution with ℵ = 1. It would be interesting to extend the theorem of Balog-Dabrowski-Feher to the affine case. We conjecture the following result: Conjecture 1. Let g be of affine type and F (x) be the standard IRF solution. There exists a generalized quantum dynamical coboundary between F (x) and J(x) of vertex type if and only if g = A In the rest of this article, we will restrict ourselves to the study of the case g = A

(1) r and of the vertex Generalized Translation Datum (θ + , θ -, ϕ 0 , ϕ + , ϕ -, S (1) ) associated to the Belavin-Baxter solution with ℵ = 1.

Remark 5.1. C [±] (x), defined as in Lemma 6, belongs to (F (0) (h ′ ) ⊗ U ± (g ′ )) c . Indeed, since for a ∈ U q (g), Ad a leaves U q (g ′ ) invariant, it is sufficient to show that (id ⊗ ǫ -) S and (id ⊗ ǫ + ) K 12 S

(1)

21 R 12 K -1 12 S

(1) -1 21

belong to U q (g ′ ). Indeed one has Ad S (1)

21

(f i ⊗ e i ) = f i ⊗ q ζ α i -ζ α ⌊i-1⌋ + ⌊i-1⌋ r+1 c+ 1 2(r+1) c q -ζ α i +ζ α ⌊i+1⌋ + ⌊i⌋ r+1 c-1 2(r+1) c ⊗ e i , Ad KS (1)
21

(e i ⊗ f i ) = q -ζ α i +ζ α ⌊i-1⌋ -⌊i-1⌋ r+1 c-1 2(r+1) c ⊗ f i e i ⊗ q ζ α i -ζ α ⌊i+1⌋ -⌊i⌋ r+1 c+ 1 2(r+1) c ,
and the elements -

ζ αi + ζ α ⌊i-1⌋ ∈ h ′ . We define U q (b ′ ± ) = U q (b ± ) ∩ U q (g ′ ).
Definition 12. For z ∈ C × , c ∈ C, we define the extended evaluation representations

Ev + (z,c) of U q (b ′ + ) and Ev - (z,c) of U q (b ′ -) by Ev + (z,c) (e i ) = ev z (e i ), Ev - (z,c) (f i ) = ev z (f i ), Ev ± (z,c) (h αi ) = ev z (h αi ), i = 1, . . . , r, Ev + (z,c) (e 0 ) = ev z (e 0 ), Ev - (z,c) (f 0 ) = ev z (f 0 ), Ev ± (z,c) (c) = c. For a n-tuple Z = z i , ci ) ∈ (C × × C) n we will denote n Ev ± Z = n i=1 Ev ± (zi,ci) . Let F (n) h ′ be the subfield of F (n) h generated by U q (h ′ ) ⊗n and D -(h ′ ) = C[x 2 0 , . . . , x 2 r ]. An element y ± (x) ∈ (U q (n ± ) ⊗ F (1)
h ′ ) c is said to be meromorphic if the series n Ev ± Z (y ± (x)) is a meromorphic function in the variables Z ∈ (C × × C) n , x ∈ (C × ) r for every n ≥ 1. An element y(x) ∈ (U q (n + ) ⊗F(h ′ ) ⊗2 ⊗U q (n -)) c is said to be meromorphic if the series (

n Ev + Z ⊗ m Ev - Z ′ )(y(x)) is a meromorphic function in the variables Z ∈ (C × × C) n , Z ′ ∈ (C × × C) m , x ∈ (C × ) r for every m, n ≥ 0.
We now show that it is sufficient to prove the hexagonal relation in any extended evaluation representation in order to prove it at the universal level.

Proposition 3. Let C [±] (x) ∈ 1 ⊕ (F (0) (h ′ ) ⊗ U ± q (g)) c
satisfying (173) and (174) and assume that Ev ± (C [±] (x)) are meromorphic functions, we define

W 12 (x) = C [+] 1 (xq h2 ) Ad B2(x) • θ - [x]2 S (1) -1 12 R 12 S (1) 12 C [-] 2 (x) -1 , W 12 (x) = C [-] 2 (x) -1 S (1) -1 12 R 12 S (1) 12 C [+]
1 (xq h2 ), W 12 (x) and W 12 (x) are meromorphic elements of (U q (n + ) ⊗F(h ′ ) ⊗2 ⊗U q (n -)) c .

If the meromorphic functions (Ev + ⊗ Ev -)(W 12 (x)) and (Ev

+ ⊗ Ev -)( W 12 (x)) are equal then W 12 (x) = W 12 (x).
This proposition is divided in three lemmas: From these relations, we deduce the following result: if

Lemma 9. Let C [±] ∈ 1 ⊕ (F (0) (h ′ ) ⊗ U ± q (g ′
(Ev + ⊗ m Ev -)(W 12 (x)) (resp. (Ev + ⊗ m Ev -)( W 12 (x))) is a meromorphic function then (Ev + 1 ⊗ m+1 E v -)(W 12 (x)) is a meromorphic function (resp. (Ev + ⊗ m+1 E v -)( W 12 (x))) is a meromorphic function). Moreover if (Ev + ⊗ m Ev -)(W 12 (x) -W 12 (x)) = 0 then (Ev + ⊗ m+1 E v -)(W 12 (x) -W 12 (x)) = 0. Similarly, from the relations (∆ ⊗ id)(W 12 (x)) = Ad [K 12 S (1) 21 ] W 13 (x) C [-] 3 (x) Ad S (1) 12 W 23 (x) , (∆ ⊗ id)( W 12 (x)) = Ad [K 12 S (1) 21 ] W 13 (x) C [-] 3 (x) Ad S (1) 12 W 23 (x) , we deduce that if ( n Ev + ⊗ Ev -)(W 12 (x)) (resp. ( n Ev + ⊗ Ev -)( W 12 (x))) is a meromorphic func- tion then ( n+1 Ev + ⊗ Ev -)(W 12 (x)) is a meromorphic function (resp. ( n+1 
Ev + ⊗ Ev -)( W 12 (x))) is a meromorphic function). Moreover if ( n Ev + ⊗ Ev -)(W 12 (x) -W 12 (x)) = 0 then ( n+1 Ev + ⊗ Ev -)(W 12 (x) -W 12 (x)) = 0.
As a result by induction on m, n, we obtain the result of the lemma. 

