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Given a smooth R d -valued diffusion (X x t , t ∈ [0, 1]) starting at point x, we study how fast the Euler scheme X n,x for a function ∂ α

x ∂ β y π and a O(1/n 2 ) remainder rn which are shown to have gaussian tails and whose dependence on t is precised. We give applications to option pricing and hedging, proving numerical convergence rates for prices, deltas and gammas.
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with time step 1/n converges in law to the random variable X x 1 . Precisely, we look for which class of test functions f the approximate expectation E [f (X n,x

1 )] converges with speed 1/n to E [f (X x 1 )]. When f is smooth with polynomially growing derivatives or, under a uniform hypoellipticity condition for X, when f is only measurable and bounded, it is known that there exists a constant C1f (x) such that

(1) E [f (X n,x 1 )] -E [f (X x 1 )] = C1f (x)/n + O 1/n 2 .
If X is uniformly elliptic, we expand this result to the case when f is a tempered distribution. In such a case, E [f (X x 1 )] (resp. E [f (X n,x 1 )]) has to be understood as f, p(1, x, •) (resp. f, pn(1, x, •) ) where p(t, x, •) (resp. pn(t, x, •)) is the density of X x t (resp. X n,x t ). In particular, (1) is valid when f is a measurable function with polynomial growth, a Dirac mass or any derivative of a Dirac mass. We even show that (1) remains valid when f is a measurable function with exponential growth. Actually our results are symmetric in the two space variables x and y of the transition density and we prove that ∂ α

x ∂ β y pn(t, x, y) -∂ α x ∂ β y p(t, x, y) = ∂ α x ∂ β y π(t, x, y)/n + rn(t, x, y)

Introduction and results

Let d, r ≥ 1 be two integers. Let (Ω, F, P) be a probability space on which lives a r-dimensional Brownian motion B. We denote by F t = σ(B s , 0 ≤ s ≤ t) the filtration generated by B. Let us give two functions b : R d → R d and σ : R d → R d×r . We systematically use (column) vector and matrix notations, so that b(x) should be thought of as a vector of size d and σ(x) as a matrix of size d×r. We denote transposition by a star and define a d × d matrix-valued function by putting a = σσ * . For a multiindex α ∈ N

d , |α| = α 1 + • • • + α d is its length and ∂ α is the differential operator ∂ |α| /∂x α 1 1 • • • ∂x α d d .
Equipping R d with the euclidian norm • , we denote by

• C ∞ pol (R d ) the set of infinitely differentiable functions f : R d → R with polynomially growing derivatives of any order, i.e. such that for all α ∈ N d , there exists c ≥ 0 and q ∈ N such that for all x ∈ R d , (2)

|∂ α f (x)| ≤ c (1 + x q ) ,
• C ∞ b (R d ) the set of infinitely differentiable functions f : R d → R with bounded derivatives of any order, i.e. such that

∂ α f ∈ L ∞ (R d ) for all α ∈ N d .
We shall make use of the following assumptions: (A) For all i ∈ {1, . . . , d} and j ∈ {1, . . . , r}, b i and σ i,j belong to C ∞ pol (R d ) and have bounded first derivatives. (B) For all i ∈ {1, . . . , d} and j ∈ {1, . . . , r}, b i and σ i,j belong to C ∞ b (R d ). (C) There exists η > 0 such that for all x, ξ ∈ R d , ξ * a(x)ξ ≥ η ξ 2 .

(C) is known as the uniform ellipticity condition.

It is well known that, given x ∈ R, the hypothesis (A) guarantees the existence and the P-almost sure uniqueness of a solution X x = (X x t , t ≥ 0) of the stochastic differential equation (SDE)

(3)

X x t = x + t 0 b(X x s ) ds + t 0 σ(X x s ) dB s .
1.1. Motivation. Let us fix a time horizon T > 0. Without loss of generality, we can and do assume that T = 1. We try to estimate the law of X x 1 . To do so, the most natural idea is to approach X x by its Euler scheme of order n ≥ 1, say X n,x = (X n,x t , t ≥ 0), defined as follows. We consider the regular subdivision S n = {0 = t n 0 < t n 1 < • • • < t n n-1 < t n n = 1} of the interval [0, 1], i.e. t n k = k/n, and we put X n,x 0 = x and, for all k ∈ {0, . . . , n -1} and t ∈ [t n k , t n k+1 ],

X n,x t = X n,x t n k + b X n,x t n k (t -t n k ) + σ X n,x t n k B t -B t n k . (4) 
Then the random variable X n,x 1 is exactly simulatable and should be close in law of X x 1 . Precisely, we measure the weak error between X n,x 1 and X x 1 by the quantities ∆ n 1 f (x) = E [f (X n,x 1 )] -E [f (X x 1 )] and we try to find the largest space of test functions f for which, for each x, there exists a constant C 1 f (x) such that [START_REF] Jacod | Asymptotic Error Distributions for the Euler Method for Stochastic Differential Equations[END_REF] ∆ n 1 f (x) = C 1 f (x)/n + O 1/n 2 . Practical interest of such an expansion has to be underlined (see, for instance, [START_REF] Jacod | The Approximate Euler Method for Lévy Driven Stochastic Differential Equations[END_REF][START_REF] Talay | Expansion of the Global Error for Numerical Schemes Solving Stochastic Differential Equations[END_REF]). When [START_REF] Jacod | Asymptotic Error Distributions for the Euler Method for Stochastic Differential Equations[END_REF] holds, one can use the Euler scheme plus a Monte-Carlo method to estimate E [f (X x 1 )] and then, in a time of order nN , gets an error of order 1/ √ N + 1/n, where N stands for the number of independants copies of X n,x 1 generated by the Monte-Carlo procedure. Given a tolerance ε ≪ 1, in order to minimize the time of calculus, one should then choose N = O n 2 and gets a result in a time of order 1/ε 3 .