        , ( 189 
)
we have the following property, which is proved by a direct verification on the generators of U q (b ′ -) :

∀u ∈ U q (b ′ ± ), ∀z ∈ C × , ev z • σ ± (u) = Ad ∓1 ωz • ev z (u). ( 190 
)
Lemma 11. Let y ± ∈ (U q (n ± )⊗F (1) (h ′ )) c be meromorphic elements, if the meromorphic functions n Ev ± (y ± ) are zero for every n then y ± = 0. Let y ∈ (U q (n + ) ⊗F(h ′ ) ⊗2 ⊗U q (n -)) c a meromorphic element such that

( n Ev + ⊗ m
Ev -)(y) = 0 for all n, m ≥ 0, then y = 0.

Proof: Let J be the set of meromorphic elements y + of (U q (n + ) ⊗ F (1) (h ′ )) c such that n Ev ± (y ± ) are zero for every n. We first show that J ∩ (U q (n + ) ⊗ F (1) (h ′ )) = {0} implies that J = 0. Indeed let y + = γ∈P a γ e γ ∈ J with a γ ∈ F (1) (h ′ ), we therefore

γ∈P n i=1 Ev + (zi,ci) (a γ ) n i=1 Ev + (zi,ci) (e γ ) = 0. (191) 
If we develop this meromorphic function in power series in z 1 , . . . , z n and consider the term of total degree n 0 , because of the expression of the evaluation representation, it selects the elements γ such that Λ 0 , γ = n 0 , therefore we obtain γ∈P, Λ0,γ =n0

n i=1 Ev + (zi,ci) (a γ ) n i=1 Ev + (zi,ci) (e γ ) = 0, (192) 
i.e.

γ∈P, Λ0,γ =n0

n i=1 Ev + (zi,ci) (a γ ) n i=1 Ev + (zi,0) (e γ ) = 0. (193) 
Applying the previous lemma, we obtain γ∈P, Λ0,γ =n0

n i=1 Ad -1 ωz i (Ev + (zi,ci) (a γ )) n i=1 Ad -1 ωz i (Ev + (zi,0) (e γ )) = 0, (194) 
i.e.

γ∈P, Λ0,γ =n0

n i=1 Ad -1 ωz i (Ev + (zi,ci) (a γ )) n i=1 Ev + (zi,0) (σ + (e γ )) = 0. ( 195 
)
Let n 1 be a fixed non negative integer, the term of total degree n 1 in z 1 , . . . , z r in this series is given by γ such that Λ 0 , σ + (γ) = n 1 . An immediate recursion implies that for any n 0 , n 1 , . . . , n r ∈ N we must have γ∈P (n0,...,nr)

n i=1 (Ad ωz i ) -r (Ev + (zi,ci) (a γ )) n i=1 Ev + (zi,0) ((σ + ) r (e γ )) = 0, (196) 
Using the fact that (ev z ⊗ ev

z ′ ) S(1) -2 12 σ - 2 ( S(1) -2 21 
) -1 = 0, we deduce that (216) is equivalent to

(ev z ⊗ ev z ′ ) 2 σ - 2 Ad ( S(1) 21 ) 2 ( C[+] 1 ) Ad S(1) -1 12 ( R 12 ) = (ev z ⊗ ev z ′ ) Ad ( S(1) 21 ) 2 ( C[+] 1 ) Ad S(1) -1 12 ( R 12 ) 2 . ( 217 
)
This concludes the proof of the lemma.

This remark together with the previous lemma imply the following proposition: 

∀z ∈ C × , Ad evz( ) = Ad ωz . (218) 
Proof: The sequence of the previous lemmas is designed to prove this result.

In the following section we give explicit universal formulas for C + , C -and verify the relation (218).

Explicit Solutions of Quantum Dynamical Coboundaries in the

U q (A (1) 
r ) standard case ) reads:

C -= X -Y -Z -, (219) 
with

X -= r i=1 exp q -(q -q -1 ) f δ-αi,r+1 q -ζ α 0 +ζ α i + i(i-2) 2(r+1) c (1 -q -2 ) i-1 i-1 l=0 a - l , (220) 
Y -= exp k>0,j=1,...,r (-1) kr (1 -q -2 ) k(r+1) [k(r + 1)] q [kj] q [k] q f (αj ) kδ q k(r-1) 2 c r l=0 (a - l ) k , (221) 
Z -= 1 i=r exp q -(q -q -1 ) f αi q -ζ α i +ζ α ⌊i+1⌋ + ⌊i⌋ r+1 c-1 2(r+1) c a - i . ( 222 
) Proof: From ǫ -(ẽ i ) = a - i , we obtain ǫ -(ẽ δ-αi,j+1 ) = 0 if j < r , (1 -q -2 ) i-1 i-1 k=0 a - k if j = r . (223) 
We therefore obtain

ǫ -(e (αi) δ ′ ) = 0 if i < r , q -1 (-1) r-1 (1 -q -2 ) r r k=0 a - k if i = r . (224) 
For α ∈

• ∆ + , n ≥ 1, we have ǫ -(ẽ α+nδ ) = 0, ǫ -(ẽ δ-α+nδ ) = 0.
As a result we obtain:

X -= (id ⊗ ǫ -) S (1) 21 r i=1 exp q -(q -q -1 ) f δ-αi,r+1 ⊗ e δ-αi,r+1 S (1) -1 21 , (225) 
Y -= (id ⊗ ǫ -) S (1) 21 exp -(q -q -1 ) k>0 r i,j=1 c (k) ij f (αj) kδ ⊗ e (αi) kδ S (1) -1 21 , (226) 
Z -= (id ⊗ ǫ -) S (1) 21 
> α∈ • ∆+ exp q -(q -q -1 ) f α ⊗ e α S (1) -1 21 
.

The expression of X -is trivially evaluated.

In order to obtain an explicit expression for Z -, we remark that only the R matrix of U q (

• g) appears in Z -. We can therefore express this element as:

> α∈ • ∆+ exp q [-(q -q -1 ) f α ⊗ e α ] = < α∈ • ∆+ exp q [-(q -q -1 ) f ′ α ⊗ e ′ α ], (228) 
in which the root vectors e ′ α , f ′ α (α not simple) are constructed in accordance with the normal order corresponding to the order of the products in the right hand side of (228). It is easy to

check that ǫ -(ẽ ′ α ) = 0, α ∈ • ∆ + , α not simple.
As a result we get the formula for Z -given in the statement of the proposition.

The only contributing term in Y -are those coming from e ′ we obtain:

ǫ -e (αr) kδ = (q -1 -q) k-1 k ǫ -e (αr) δ ′ k = q -1 (-1) kr-1 k (1 -q -2 ) k(r+1)-1 r l=0 a - l k . (229) 
Using the explicit expression (36) of c 

21 ) -1 reads:

C + = Z + Y + X + , with Z + = r i=1 exp q -1 (q -q -1 ) q -ζ α i +ζ α ⌊i-1⌋ -⌊i⌋ r+1 c+ c 2(r+1) e i a + i , Y + = exp k>0,j=1,...,r (-1) kr q -k(r+1) (1 -q 2 ) k(r+1) [k(r + 1)] q [kj] q [k] q e (αj ) kδ q -k(r+1) 2 c r l=0 (a + l ) k , X + = 1 i=r exp q -1 (q -q -1 ) q -ζ α ⌊i-1⌋ +ζ αr -(1+ i(i-2) 2(r+1) )c-i+1 e δ-αi,r+1 (1 -q 2 ) i-1 i-1 l=0 a + l .
Remark 5.2. The proof is completely similar to the one of Proposition 5. But, in order to bypass this computation and link the expression of C + and C -, we can provide another proof using the following lemma: Lemma 14. Let ǫ + be a character of U q (n -) ω-(resp. ǫ -a character of U q (n + ) ω+ ) with values in C(q 1 r+1 ), and such that (ǫ + ( fi )) * = q -1 ǫ -(ẽ i ) where * is defined in [START_REF] Belavin | Triangle equations and Simple Lie algebras[END_REF]. Then

(C + ) * = Ad k -1 (C -). ( 230 
)
Proof:

The assumption implies the relation

Ad k -1 ⊗ ǫ -S (1) 
21

(f i ⊗ e i )(S (1) 
21

) -1 = ( * ⊗ ( * • ǫ + )) KS (1) 
21

(e i ⊗ f i )(KS (1) 
21

) -1 . (231) 
As a result one obtains the relation

Ad k -1 ⊗ ǫ -S (1) 21 R -1 21 (S (1) 
21

) -1 = ( * ⊗ ( * • ǫ + )) KS (1) 21 R 12 (KS (1) 
21

) -1 . (232) 
Application of the previous lemma immediately gives the announced formula for C + once the exact expression for C -is known.

We have reduced in the previous section the proof of the hexagonal relation to the verification of the relation Ad evz( ) = Ad ωz . This relation is satisfied for specific choices of ǫ ± .

Let us define a + i and a - i by (qq -1 ) a - i q -1 r+1 = 1, a + i = (q -1 a - i ) * , we thefore have

a + i a - i = - q (q -q -1 ) 2 .
Proposition 7. With these specific values for a + i , a - i we have

ev z (C + ) -1 = f q (z) (1 + ω z ), ev z (C -) -1 = f q -1 (z -1 ) (1 + ω -1 z ), (233) 
with f q (z) = exp k>0 (-1) k(r+1) q kr [k(r + 1)] q [k] q k z k . ( 234 
)
As a result

ev z (C + ) -1 ev z (C -) = f q (z) f q -1 (z -1 ) ω z , (235) 
which implies the assumption 2) of Proposition 4. Moreover, Ev ± (C [±] (x)) are meromorphic functions. As a result, both assumptions of Proposition 4 are satisfied and the hexagonal relation is satisfied.

Proof: Because ev z (

• ζ i ) = -i r+1 1 + i j=1 E j,j , we obtain: ev z ((Z -) -1 ) = 1 + (q -q -1 ) r i=1 a - i E i+1,i q -1 r+1 = 1 + r i=1 E i+1,i . (236) 
We also have

ev z ((X -) -1 ) = 1 + r i=1 (-1) i-1 z -1 E i,r+1 i-1 l=0 a - l (q -q -1 )q -1 r+1 = 1 + z -1 r i=1 (-1) i-1 E i,r+1 ,
and that

ev z D + (p) = p 2z d dz p 1/2 0 0 p -1/2 , ev z B(p, w) = q 1/2 p 2z d dz w 0 0 w -1 . (243) 
In particular, we have

C [-1] (z; p, w) = (q 4 p 2 z -1 ; q 4 ) ∞ (q 2 p 2 z -1 ; q 4 ) ∞ 1 -p 3/2 w -1 z -1 -p 1/2 w 1 , (244) 
C [+2] (z; p, w) = (q 2 p 2 z; q 4 ) ∞ (p 2 z; q 4 ) ∞ 1 -p 3/2 w -1 -p 1/2 wz 1 . (245) 
In order to compute M (±) (z; p, w) = ev z M (±) (p, w) , we use the following p-difference linear equations, which are direct consequences of the expressions of M (+) (z; p, w) and M (-) (z; p, w) -1 as infinite products:

M (+) (z; p, w) = C [+1] (z; p, w) C [+2] (z; p, w) p 0 0 p -1 M (+) (p 4 z; p, w) p -1 0 0 p , (246) 
M (-) (z; p, w) -1 = w -1 0 0 w M (-) (p -2 z; p, w) -1 w 0 0 w -1 C [-1] (z; p, w). (247) 
(246), (247) turn into linear p-difference equations for the matrix coefficients of M (±) (z; p, w) ±1 . More precisely, if we express M (+) (z; p, w) in the form,

M (+) (z; p, w) = (q 2 z; p 2 , q 4 ) ∞ (z; p 2 , q 4 ) ∞ (p 2 z; p 4 ) ∞ a (+) (z; p, w) p -1/2 b (+) (z; p, w) p 1/2 c (+) (z; p, w) d (+) (z; p, w) , (248) 
we have