One can even do better using Romberg's extrapolation technique: if one runs N independant copies (X 2n,x i,1 , X n,x i,1 ) of the couple (X 2n,x 1 , X n,x 1 ), which still requires a time of order nN , then computing 1 N N i=1 (2f (X 2n,x i,1 )-f (X n,x i,1 )) one gets an estimate of E [f (X x 1 )] whose accuracy is of order 1/ √ N + 1/n 2 , since [START_REF] Jacod | Asymptotic Error Distributions for the Euler Method for Stochastic Differential Equations[END_REF] implies that E[2f (X 2n,x 1

) -f (X n,x 1 )] = E[f (X x 1 )] + O(1/n 2 ). Given a tolerance ε ≪ 1, one should now choose N = O n 4 and gets a result in a time of order 1/ε 5/2 . 1.2. Previous results. Using Itô expansions, D. Talay and L. Tubaro [START_REF] Talay | Expansion of the Global Error for Numerical Schemes Solving Stochastic Differential Equations[END_REF] have shown that [START_REF] Jacod | Asymptotic Error Distributions for the Euler Method for Stochastic Differential Equations[END_REF] holds when f ∈ C ∞ pol (R d ) under condition (B') The b i 's and the σ i,j 's are infinitely differentiable functions with bounded derivatives of any order ≥ 1.

Hypothesis (B') is almost (B) but in (B') the functions b i and σ i,j are not supposed bounded themselves. Using Malliavin calculus, V. Bally and D. Talay [START_REF] Bally | The Law of the Euler Scheme for Stochastic Differential Equations : Convergence Rate of the Distribution Function[END_REF] have extended this result to the case of measurable and bounded f 's, with the extra hypothesis that X is uniformly hypoelliptic. If (C) holds, X n,x 1 and X x 1 have densities, say p n (1, x, •) and p(1, x, •) respectively (in this paper, densities are always taken with respect to the Lebesgue measure). Then, for each pair (x, y), the authors [START_REF] Bally | The Law of the Euler Scheme for Stochastic Differential Equations : Convergence Rate of the Density[END_REF] get an expansion of the error on the density itself of the form [START_REF] Jacod | The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems[END_REF] p

n (1, x, y) -p(1, x, y) = π(1, x, y)/n + π n (1, x, y)/n 2 .
They also show that the principal error term π and the remainder π n have gaussian tails. Namely, they find constants c 1 ≥ 0 and c 2 > 0 such that for all n ≥ 1 and

x, y ∈ R d , |π(1, x, y)| + |π n (1, x, y)| ≤ c 1 exp(-c 2 x -y 2 ).
Besides, V. Konakov and E. Mammen [START_REF] Konakov | Edgeworth Type Expansions for Euler Schemes for Stochastic Differential Equations[END_REF] have proposed an analytical approach for this problem based on the so-called parametrix method. If (B) and (C) hold, for each pair (x, y), they get an expansion of arbitrary order j of p n (1, x, y) but whose terms depend on n:

(7) p n (1, x, y) -p(1, x, y) = j-1 i=1 π n,i (1, x, y)/n i + O 1/n j .
They also prove that the coefficients have gaussian tails, uniformly in n: for each i, they find constants c 1 ≥ 0 and c 2 > 0 such that for all n ≥ 1 and

x, y ∈ R d , |π n,i (1, x, y)| ≤ c 1 exp(-c 2 x -y 2 ).
To do so, the authors use upper bounds on the partial derivatives of p -which they find in [START_REF] Friedman | Stochastic Differential Equations and Applications[END_REF] -and prove analogous bounds on p n 's ones.

A link with generalized Watanabe distributions on Wiener's space is exhibited in [START_REF] Malliavin | Numerical Error for SDE: Asymptotic Expansion and Hyperdistributions[END_REF]. For the general case of Lévy driven stochastic differential equations, (5) holds under regularity assumptions on f and integrability conditions on the Lévy process, see [START_REF] Jacod | The Approximate Euler Method for Lévy Driven Stochastic Differential Equations[END_REF][START_REF] Protter | The Euler Scheme for Lévy Driven Stochastic Differential Equations[END_REF]. The rate of convergence of the process (X n,x t -X x t , t ∈ [0, 1]) is given in [START_REF] Jacod | Asymptotic Error Distributions for the Euler Method for Stochastic Differential Equations[END_REF][START_REF] Jacod | The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems[END_REF]. As for the simulation of densities, see for instance [START_REF] Kohatsu-Higa | Variance Reduction Methods for Simulation of Densities on Wiener Space[END_REF].

1.3. Purpose and method. Equations ( 6) and ( 7) can be seen as expansions of ∆ n

1 f (x) = E [f (X n,x 1 )] -E [f (X x 1 )
] in the special case when f = δ y , the Dirac mass at point y ∈ R d . We aim at giving a precise sense to such quantities when f is any tempered distribution, and at proving that expansions in powers of 1/n remain valid in this extremely general setting. Moreover, we will derive expansions that are valid not only for t = 1, but also for any time t ∈ (0, 1], the stepsize 1/n being fixed, and we shall make explicit, in these expansions, the way the coefficients and the remainders depend on t, f and x.

To get these precise results, we shall place ourselves in a strong situation. Namely, we will assume infinite regularity and boundedness of the coefficients of the SDE (3), that is condition (B), and uniform ellipticity, that is condition (C). The reason for this is the following. Let us write

P t f (x) = E[f (X x t )] and P n t f (x) = E [f (X n,x t )].
We first expand ∆ n t = P n t -P t as an endomorphism of C ∞ pol (R d ), in powers of 1/n. This can be done under nothing more than hypothesis (A), see Theorems 9 and 10 in Section 1.8. The coefficients in these expansions are operators of the form

t 0 P s DP t-s ds or t n k <t P n t n k DP t-t n k
, where D is a differential operator. Now, under (B) and (C), both X x t and X n,x t have regular densities, say p(t, x, •) and p n (t, x, •), with gaussian tails, as soon as t > 0, so that we may express these operators as integral operators on R d . For instance, for

f ∈ C ∞ pol (R d ), x ∈ R d and 0 < s < t, P s DP t-s f (x) = R d p(s, x, z)DP t-s f (z) dz = R d f (y) R d p(s, x, z)D(p(t -s, •, y))(z) dz dy.
Now the expansions read on the density itself, with coefficients of the form