(1p 2 z) a (+) (z; p, w) = 1 + p -2 + (p -2 w 2 + p 2 w -2 )p 2 z a (+) (p 4 z; p, w)

-p -2 (1 -p 4 z) a (+) (p 8 z; p, w), (249) 
with

a (+) (0; p, w) = 1, (250) 
and the other matrix coefficients b (+) (z; p, w), c (+) (z; p, w) and d (+) (z; p, w) can be obtained from a (+) (z; p, w) as

c (+) (z; p, w) = p 2 w p 2 + w 2 (1 + p -4 w 2 z) a (+) (z; p, w) -(1 -p -2 z)a (+) (p -4 z; p, w) , (251) b 
(+) (z; p, w) = pz -1 c (+) z; p, pw -1 , d (+) (z; p, w) = a (+) z; p, pw -1 . (252) 
Equation ( 249) can be solved using the fact that (1z) f (z) + (a + b)zq -1 c -1 f (qz) + (q -1 cabz) f (q 2 z) = 0, (253) in which a, b, c, q are complex parameters, admits the solution f (z) = 2 φ 1 a , b c q, z . Here (a 1 ; q) k . . . (a r ; q) k (q; q) k (b 1 ; q) k . . . (b s ; q) k (-1) k q n(n-1) 2

1+s-r z k , (254) with (a; q) k = k-1 l=0

(1a q l ) = (a; q) ∞ (a q k ; q) ∞ .

This leads to a (+) (z; p, w) = 2 φ 1 -p -2 w 2 , -p 2 w -2 p 2 p 4 , p 2 z , (256) c (+) (z; p, w) = p -1 z w + w -1 pp -1 2 φ 1 -p 2 w 2 , -p 2 w -2 p 6 p 4 , p 2 z .

Similarly, if we set M (-) (z; p, w) -1 = (q 4 p 2 z -1 ; p 2 , q 4 ) ∞ (q 2 p 2 z -1 ; p 2 , q 4 ) ∞ α (-) (z -1 ; p, w) p -1/2 β (-) (z -1 ; p, w) p 1/2 γ (-) (z -1 ; p, w) δ (-) (z -1 ; p, w) ,

we have α (-) (z -1 ; p, w) = (1 + w -2 ) α (-) (p -2 z -1 ; p, w)

+ w -2 (-1 + p 4 z -1 ) α (-) (p -4 z -1 ; p, w), (259) with α (-) (0; p, w) = 1, (260) and β (-) (z -1 ; p, w) = w α (-) (z -1 ; p, w)α (-) (p -2 z -1 ; p, w) ,

γ (-) (z -1 ; p, w) = p -1 zβ (-) z -1 ; p, pw -1 , δ (-) (z -1 ; p, w) = α (-) z -1 ; p, pw -1 . (262)

These equations can be solved as α (-) (z -1 ; p, w) = 0 φ 1 p 2 w -2 p 2 , p 4 w -2 z -1 , (263) β (-) (z -1 ; p, w) = (pw -1p -1 w)pz -1 0 φ 1 p 4 w -2 p 2 , p 6 w -2 z -1 .

(264)

However, in order to compute the explicit expression of the 2 × 2 matrix M(z; p, w) = ev z M (p, w) , or of its inverse S(z; p, w) = ev z M (p, w) -1 , which can be obtained from M (+) and M (-) as M (+) (z; p, w) S(z; p, w) = M (-) (z; p, w) M (0) (z; p, w) -1 , (265) it is more convenient to express the matrix elements of M (-) in a form similar to those of M (+) . It is actually possible to obtain, for the matrix elements of M (-) , the same type of equation (249) as for a (+) (z; p, w). Indeed, defining a (-) (z -1 ; p, w) = (p 4 z -1 ; p 4 ) -1 ∞ α (-) (z -1 ; p, w),

and iterating (259), we obtain that (1p 4 z -1 ) a (-) (z -1 ; p, w) = 1 + w -4 + (1 + p -2 )p 6 w -2 z -1 a (-) (p 4 z -1 ; p, w)

w -4 (1p 6 z -1 ) a (-) (p 8 z -1 ; p, w), (267

)
which can be solved in the same way as (249). Finally we obtain M (-) (z; p, w) = (q 2 p 2 z -1 ; p 2 , q 4 ) ∞ (q 4 p 2 z -1 ; p 2 , q 4 ) ∞ (p 2 z -1 ; p 4 ) -1 ∞ × d (-) (z -1 ; p, w) -p -1/2 b (-) (z -1 ; p, w) -p 1/2 c (-) (z -1 ; p, w) a (-) (z -1 ; p, w) , (268) with a (-) (z -1 ; p, w) = 2 φ 1 -w -2 , -p 2 w -2 p 4 w -4 p 4 , p 4 z -1 , (269) c (-) (z -1 ; p, w) = 1 w + w -1 2 φ 1 -w 2 , -p 2 w 2 p 4 w 4 p 4 , p 4 z -1 , (270) and b (-) (z -1 ; p, w) = pz -1 c (-) z -1 ; p, pw -1 , d (-) (z -1 ; p, w) = a (-) z -1 ; p, pw -1 . (271)

As a remark, we have in fact used the following identity: 0 φ 1 a q, az = (z; q 2 ) ∞ 2 φ 1 -qa , -a a 2 q 2 , z .

The explicit expression of the 2 × 2 matrix S(z; p, w) = ev z M (p, w) -1 follows then from the identity (265) and from the connection formula for the basic hypergeometric series:

2 φ 1
a , b c q, z = (b, c/a; q) ∞ (c, b/a; q) ∞ Θ q (qa -1 z -1 ) Θ q (qz -1 ) 2 φ 1 a , qac -1 qab -1 q, q c ab z -1 + (a, c/b; q) ∞ (c, a/b; q) ∞ Θ q (qb -1 z -1 ) Θ q (qz -1 ) 2 φ 1 b , qbc -1 qba -1 q, q c ab z -1 . (273)

One obtains: S(z; p, w) = Θ p 4 (-p 2 w -2 z) p -1/2 wΘ p 4 (-p 2 w 2 z) p 1/2 wΘ p 4 (-w -2 z) Θ p 4 (-w 2 z) Λ(z; p, w),

with Λ(z; p, w) = 1 Θ p 2 (z) (z, q 2 p 2 z -1 ; q 4 , p 2 ) ∞ (q 2 z, q 4 p 2 z -1 ; q 4 , p 2 ) ∞ p -1/8 w 1/4 (w 2 ; p 2 ) -1 ∞ 0 0 p 1/8 w -1/4 (p 2 w -2 ; p 2 ) -1 ∞ .

(
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This corresponds to Baxter's vertex-IRF transformation (see Appendix 7.3).

Conclusion

In this article we have developped a method enabling us to give an explicit product formula for the Vertex-IRF transformation relating the universal IRF elliptic A The first problem is to which extent is the genereralized translation datum that we have introduced sufficiently general? Is it possible to associate to each generalized Belavin-Drinfeld triple in the finite dimensional case and in the affine case a generalized translation datum?

The second problem is to generalize the theorem of J. Balog, L. Dabrowski and L. Feher to solutions of CDYBE which are not standard and to extend this theorem in the affine case. Once the solution to this problem is solved one can eventually extend our result to these cases.

The third problem is related to the evaluation, in specific representations, of the universal formulas we give. We have constructed a universal solution of the generalized coBoundary equation living in A(h)⊗ F (0) (h) ⊗ U q (g) c . Moreover this element represented in the evaluation representation gives a well defined meromorphic function. However it would be interesting for the applications to integrable systems to evaluate it in infinite integrable representations. On this problem little is known: even the evaluation of the solutions of the Quantum Dynamical coCycle in integrable highest weight representation has not been studied. An intriguing point is the relation between our work and one dimensional representations of U q (n ± ) ω± . The one dimensional representations have been constructed previously in [START_REF] Sevostyanov | Quantum deformation of Whittaker modules and Toda lattice[END_REF] (see also [START_REF] Etingof | Whittaker functions on quantum groups and q-deformed Toda operators[END_REF]) in order to study the q-deformed Toda chain by a q-analog of Whittaker modules. There are link between these Whittaker modules and the construction of the Vertex-IRF solution that will be studied in a future work.

Let us choose θ :

• Γ → {0, 1} such that {α = β, (α, β) = 0} ⇒ θ(α) = θ(β). We will take θ(α i ) = i -1 (mod 2), and define ǫ m (α i ) = (-1) mθ(αi) = (-1) m(i-1) . We define e (αi) δ = ǫ 1 (α i )(e αi e δ-αiq -2 e δ-αi e αi ), e αi+mδ = ǫ m (α i )(-[(α i , α i )] q ) -m (ad (e (α i ) δ

) ) m (e αi ), e (αi) mδ ′ = ǫ m (α i )(e αi+(m-1)δ e δ-αiq -2 e δ-αi e αi+(m-1)δ ).

The elements e (αi) nδ are constructed through the transformation (qq -1 ) n≥1 e (αi) nδ z n = log 1 + (qq -1 ) n≥1 e (αi) nδ

′ z n . ( 277 
)
We still define f γ = e * γ , γ ∈ ∆ + . As a result we obtain ev z (e (αi) δ ) = zq 1-i (E i,iq -2 E i+1,i+1 ) , ev z (e αi+mδ ) = (-1) mi z m q -im E i,i+1 , ev z (e (αi) mδ ′ ) = (-1) m-1 z m q 1-im (E i,iq -2 E i+1,i+1 ) , ev z (e (αi) mδ ) = (-1) m-1 z m q (1-i)m [m] q m (E i,iq -2m E i+1,i+1 ).

The knowledge of these elements is sufficient to compute C [±] (x).

Proof of Theorem 4: useful Lemmas

Let J(x) be a solution of (61) and (62), and let us define Y 123 (x) = (id ⊗ ∆)(J(x) -1 ) (∆ ⊗ id)(J(x)) J 12 (xq h3 ).

In this Appendix, we give the explicit proof of the properties (70)-(74) of Y 123 (x) that we use in the proof of Theorem 4.

Lemma 16. Let Y 123 (x) = S

(1) 23

-1 Y 123 (x). We have that Y 123 (x) ∈ 1 ⊗3 ⊕ ( 1 ⊗ U + q (g) ⊗ U - q (g) ⊕ U + q (g) ⊗ U q (g) ⊗ U q (b -) ⊗ F (0) (h)) c . (278)

Proof: It is obvious from (62) that Y 123 (x) ∈ U q (b + ) ⊗ U q (g) ⊗ U q (b -) ⊗ F (0) (h) c . To be more precise, let us express this element in the following form:

Y 123 (x) = S (1) 23 
-1 (id ⊗ ∆)( J (x) -1 ) S

(1) 23

S

(1) 12

-1 (∆ ⊗ id)( J (x)) S

(1) 12

J 12 (xq h3 ).

Using the fact that J(x) ∈ 1 ⊗2 ⊕ (U + q (g) ⊗ U - q (g)) ⊗ F (0) (h) c , we obtain immediately that (ι + ) 1 S

(1) 23

-1 (id ⊗ ∆)( J(x) -1 ) S As a result, S

-1 (id ⊗ ∆)( J (x) -1 ) S

(1)

23 ∈ 1 ⊗3 ⊕ U + q (g) ⊗ U q (b -) ⊗ U q (b -) ⊗ F (0) (h) c , J 12 (xq h3 ) ∈ 1 ⊗3 ⊕ U + q (g) ⊗ U - q (g) ⊗ U q (h) ⊗ F (0) (h) c .