π(t, x, y) = t 0 R d p(s, x, z)D(p(t -s, •, y))(z) dzds, (8) or π n (t, x, y) = t n k <t R d p n (t n k , x, z)D(p(t -t n k , •, y))(z) dz. ( 9 
)
At this step, the key point is to prove that these coefficients, as well as any of their spatial derivatives, have gaussian tails (see Proposition 5). To do so, we split the above time integral (resp. sum) depending on whether s (resp. t n k ) is small or large, and integrate by parts in the latter case. This is very similar to V. Bally and D. Talay's technique [START_REF] Bally | The Law of the Euler Scheme for Stochastic Differential Equations : Convergence Rate of the Distribution Function[END_REF], but they use the Malliavin calculus integration by parts formula whereas we only use the genuine one. Then we use upper bounds on the partial derivatives of p and p n , as is done in V. Konakov and E. Mammen's work [START_REF] Konakov | Edgeworth Type Expansions for Euler Schemes for Stochastic Differential Equations[END_REF]. Here the uniform ellipticity hypothesis is crucial: it provides upper bounds that have enough quality in t to allow us to conclude.

The same analysis, with a bit more work, can be done for the remainders. We then get functional expansions of the form [START_REF] Kunita | On the Decomposition of Solutions of Stochastic Differential Equations[END_REF] p

n -p = π/n + π n /n 2 or p n -p = j i=1 π n,i /n i
where π, π n and the π n,i 's and all their spatial derivatives have gaussian tails, uniformly in n. We then achieve to give a distributional sense to expansion (5) by a duality approach: any tempered distribution can be integrated or bracketed in the variable y with the expansions. Theorems 6, 7 and 8 provide precise statements, see Section 1.7.

1.4.

A first series of results. Stating Theorems 6 and 8 requires a bit of preparation, namely defining appropriate functional spaces in which will live the coefficients π, π n and π n,i in expansions [START_REF] Kunita | On the Decomposition of Solutions of Stochastic Differential Equations[END_REF]. Before doing this, to encourage the reader, we would like to state a series of easy consequences of Theorem 6, including an application to financial markets. They will be proved in Section 1.7. The function π which appears in them is the principal functional error term. It is defined by ( 21)-( 22). Note that analogous corollaries can be derived from Theorem 8 as well. The first result gives the rate of convergence of the spatial derivatives of the density:

Proposition 1. Under (B) and (C), for all α, β ∈ N d , there exists c 1 ≥ 0 and c 2 > 0 such that for all n ≥ 1, t ∈ (0, 1] and x, y ∈ R d ,

∂ α x ∂ β y p n (t, x, y) -∂ α x ∂ β y p(t, x, y) = 1 n ∂ α x ∂ β y π(t, x, y) + r n (t, x, y) and |r n (t, x, y)| ≤ c 1 n -2 t -(|α| + |β| +d+4)/2 exp -c 2 x -y 2 /t .
The next proposition states that ( 5) is valid for measurable and polynomially growing f 's: Proposition 2. Assume (B) and (C). Let f : R d → R be a measurable function such that there exists c ′ ≥ 0 and q ∈ N such that for all x ∈ R d , |f (x)| ≤ c ′ (1 + x q ). Then there exists c ≥ 0 such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R d ,

(11) E[f (X n,x t )] -E[f (X x t )] = 1 n R d f (y)π(t, x, y) dy + r n (t, x)
and

|r n (t, x)| ≤ cn -2 t -2 (1 + x q ) .
As far as extending the class of f 's for which [START_REF] Jacod | Asymptotic Error Distributions for the Euler Method for Stochastic Differential Equations[END_REF] holds is concerned, we can even do better. Indeed, if for µ ∈ (0, 2) we denote by E µ the set of all measurable functions f : R d → R such that there exists c 1 , c 2 ≥ 0 such that for all y ∈ R d ,

|f (y)| ≤ c 1 exp (c 2 y µ ) ,
we have Proposition 3. Under (B) and (C), for all µ ∈ (0, 2) and f ∈ E µ , there exists c 1 , c 2 ≥ 0 such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R d , f (X x t ) and f (X n,x t ) are integrable and

(12) E[f (X n,x t )] -E[f (X x t )] = 1 n R d f (y)π(t, x, y) dy + r n (t, x) with |r n (t, x)| ≤ c 1 n -2 t -2 exp (c 2 x µ ) .
In particular, (5) remains true under (B) and (C) when f ∈ E = ∪ µ∈(0,2) E µ . More generally, Theorem 6 leads to Proposition 4. Under (B) and (C), for all α ∈ N d , µ ∈ (0, 2) and f ∈ E µ , there exists c 1 , c 2 ≥ 0 such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R d ,

(13) ∂ α x E[f (X n,x t )] -∂ α x E[f (X x t )] = 1 n R d f (y)∂ α x π(t, x, y) dy + r n (t, x) with |r n (t, x)| ≤ c 1 n -2 t -(|α| +4)/2 exp (c 2 x µ ) .
This result can now be used in the context of financial markets.

1.5. Application to option pricing and hedging. Let S v = (S v,1 , . . . , S v,d ) be a basket of assets satisfying

dS v,i t S v,i t = µ i (S v t ) dt + r j=1 σ i,j (S v t ) dB j t , S v,i 0 = v i > 0, with µ, σ ∈ C ∞ b (R d
) and σ satisfying (C). Given a measurable and polynomially growing function φ, we try to estimate the price Price = E[φ(S v t )], the deltas Delta i = ∂ e i v E[φ(S v t )] and the gammas Gamma i,j = ∂

e i +e j v E[φ(S v
t )] of the european option of maturity t and payoff φ ((e 1 , . . . , e d ) is the canonical base of R d ). To do so, let us set x = ln v (i.e.

x i = ln v i ) and X x,i t = ln(S v,i t ). Then X is the solution of (3) with b = µ -σ 2 /2 ∈ C ∞ b (R d )
, where σ 2 i (x) = r j=1 σ 2 i,j (x). If we set exp(x) = (exp(x 1 ), . . . , exp(x d )) and f (x) = φ(exp(x)), we define a function f ∈ E 1 and, since Price = E[f (X x t )], [START_REF] Malliavin | Numerical Error for SDE: Asymptotic Expansion and Hyperdistributions[END_REF] 

leads to Price n -Price = C Price t φ(v)/n + O n -2 t -2 exp (c 2 ln v ) ,
where Price n stands for the approximated price E[f (X n,x t )] and