Moreover, using the expression (63) of J(x) as an infinit product, the quasitriangularity property of the R-matrix, the fact that R ∈ 1 ⊗2 ⊕ (U + q (g) ⊗ U - q (g)) and that (id ⊗ ∆)(S (1) ) = S (1) 23

-1 R 23 S (1) 13 S 
(1) 23

are described by weights W s 1 s 2 s 3 s 4 z

 4 (with |s 1s 2 | = |s 2s 3 | = |s 3s 4 | = |s 4s 1 | = 1) associated to faces and given by the matrix elements of R IRF : R IRF (z; p, wq s ) = 2 i1,j1,i2,j2=1

•gn∆

  : in the finite dimensional case • g = g, and in the affine case we have the usual realisation g = • g[t, t -1 ] ⊕ Cd ⊕ Cc. + a Cartan decomposition. Let • Γ = {α 1 , . . . , α r } be the Dynkin diagram, • ∆ ⊂ • h * the root system and • ∆ + the set of positive roots. We denote θ ∈ • ∆ + the maximal root, it defines positive integers a i by θ = r i=1 a i α i ∈ • ∆ + . As usual, we define • + α. Let (•, •) be the non degenerate invariant bilinear form on • g, normalized in such a way that the induced form on • h * , also denoted (•, •), satisfies the equation (α, α) = 2 for all roots α. This bilinear form induces an isomorphism

•

  

  and J(x) is the Belavin-Drinfeld solution associated to ℵ = 1.

23 W 12 ( 23 W 12 (

 23122312 )) c satisfying (173) and (174) and assume that (Ev + ⊗ Ev -)(W 12 (x)) and (Ev + ⊗ Ev -)( W 12 (x)) are meromorphic functions and equal, then the functions( n Ev + ⊗ m Ev -)(W 12 (x)) and ( n Ev + ⊗ m Ev -)( W 12 (x)) are meromorphic and equal for all n, m ≥ 0.Proof: Using (173) and (174), we have(id ⊗ ∆)(W 12 (x)) = Ad [K 23 S (1) 32 ] W 13 (xq h2 ) C [+] 1 (xq h2+h3 ) -1 Ad S (1) xq h3 ) , (id ⊗ ∆)( W 12 (x)) = Ad [K 23 S (1) 32 ] W 13 (xq h2 ) C [+]1 (xq h2+h3 ) -1 Ad S (1) xq h3 ) .

Lemma 10 .

 10 Let ω z , z ∈ (C) × be the matrix . . . . . . . . 0 0 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1 z 0 . . . . 0 0

Proposition 5 .

 5 The explicit expression of C -= (id ⊗ ǫ -

Proposition 6 .

 6 ij we finally get the exact expression for Y -. The computation of C + is completely analogous. The explicit expression of C + = (id ⊗ ǫ + ) KS (1) 21 R 12 (KS

r φ s a 1

 1 , . . . , a r b 1 , . . . , b s q, z denotes the basic hypergeometric series r φ s a 1 , . . . , a r b 1 , . . . , b s q, z = ∞ k=0

  universal Vertex solution of Baxter-Belavin type with ℵ = 1. There are open questions in this field which would be interesting to analyze.

23 = 1

 231 ⊗3 ,(ι + ) 1 J 12 (xq h3 ) = (ι -) 2 J 12 (xq h3 ) = 1 ⊗3 .

12 - 1 23 - 1

 121231 (∆ ⊗ id)( J (x)) S (ι + ) 1 K -1 23 R 13 K 23 R 23 S

  Proposition 4. The hexagonal relation (175) is satisfied if and only if 1) Ev ± (C [±] (x)) are meromorphic functions; 2) the following simple relation holds in M r+1 (C):
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Using this expression, one can express the right hand side of (151) as r.h.s. = P Here

(+) -1 12

and, for k ≥ 1,

S

(1)

(1) -1 21

)

(1)

12 (x) .

From ( 52) and ( 56), one has

Therefore, taking also into account (57) and (78), the relation ( 151) is satisfied if

(156) is ensured by the choice (140) and (77). Using (156), ( 155) and (78), the condition (157) reduces to

which follows from (79).

Lemma 2. The linear equation (150) has a unique solution in 1 ⊗2 ⊕(U + q (g)⊗U q (g)⊗F (0) (h)) c(op) and this solution necessarily belongs to 1 ⊗2 ⊕(U + q (g)⊗U q (b -)⊗F (0) (h)) c . Therefore U (x) belongs to this space and satisfies

12 (x) S

(1) -1 12

.

(159)

Proof: One writes the linear equation (150)as a triangular system with respect to the degree in the first space. The existence and uniqueness of the solution is a consequence of the non degenerate assumption. Indeed this linear equation can be rewritten as:

S (1)-1 U 12 (x)S (1) = Ad Γ (+) S (1)-1 (C

[+] 1 (x)).Ad ϕ (0)-1 • θ + [x]1 S (1)-1 R 12 S (1) S (1)-1 U 12 (x)S (1) .

The non degeneracy condition implies that id ⊗2 -Ad(ϕ (0)-1 ) • θ + [x]1 is an invertible operator on (U + q (g) ⊗ U q (g) ⊗ F (0)(h) ) c , as a result the existence and unicity of the linear equation follows.

The infinite product formula follows by iteration of the linear equation.

We now show that V (x) satisfies a linear equation. op) and obeys the following linear relation:

Proof: Using the fact that, the corresponding generalized datum being of face type, θ - [x] acts as the identity on U q (h), one has

Therefore, using these properties as well as the linear equation (61) for F (x), one can rewrite

(1) -1 12

(1) -1 12

Hence, (161) is satisfied if and only if

This last equality is obtained using the definition of M (-) (x) as an infinite product, like in the proof of Lemma 1. Indeed, using (143), and defining ϕ [-k] 12 similarly as in (152) (note that in the IRF case ϕ

and we reorganize the infinite product expression of ∆ ′ (M (-) (x)) as

The right hand side of (164) is equal to

where

which follows from (141), (59), ( 81) and (82).

Let us now prove that U (x) satisfies also the same linear equation (161) as V (x). It is at this point that we will use the hexagonal relation (145). Lemma 4. U(x) satisfies the linear equation

Proof:

Let us define

From its definition and the fact that U (x) belongs to

Let us now prove that it satisfies the same linear equation (150) as U (x).

Indeed, one has,

in which we have used (77) and (80). From the fact that U (x) satisfies (150), one gets,

As a result, U (x) satisfies (150) as soon as

Proof:

Using (159), the fact that J

(1)

, and (144), we have,

(+)

.

On the other hand, with the same notations as in the proof of Lemma 3,

(-)

, in which we have used (53), ( 81) and (144). As S

(1) -1 12

.

Combining these results we obtain that U

). The relation ( 170) is a direct consequence of (167) and (161).

Finally, since the solution for 170) is unique (because of the non degeneracy condition), we must have U -1 (x)V (x) = 1 ⊗ 1. This ends the proof of the main theorem.

It remains to find interesting examples of this theorem, which is the purpose of the next section.

Universal Vertex-IRF transformation in the standard case

In this section, (θ + , θ -, ϕ 0 , S (1) , ϕ + , ϕ -) denotes the standard IRF generalized translation datum defined in the basic example 3.3.2. Our purpose is to construct explicitely, in this case, a solution where P (n 0 , . . . , n r ) = {γ ∈ P, λ 0 , (σ + ) i (γ) = n i }. Note that P (n 0 , . . . , n r ) is finite. As a result, by applying once more n i=1 Ad -1 ωz i we obtain ∀n 0 , . . . , n r ∈ N, γ∈P (n0,...,nr)

Let y n0,...,nr = γ∈P (n0,...,nr ) a γ e γ , we have shown that y n0,...,nr ∈ J ∩ (U q (n + ) ⊗ F (1) (h ′ )). We therefore obtain that y n0,...,nr = 0 i.e. a γ = 0.

The proof that J ∩ (U q (n + ) ⊗ F (1) (h ′ )) = {0} is implied by the result Proposition 3.15 of Etingof-Kazhdan [START_REF] Etingof | Quantization of Lie Bialgebras III[END_REF]. Indeed by applying this result (which has been proved in the formal case but holds also in the evaluated q case as well) one obtains if y = γ∈P a γ e γ ∈ J ∩ (U q (n + ) ⊗ F (1) 

As a result one obtains a γ = 0. The other statements of the lemma are proved analogously.

In the following, we fix 172) and (178), for example as the solution given in Lemma 7, and we define, as in Lemma 6,

It will be convenient to use the decomposition (125) of S (1) , and a similar one for K:

(1)

with S(1)

12 , P

12 given by ( 126), (127), and

With this decomposition, we introduce the following notations:

We will also use the following elements

is equivalent to

Both handside of this equation being constant functions of c, c′ , it is sufficient to show this equality in the case where (c, c′ ) = (0, 0) for proving the hexagonal relation.

Proof: Let us first notice that

In particular, using the explicit expressions (179) and (181) of C [±] , we have the following property:

Using also the fact that, from ( 172) and (178),

12 S

(1)

21 K12] ( R) = R, the hexagonal relation (175), written using (174),

(1)

can therefore be transformed into

S(1)

S(1)

). On the one hand, we have,

(1)

(1)

and on the other hand, using (59),

(1) -1 32

From these two equations, we can deduce that

Then, using the explicit expression

Finally, due to the fact that S(1) 21 K12 = S(1) -1

12

, we have

Therefore, combining these results, we obtain

Hence, the hexagonal (211) can equivalently be written as

Note that both sides of this equation belong to (U q (n + ) ⊗U q (

• h) ⊗2 ⊗U q (n -)) c . As a result, the evaluation of both sides of this equation under (Ev + (z,c) ⊗ Ev - (z ′ ,c ′ ) ) do not depend on (c, c′ ), which is the statement of the lemma. 

Proof: Using the braiding relation deduced from (173), we have immediatly

= S

(1)

12

[+] 1 (x) S

(1) -1 21

12

which can be rewritten equivalently as

As a consequence, the relation (206) for zero central charge can be equivalently rewritten as

as well as:

with

).

Therefore we obtain the announced formula for ev z (C -) -1 . The computation of ev z (C + ) -1 is straightforward from ev z (C + ) = ev z ((C -) * ).

From the explicit expression of C + and C -, it is now straightforward to compute Ev ± (C [±] (x)) and show that they are meromorphic functions.

Expression of the Vertex-IRF transformation in the evaluation representation of U

Here we explain how, from the explicit universal solution for U q (A

1 ), one can obtain the wellknown solution of Baxter of the Vertex-IRF transformation in the two-dimensional evaluation representation.

Let g = A

1 , and p = x 0 x 1 , w = x 1 . From Proposition 7, we have

On the other hand, choosing S (1) as in (103), i.e. log q (S (1) ) = -1 4 h 1 ⊗h 1 + 1 8 h 1 ⊗c-1 8 c⊗h 1 -c⊗d, and M (0) as in Lemma 7, we obtain

Therefore, if we denote C [±] (z; p, w) = ev z C [±] (p, w) , C [±k] (z; p, w) = ev z C [±k] (p, w) , we have

The expressions of C [±k] (z; p, w) can be easily obtained from the fact that

7.1 Construction of a PBW of U q (g)

We recall here the construction of [START_REF] Khoroshkin | The universal R-matrix for quantum non-twisted affine Lie algebras[END_REF], it is the easiest to read and is correct. The difference with our definition of U q (g) is in the expression of the coproduct: they have used instead ∆ acting as ∆(e i ) = e i ⊗ 1 + q -hα i ⊗ e i , ∆(f i ) = f i ⊗ q hα i + 1 ⊗ f i . The corresponding Hopf algebra Ǔq (g) is isomorphic to U q (g), U q (g) → Ǔq (g)

and we can therefore translate all their formulas to ours via this isomorphism.

Let us first consider U q (A (1) 1 ). A normal order is given by [START_REF] Khoroshkin | Universal R-Matrix for Quantized (Super) Algebras[END_REF]. We define e δ = e α1 e α0q -2 e α0 e α1 , e α1+kδ = (-[(α 1 , α 1 )] q ) -k ad (e δ ) k (e α1 ),

e ′ kδ = e α1+(k-1)δ e α0q -2 e α0 e α1+(k-1)δ .

The elements e kδ are defined through the transformation:

(e α1+k1δ , e kδ , e α0+k0δ ), k 0 , k 1 ∈ Z + , k ∈ Z + * , is a PBW basis of U q (n + ). We moreover define f γ = e * γ , γ ∈ ∆ + , which defines a PBW basis of U q (n -). We know discuss the case U q (A (1) r ), r ≥ 2. A normal order on the set of positive roots can be constructed using Beck's result [START_REF] Beck | Convex Bases of PBW type for Quantum Affine Algebras[END_REF]. We will need an additional Lemma in order to compute explicit expressions for C [±] (x).