C Price t φ(v) = (R * + ) d φ(u) π(t, ln v, ln u) u 1 • • • u d du.
Besides, if we set Delta

n i = ∂ e i v E[f (X n,ln v t )] and Gamma n i,j = ∂ e i +e j v E[f (X n,ln v t )], (13) shows that Delta n -Delta = C Delta t φ(v)/n + O n -2 t -5/2 exp (c 2 ln v ) , Gamma n -Gamma = C Gamma t φ(v)/n + O n -2 t -3 exp (c 2 ln v ) ,
where

C Delta t φ(v) i = 1 v i (R * + ) d φ(u) ∂ e i 2 π(t, ln v, ln u) u 1 • • • u d du, C Gamma t φ(v) i,j = 1 v i v j (R * + ) d φ(u) ∂ e i +e j 2 π(t, ln v, ln u) -1 {i=j} ∂ e i 2 π(t, ln v, ln u) u 1 • • • u d du.
Eventually we have proved that applying the Euler scheme of order n to the logarithm of the underlying leads to approximations of the price, the deltas and the gammas which converge to the true price, deltas and gammas with speed 1/n, at least when the drift and volatility of the underlying satisfy (B) and (C), which in the context of financial markets seems not to be a restricting hypothesis. Note that the principal part of the error explodes as t tends to 0 as t -1/2 for the prices, t -1 for the deltas and t -3/2 for the gammas.

1.6. Some functional spaces. In order to state our main results (Proposition 5 and Theorems 6 and 8) precisely and shortly, let us introduce some families of functional spaces. Functional expansions like [START_REF] Kunita | On the Decomposition of Solutions of Stochastic Differential Equations[END_REF] will take place in such spaces. For l ∈ Z, we first define G l (R d ) as the set of all measurable functions π : (0

, 1] × R d × R d → R such that • for all t ∈ (0, 1], π(t, •, •) is infinitely differentiable,
• for all α, β ∈ N d , there exists two constants c 1 ≥ 0 and c 2 > 0 such that for all t ∈ (0, 1] and x, y ∈ R d , (

) ∂ α x ∂ β y π(t, x, y) ≤ c 1 t -(|α| + |β| +d+l)/2 exp -c 2 x -y 2 /t . 14 
We say that a subset B ⊂ G l (R d ) is bounded if, in [START_REF] Talay | Expansion of the Global Error for Numerical Schemes Solving Stochastic Differential Equations[END_REF], c 1 and c 2 can be chosen independently on π ∈ B. We also introduce the space G(R d ) defined in the same way as G l (R d ) with [START_REF] Talay | Expansion of the Global Error for Numerical Schemes Solving Stochastic Differential Equations[END_REF] replaced by the following two conditions:

∂ α x ∂ β y π(t, x, y) ≤ c 1 t -(|α| + |β| +d)/2 exp -c 2 x -y 2 /t , (15) 
∂ α x π t, x, x + y √ t ≤ c 1 t -d/2 exp -c 2 y 2 . ( 16 
)
Note that we may always take the couple of constants (c 1 , c 2 ) to be the same in both equations [START_REF] Talay | Probabilistic Numerical Methods for Partial Differential Equations: Elements of Analysis[END_REF] and (16). Indeed, if they hold with two couples (c ′ 1 , c ′ 2 ) and (c ′′ 1 , c ′′ 2 ), they both hold with (c 1 , c 2 ) if we take [START_REF] Talay | Probabilistic Numerical Methods for Partial Differential Equations: Elements of Analysis[END_REF] and ( 16), c 1 and c 2 can be chosen independently on π ∈ B. Note that in equation ( 16), the upper bound keeps the same quality in t, namely t -d/2 , whatever the "number" α of times one differentiates the mapping x → π t, x, x + y √ t . This will be crucial when proving Proposition 5.

c 1 = c ′ 1 ∨ c ′′ 1 and c 2 = c ′ 2 ∧ c ′′ 2 . We say that a subset B ⊂ G(R d ) is bounded if, in
It is convenient to extend these definitions to mappings that also depend on an intermediate time s ∈ (0, t). To do so, let us denote by T 1 the unit triangle {(s, t) ∈ R 2 |0 < s < t ≤ 1} and, for l ∈ Z, let us define H l (R d ) as the space of measurable functions ρ :

T 1 × R d × R d → R such that • for all (s, t) ∈ T 1 , ρ(s, t, •, •) is infinitely differentiable,
• for all α, β ∈ N d , there exists two constants c 1 ≥ 0 and c 2 > 0 such that for all (s, t) ∈ T 1 and x, y ∈ R d , (17)

∂ α x ∂ β y ρ(s, t, x, y) ≤ c 1 t -(|α| + |β| +d+l)/2 exp -c 2 x -y 2 /t .
Again we say that a subset

B ⊂ H l (R d ) is bounded if, in (17) 
, c 1 and c 2 can be chosen independently on ρ ∈ B. We also introduce the space H(R d ) which is defined in the same way as H l (R d ) with (17) replaced by

∂ α x ∂ β y ρ(s, t, x, y) ≤ c 1 t -(|α| + |β| +d)/2 exp -c 2 x -y 2 /t , (18) 
∂ α x ρ s, t, x, x + y √ t ≤ c 1 t -d/2 exp -c 2 y 2 , ( 19 
)
and we say that a subset B ⊂ H(R d ) is bounded if, in ( 18) and ( 19), c 1 and c 2 can be chosen independently on ρ ∈ B. Again we may always choose the couple (c 1 , c 2 ) to be the same in both equations ( 18) and ( 19). Note that the upper bounds in (17), ( 18) and ( 19) are exactly the same as the ones in ( 14), ( 15) and ( 16). In particular, they do not depend on s.