Lemma 15. Every normal order < on • ∆ + can be extended to a normal order < on the set ∆ + satisfying to

and we will choose the following normal order on

We apply the procedure of [START_REF] Khoroshkin | The universal R-matrix for quantum non-twisted affine Lie algebras[END_REF], we obtain:

23

which means that

12

This concludes the proof of Lemma 16.

Lemma 17. Y 123 (x) satisfies the following linear equation:

Proof:

. Using the quasitriangularity of the Rmatrix, (53), and the fact that J(x) satisfies (66), we have

(1)

13 Ad (ϕ

12

(1)

13 Ad (ϕ

It remains to prove that

(1)

13 Ad (ϕ

.

Expressing J(x) as an infinite product by means of (63), we have

(1) 23

(1)

23

On the other hand,

(1) 23

(1)

23

(1) 23

(1)

in which we have used the zero-weight property of the R-matrix. The latter infinite product can be reorganized as follows:

(1)

(1)

(1)

(1)

(1)

Therefore, the right handside of (280) can be expressed as r.h.s. = S 

(1)

(1)

(1)

23

(1) 13 ] R 23 and

(1) -1 12

.

(281)

The equality (280) is then ensured by the relation

which, by using the zero-weight property of R, is strictly equivalent to

21 ) W

(1) 12

(1) -1 12

S

(1)

(1) -1 21

S

(1)

21 ) S

(1) -1 21

(1) -1 12

S

(1)

(1) -1 21

S

(1)

and follows from (57).

Lemma 18. Y 123 (x) satisfies the following linear equation:

Proof: Using the linear equation ( 61) and the quasitriangularity of the R-matrix, we have that

It means that we have to prove the following relation:

(1)

The proof of this equality is very similar to the one of (280). Indeed, from the expression (64) of J(x) as an infinite product, we have

(1) 13 +∞ k=1

(1)

whereas,

(1) 13

(1)

(1) 13

(1)

which can be reorganized as follows:

(1)

(1)

13

(1)

13

(1) 13

(1)

13

(1)

13

Therefore, the right handside of (284) can be expressed as r.h.s. = S

(1) 13

where

(1)

(1)

(1)

(1)

13 ) -1 W

(1)

13 W

23 ] R 12 with Q 123 (x) given by (281). Therefore, (284) is satisfied under the condition

which is stricly equivalent to (282).

Expression of the Solutions of QDYBE for the U

1 ) case in the evaluation representation: the 8-Vertex model and its associated height model.

The 8-Vertex model is based on Baxter's elliptic solution of the QYBE, which is obtained as the evaluation representation R 8V (z 1 , z 2 ; p) = (ev z1 ⊗ ev z2 ) R(p) (with p = x 0 x 1 ) of the Belavin-Baxter elliptic solution of the QDYBE for U q (A (1) 1 ),

where the twist J(p), obtained in [START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF], is constructed as

with S (1) , D -(p), σ -given as in Subsection 3.3.3. One has

with z = z 1 /z 2 , a 8V (z; p) = Θ p 4 (p 2 z) Θ p 4 (p 2 q 2 ) Θ p 4 (p 2 ) Θ p 4 (p 2 q -2 z) , b 8V (z; p) = q -1 Θ p 4 (z) Θ p 4 (p 2 q 2 ) Θ p 4 (p 2 ) Θ p 4 (q -2 z) ,

c 8V (z; p) = Θ p 4 (p 2 z) Θ p 4 (q -2 ) Θ p 4 (p 2 ) Θ p 4 (q -2 z) , d 8V (z; p) = q -1 p Θ p 4 (z) Θ p 4 (q 2 ) Θ p 4 (p 2 ) Θ p 4 (p 2 q -2 z) , (290) and ρ(z; p) = (z, q 4 z, p 2 q 2 z -1 , p 2 q 2 z -1 ; p 2 , q 4 ) ∞ (q 2 z, q 2 z, p 2 z -1 , p 2 q 4 z -1 ; p 2 , q 4 ) ∞ .

Let us now consider the standard elliptic solution of the QDYBE for U q (A 

where the twist F (p, w) (with p = x 0 x 1 , w = x 1 ) is the quantum dynamical cocycle, obtained in [START_REF] Jimbo | Quasi-Hopf twistors for elliptic quantum groups[END_REF], constructed from the generalized translation datum defined in Subsection 3. 

with X 11 (z; p, w) = 2 φ 1 q 2 , q 2 p 2 w -2 p 2 w -2 p 2 , q -2 p 2 z , (295) X 12 (z; p, w) = -qq -1 1w -2 2 φ 1 q 2 p 2 , q 2 w 2 p 2 w 2 p 2 , q -2 p 2 z , (296) ϕ(z; p) = (p 2 z, q 4 p 2 z; q 4 , p 2 ) ∞ (q 2 p 2 z; q 4 , p 2 

with b IRF (z; p, w) = q -1 (q 2 p 2 w -2 , q -2 p 2 w -2 ; p 2 ) ∞ (p 2 w -2 ; p 2 ) 2 ∞ Θ p 2 (z) Θ p 2 (q -2 z) ,

c IRF (z; p, w) = Θ p 2 (q -2 ) Θ p 2 (w 2 z) Θ p 2 (w 2 ) Θ p 2 (q -2 z) .

(300)

This R-matrix defines the Boltzmann weights of an interaction-round-a-face (IRF) model, the Andrews-Baxter-Forrester model [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF], or solid-on-solid (SOS) model.

When expressed in the two-dimensional evaluation representation, the Vertex-IRF equation between R(w, p) and R(p), S 1 (z 1 ; p, w) S 2 (z 2 ; p, wq h1 ) R IRF (z 1 /z 2 ; p, w) = R 8V (z 1 , z 2 ; p) S 2 (z 2 ; p, w) S 1 (z 1 ; p, wq h2 ), with S(z; p, w) = ev z M (p, w) -1 given by (274), corresponds to Baxter's Vertex-IRF transformation, which enabled him to solve the 8-Vertex model from the solution of the SOS-model in [START_REF] Baxter | Eight-Vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice[END_REF].