Eventually, for

π 1 , π 2 ∈ G(R d ), g ∈ C ∞ b (R d ) and γ ∈ N d , we define a function π 1 * g,γ π 2 on T 1 × R d × R d by putting (π 1 * g,γ π 2 ) (s, t, x, y) = R d g(z)π 1 (s, x, z)∂ γ 2 π 2 (t -s, z, y) dz.
Notation ∂ 2 means differentiation with respect to the second argument, here z. Operation * g,γ is a space convolution which naturally appears when developping the differential operator D in equations ( 8) and ( 9).

1.7. Main results. We are now able to state our main results as follows.

Proposition 5. Let B 1 and B 2 be two bounded subsets of

G(R d ), g ∈ C ∞ b (R d ) and γ ∈ N d . Then (i) {π 1 * g,γ π 2 |π 1 ∈ B 1 , π 2 ∈ B 2 } is a bounded subset of H |γ| (R d ), (ii) {π 1 * g,0 π 2 |π 1 ∈ B 1 , π 2 ∈ B 2 } is a bounded subset of H(R d ).
Theorem 6. Under (B) and (C),

(i) for all t ∈ (0, 1] and x ∈ R d , X x t has a density p(t, x, •) and p ∈ G(R d ), (ii) for all t ∈ (0, 1], x ∈ R d and n ≥ 1, X n,x t has a density p n (t, x, •) and (p n , n ≥ 1) is a bounded sequence in G(R d ), (iii) there exists π ∈ G 1 (R d ) and a bounded sequence (π n , n ≥ 1) in G 4 (R d ) such that for all n ≥ 1, (20) p n -p = π/n + π n /n 2 .
These results are proved in Section 3.2. In Theorem 6, statement (i) is already known, see [START_REF] Friedman | Stochastic Differential Equations and Applications[END_REF], Theorem 7, page 260, and statement (ii) has essentially been proved in [START_REF] Konakov | Edgeworth Type Expansions for Euler Schemes for Stochastic Differential Equations[END_REF]. As explained in Section 1.3, Proposition 5, together with these two statements, is the key to derive statement (iii).

The function π can be expressed in terms of p by ( 21)

π(t, x, y) = 1 2 t 0 R d p(s, x, z)L * 2 (p(t -s, •, y))(z) dzds,
where the differential operator L * 2 is explicitely given in terms of the functions a and b by

(22) -L * 2 = d i=1 b • ∇b i + 1 2 tr a∇ 2 b i ∂ i + d i,j=1 1 2 b • ∇a i,j + a j • ∇b i + 1 4 tr a∇ 2 a i,j ∂ ij + 1 2 d i,j,k=1 a k • ∇a i,j ∂ ijk .
Here, •, a k , tr, ∇ and ∇ 2 respectively stand for the inner product in R d , the k-th column of a, the trace of a matrix, the gradient vector and the hessian matrix. In the case when t = 1, (21) agrees with V. Bally and D. Talay's expression for π ([2], definition 2.2, page 100), but seems preferable because it does not involve differentiation with respect to t and makes explicit that the space differential operator L * 2 is of order less than 3, when V. Bally and D. Talay's operator U involves a fourth order differentiation in space.

We shall now prove that if X is elliptic the expansion ( 5) is valid in the very general case when f is a tempered distribution. Let us denote by S(R d ) Schwartz's space, i.e. the space of infinitely differentiable functions ϕ :

R d → R such that x → x α ∂ β ϕ(x) ∈ L ∞ (R d ) for all α, β ∈ N d (x α stands for x α 1 1 • • • x α d d )
, and let us denote by S ′ (R d ) the space of tempered distributions. The seminorms (N q , q ∈ N) are defined on S(R d ) by

N q (ϕ) = |α|≤q,|β|≤q sup x∈R d x α ∂ β ϕ(x) ,
and the order #S of S ∈ S ′ (R d ) is the smallest integer q such that there is a c ≥ 0 such that | S, ϕ | ≤ cN q (ϕ) for all ϕ ∈ S(R d ). Note that whenever π ∈ G l (R d ), π(t, x, •) and π(t, •, y) belong to S(R d ). More precisely, for B ⊂ G l (R d ) bounded, there exists c ≥ 0 such that for all π ∈ B, t ∈ (0, 1] and x, y ∈ R d ,

N q (π(t, x, •)) ≤ ct -(d+l+q)/2 (1 + x q ) and N q (π(t, •, y)) ≤ ct -(d+l+q)/2 (1 + y q ) .
Applying a tempered distribution S to (20), t and x or t and y being fixed, we immediately deduce from Theorem 6 Theorem 7. Under (B) and (C), for all S ∈ S ′ (R d ), there exists c ≥ 0 such that for all

n ≥ 1, t ∈ (0, 1] and x, y ∈ R d , S, p n (t, x, •) -S, p(t, x, •) = 1 n S, π(t, x, •) + r ′ n (t, x), S, p n (t, •, y) -S, p(t, •, y) = 1 n S, π(t, •, y) + r ′′ n (t, y), and r ′ n (t, x) + r ′′ n (t, x) ≤ cn -2 t -(d+4+#S)/2 1 + x #S .

Let us define E [S(Y )

] by S, p Y when S ∈ S ′ (R d ) and Y is a random variable with density p Y ∈ S(R d ). Note that, when S is a measurable and polynomially growing function, this definition coincides with the usual expectation. We then have proved that, under (B) and (C), ( 5) is valid for f 's being only tempered distributions, and not only for t = 1, but also for any time t ∈ (0, 1], and we have even precised the way the O(1/n 2 ) remainder depends on t, f and x. Precisely, this remainder grows slower than x #f as x tends to infinity, and explodes slower than t -(#f +d+4)/2 as t tends to 0.

We can now prove the propositions stated in Section 1.4. Proposition 1 is immediate from Theorem 6. In the special case when S is a measurable and polynomially growing function, we get Proposition 2:

Proof of Proposition 2. Multiplying (20) by f (y) and integrating in y leads to [START_REF] Kusuoka | Applications of the Malliavin Calculus[END_REF] with the remainder

r n (t, x) = n -2 R d f (y)π n (t, x, y) dy. Since |f (y)| ≤ c ′ (1 + y q ) and (π n , n ≥ 1) is bounded in G 4 (R d ), we can find c 1 ≥ 0 and c 2 > 0 such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R d , |r n (t, x)| ≤ c 1 n -2 t -(d+4)/2 R d (1 + y q ) exp(-c 2 x -y 2 /t) dy. Setting ζ = (y -x)/ √ t leads to |r n (t, x)| ≤ c 1 n -2 t -2 R d (1 + x + ζ √ t q ) exp(-c 2 ζ 2 ) dζ.
To complete the proof, it remains to observe that there exists c ≥ 0 such that for all t ∈ (0, 1] and

x, ζ ∈ R d , x + ζ √ t q ≤ c( x q + ζ q ).
It is easy to adapt the preceding proof to get Proposition 3. In the same way, differentiating (5) α times in x, multiplying by f (y) and integrating in y leads to Proposition 4.

Expansion (20) should be seen as an improvement of ( 6): it allows for infinite differentiation in x and y and also precises the way the coefficients explode when t tends to 0. We have an analogous improvement for expansion (7): Theorem 8. Under (B) and (C), for each i ≥ 1, there exists a bounded family (π n,i , n ≥ 1) in G 2i-2 (R d ) and two bounded families (π ′ n,i , n ≥ 1) and

(π ′′ n,i , n ≥ 1) in G 2i (R d ) such that for all j, n ≥ 1, (23) p n -p = j-1 i=1 π n,i n i + j i=2 (t -⌊nt⌋/n) i π ′ n,i + π ′′ n,j n j .
Here and in all the sequel we use the convention that a sum over an empty set is zero, and ⌊nt⌋ denotes the greatest integer less than or equal to nt. Expressions involving ⌊nt⌋ do not appear in (20) since they are hidden in the remainder. When t = 1 and no differentiation is applied neither in x nor in y, (23) boils down to the result of V. Konakov and E. Mammen [START_REF] Konakov | Edgeworth Type Expansions for Euler Schemes for Stochastic Differential Equations[END_REF]. Again note that (23) is much richer in the sense that it allows for infinite differentiation in space and also precises the dependence on t. Theorem 8 will also be proved in Section 3.2.

1.8. A preliminary result. As explained in section 1.3, in order to prove point (iii) in Theorem 6, we first seek an expansion for the error operator

∆ n t = P n t -P t where, for f ∈ C ∞ pol (R d ) and x ∈ R d , we have set P t f (x) = E[f (X x t )] and P n t f (x) = E [f (X n,x t )]
. Precisely, we look for operators C t and R n t such that R n t = O(1/n 2 ) and ∆ n t = C t /n + R n t . The following theorem, interesting in itself, is proved in Section 2. It can be seen as an improvement of [START_REF] Talay | Expansion of the Global Error for Numerical Schemes Solving Stochastic Differential Equations[END_REF]. It not only gives explicit formulas for C t f (x) and R n t f (x) but also provides useful information about their dependencies on n, t, f and x.

Note that it does not require neither (B) nor (B') nor (C). In order to state it shortly, let us

• denote by L C ∞ pol (R d ) the space of endomorphisms of C ∞ pol (R d ), • say that a subset B ⊂ C ∞ pol (R d ) is bounded if, in (2) 
, c and q can be chosen independently on

f ∈ B, • say that T ∈ L C ∞ pol (R d ) is bounded if for all bounded B ⊂ C ∞ pol (R d ), {T f |f ∈ B} is a bounded subset of C ∞ pol (R d ), • denote by L b C ∞ pol (R d ) the space of bounded endomorphisms of C ∞ pol (R d ), • say that a L b C ∞ pol (R d ) -valued family (T i , i ∈ I) is bounded if for all bounded B ⊂ C ∞ pol (R d ), {T i f |f ∈ B, i ∈ I} is a bounded subset of C ∞ pol (R d ), • say that (T i , i ∈ I) is a O(h(i)) family in L b C ∞ pol (R d ) if the family (h(i) -1 T i , i ∈ I) is bounded. It is already known that, under (A), (P t , t ∈ [0, 1]) is a bounded family in L b C ∞ pol (R d ) .
A proof can de found in [START_REF] Kusuoka | Applications of the Malliavin Calculus[END_REF], Lemma 3.9, page 15. Using Lemma 25, this proof straightforwardly adapts uniformly in n so that (P n t , t

∈ [0, 1], n ≥ 1) is also bounded in L b C ∞ pol (R d ) .
We are now in the position to state the main result of the first step:

Theorem 9. Under (A), (∆ n t , t ∈ [0, 1], n ≥ 1) is a O(t/n) family in L b C ∞ pol (R d ) , and there exists a O(t) process (C t , t ∈ [0, 1]) and a O(1/n 2 ) family (R n t , t ∈ [0, 1], n ≥ 1) in L b C ∞ pol (R d ) such that ∆ n t = C t /n + R n t . Moreover, C t is explicitely given in terms of (P t , t ∈ [0, 1]) and of L * 2 (see (22)) by (24) C t = 1 2 t 0 P s L * 2 P t-s ds.
Note that this theorem covers the result of D. Talay and L. Tubaro [START_REF] Talay | Expansion of the Global Error for Numerical Schemes Solving Stochastic Differential Equations[END_REF] since it implies that for any f ∈ C ∞ pol (R d ) we can find a q ∈ N such that for all x ∈ R d , t ∈ [0, 1] and n ≥ 1,

∆ n t f (x) = C t f (x)/n + O 1 + x q n 2 .
It even improves it a bit since we see that this holds under nothing more than condition (A), whereas D. Talay and L. Tubaro state their result under the stronger condition (B'). Note also that if we restrict ourselves to times t belonging to the discretization grid S n , we get a better control, of order O(t/n 2 ), of the remainder, see Remark 14. Instead of Theorem 9, in order to derive Theorem 8, we shall need Theorem 10. Under (A), there exists a sequence of differential operators (L * j , j ≥ 2), recursively defined by ( 27)-(28), and

for each i ≥ 1 a O(t/n i ) family R i = (R n,i t , t ∈ [0, 1], n ≥ 1) in L b C ∞ pol (R d ) such that for all j ≥ 1, (25) 
∆ n t = j i=2 1 i!n i ⌊nt⌋-1 k=0 P n t n k L * i P t-t n k + R n,j t + j i=2 (t -⌊nt⌋/n) i i! P n ⌊nt⌋/n L * i P t-⌊nt⌋/n .
Observe that the main term in (25) is

1 n   1 2n ⌊nt⌋-1 k=0 P n t n k L * 2 P t-t n k   ≈ C t n ,
and the remainder is of order 1/n 2 . Note also that if we restrict ourselves to times belonging to the discretization grid S n , we get the following expansion in

L b C ∞ pol (R d ) : ∆ n ⌊nt⌋/n = j i=2 1 i!n i ⌊nt⌋-1 k=0 P n t n k L * i P ⌊nt⌋/n-t n k + O t n j .
Theorem 10 is also proved in Section 2.

1.9. Organization of the paper. Section 2 deals with the expansion for the expectation: it is dedicated to the proofs of Theorems 9 and 10. Section 3 is our second and final step. It is devoted to the proofs of Theorems 6 and 8. It begins with the proof of Proposition 5 concerning the space convolution * g,γ in G(R d ).

Eventually, Section 4 is an appendix where we have gathered useful results on the Euler scheme and technical lemmas that are used in Sections 2 and 3.

First step: expansion for

E [f (X n,x t )] In this section we seek to expand ∆ n t f (x) = E [f (X n,x t )] -E [f (X x t )] in powers of the time step 1/n when f is a regular function, say f ∈ C ∞ pol (R d ).
The idea is the following. Recall the discussion preceding Theorem 9: under (A), both P t and P n t are endomorphisms of

C ∞ pol (R d ). In L C ∞ pol (R d ) we then write (26) ∆ n t = P n t -P t = ⌊nt⌋-1 k=0 P n t n k ∆ n 1/n P t-t n k+1 + P n ⌊nt⌋/n ∆ n t-⌊nt⌋/n .
There is a subtle point here: (X n,x t , t ∈ [0, 1]) is not a Markov process, since the future of X n,x t depends on the past value X n,x ⌊nt⌋/n , see [START_REF] Friedman | Stochastic Differential Equations and Applications[END_REF]. Nevertheless, it is easy to check by conditioning on F t n k that we have P n t n k P n s = P n t n k +s for all s ≥ 0 -but beware: this is different from P n s P n t n k as soon as ns is not an integer. Equation (26) leads us to expand ∆ n t for small t, namely for t ≤ 1/n. This naturally involves a series of differential operators as we shall now see.

2.1.

Operators associated with the Euler scheme. Let us denote by L the infinitesimal generator of the diffusion X and by (L x , x ∈ R d ) its tangent infinitesimal generator, i.e.

L = d i=1 b i ∂ e i + 1 2 d i,j=1 a i,j ∂ e i +e j and L x = d i=1 b i (x)∂ e i + 1 2 d i,j=1
a i,j (x)∂ e i +e j .

We use the convention that L and L x act on the variable y, so that, for instance, Lψ(t, x, y) and L x ψ(t, x, y) respectively stand for L (ψ(t, x, •)) (y) and L x (ψ(t, x, •)) (y). L x is the infinitesimal generator of the Euler scheme (X n,x t , t ∈ [0, 1/n]) starting from x, over the first discretization time interval: L x is built from L in the same way as X n is built from X, by freezing the drift b and the volatility σ to their initial value on discretization intervals. Besides, for each x ∈ R d we define a sequence of differential operators (L x j , j ∈ N) by putting L x 0 = I (the identity operator) and ( 27)

L x j+1 = L x L x j -L x j L, and we set (28) L * j f (x) = L x j f (x).
Observe that L * 1 = 0. Besides, L * 2 is given by ( 22) so that, under (A),

L * 2 ∈ L b C ∞ pol (R d ) and there exists a family (g * 2,α , 1 ≤ |α| ≤ 3) in C ∞ pol (R d ) such that (29) L * 2 = 1≤|α|≤3 g * 2,α ∂ α .
L * 2 gives the exact principal error term in the expansion of ∆ n t , see ( 24) and (21). L * j is the differential operator appearing in (25). It does not give the exact expansion in powers of 1/n but an approximated version, in the spirit of [START_REF] Konakov | Edgeworth Type Expansions for Euler Schemes for Stochastic Differential Equations[END_REF], since in (25) the coefficients depend on n -but should themselves be expanded in powers of 1/n. See [START_REF] Jacod | The Approximate Euler Method for Lévy Driven Stochastic Differential Equations[END_REF], equations (6.35) and (6.36), for an expression of the operators involved in the exact expansion.

Under (A), L and

L x belong to L b C ∞ pol (R d ) for each x ∈ R d
, and, by induction, so does L x j . We can describe L x j more precisely. Indeed, defining the powers of an operator A by A 0 = I and A j+1 = AA j , inductions on j lead to L x j = j i=0 (-1) i j i (L x ) j-i L i and to the existence of a family (g j,α , h j,α , j

∈ N * , 1 ≤ |α| ≤ 2j) in C ∞ pol (R d ) such that ∀x ∈ R d , (L x ) j = 1≤|α|≤2j g j,α (x)∂ α and L j = 1≤|α|≤2j h j,α ∂ α .
Hence, for each j ∈ N * one can find a family (m j,α , 1 ≤ |α| ≤ 2j) of integers and a family (g j,α,l , h j,α,l , 1

≤ |α| ≤ 2j, 1 ≤ l ≤ m j,α ) in C ∞ pol (R d ) such that for all x ∈ R d , (30) 
L x j = 1≤|α|≤2j m j,α l=1 g j,α,l (x)h j,α,l ∂ α .
Remark 11. Note that when (B) holds, the functions g j,α,l , h j,α,l and g * 2,α all belong to C ∞ b (R d ) (in fact they are polynomial in b, σ and their derivatives).

We are now in the position to define a family of operators Φ j = (Φ n,j s,t , n ≥ 1, 0 ≤ s ≤ t ≤ 1/n) as follows:

(31) ∀f ∈ C ∞ pol (R d ), Φ n,j s,t f (x) = E L x j P t-s f (X n,x s ) .
Observe that Φ n,j 0,t = L * j P t and that, from (30),

(32) Φ n,j s,t = 1≤|α|≤2j m j,α l=1 g j,α,l P n s (h j,α,l ∂ α P t-s ).
Boundedness is a key property of this family:

Proposition 12. Under (A), Φ j is a bounded family in L b C ∞ pol (R d ) .
Proof 

in L b C ∞ pol (R d ) , Φ j is a bounded family in L b C ∞ pol (R d ) .
The family Φ j naturally appears when we recusively use Itô's formula to expand ∆ n t for small t, as we now explain. 2.2. Itô expansions. We recall (see [START_REF] Kusuoka | Applications of the Malliavin Calculus[END_REF], theorem 3.11, page 16

) that for f ∈ C ∞ pol (R d ), (s, y) → P t-s f (y) is infinitely differentiable on [0, t] × R d and (33) ∀(s, y) ∈ [0, t] × R d , (∂ s + L)P t-s f (y) = 0.
Since ∂ s and L x j commute, (33) and the definition of L x j imply (34) (∂ s + L x )L x j P t-s = (L x L x j -L x j L)P t-s = L x j+1 P t-s .

For a measurable family (

A s ) in L b C ∞ pol (R d ) ,
we denote by

t 2 t 1 A s ds the element of L C ∞ pol (R d ) which maps f to x → t 2 t 1 A s f (x) ds.
The following lemma states that Φ n,j+1

•,t
is the derivative of Φ n,j •,t on the interval [0, t].

Lemma 13. Under (A), for all j ∈ N, n ≥ 1 and 0

≤ s ≤ t ≤ 1/n, (35) Φ n,j s,t = L * j P t + s 0 Φ n,j+1 s ′ ,t ds ′ . Proof. For f ∈ C ∞ pol (R d ), (s, y) → L x j P t-s f (y) is infinitely differentiable on [0, t] × R d
so that we can apply Itô's formula to it and to the semimartingale X n,x between 0 and s. Using (34) for the second equality, we get

L x j P t-s f (X n,x s ) -L x j P t f (x) -M s = s 0 ∂ ∂s + L x L x j P t-s ′ f X n,x s ′ ds ′ = s t n k L x j+1 P t-s ′ f X n,x s ′ ds ′ where M s = d i=1 r j=1 σ i,j (x) s 0 ∂ e i L x j P t-s ′ f X n,x s ′ dB j s ′ . Since {L x j P t-s ′ f |s ′ ∈ [0, t]} is bounded in C ∞ pol (R d ), (59) implies that (M s , s ∈ [0, t]
) is a square-integrable martingale and thus has zero mean. Hence, taking expectations and using (31) and Fubini's theorem, we have

Φ n,j s,t f (x) -L * j P t f (x) = s 0 E L x j+1 P t-s ′ f X n,x s ′ ds ′ = s 0 Φ n,j+1 s ′ ,t f (x) ds ′ ,
which concludes the proof.

For t ∈ [0, 1/n], since ∆ n t = Φ n,0 t,t -Φ n,0 0,t , by iterating (35) we get (36)

∆ n t = j i=2 t i i! L * i P t + I n,j+1 t , where (37) 
I n,j+1 t = t 0 s 1 0 • • • s j 0 Φ n,j+1 s j+1 ,t ds j+1 • • • ds 2 ds 1 .
The crucial point here is that, by construction, L * 1 = 0 so that the sum in (36) begins with i = 2.

Injecting this in (26), we eventually get for all t ∈ [0, 1] and n ≥ 1 

(38) ∆ n t = j i=2 1 i!n i ⌊nt⌋-1 k=0 P n t n k L * i P t-t n k + R n,
, n ≥ 1, t ∈ [0, 1/n]) is a O(t j+1 ) family in L b C ∞ pol (R d ) .
Recalling the boundedness of (P t , t ∈ [0, 1]) and (P n t , t ∈ [0, 1], n ≥ 1), we get that the family

R i = (R n,i t , t ∈ [0, 1], n ≥ 1) is O(t/n i ) in L b C ∞ pol (R d ) .
Theorem 10 is thus proved. We are now in good position to prove Theorem 9.

2.3. Proof of Theorem 9. In the particular case when j = 1, (38) reads ∆ n t = R n,1 t so that we have proved that (∆ n t , t

∈ [0, 1], n ≥ 1) is O(t/n) in L b C ∞ pol (R d )
, which was the first statement of Theorem 9.

In the particular case when j = 2, if we set 

C t = 1 2 t 0 P s L * 2 P t-s ds, (40) A n 1,t = 1 2n   1 n ⌊nt⌋-1 k=0 P t n k L * 2 P t-t n k - t 0 P s L * 2 P t-s ds   , (41) A n 2,t = 1 2n 2 ⌊nt⌋-1 k=0 P n t n k L * 2 P t-t n k -P t n k L * 2 P t-t n k , (42) 
A n 3,t = R n,2 t + (t -⌊nt⌋/n) 2 2 P n ⌊nt⌋/n L * 2 P t-⌊nt⌋/n (43) R n t = A n 1,t + A n 2,t + A n 3,t , (44) 
P t-s , 0 ≤ s ≤ t ≤ 1) is a bounded family in L b C ∞ pol (R d ) , so that (C t , t ∈ [0, 1]) is O(t) in L b C ∞ pol (R d ) . It remains to prove that (R n t , t ∈ [0, 1], n ≥ 1) is O(1/n 2 ) in L b C ∞ pol (R d ) .
We have already proved that it is true of (R n,2 t , t ∈ [0, 1], n ≥ 1). It is obviously also true of ((t -⌊nt⌋/n

) 2 P n ⌊nt⌋/n L * 2 P t-⌊nt⌋/n , t ∈ [0, 1], n ≥ 1), so that (A n 3,t , t ∈ [0, 1], n ≥ 1) is O(1/n 2 ) in L b C ∞ pol (R d ) . For (A n 1,t , t ∈ [0, 1], n ≥ 1), observe that, if we set L # 3 = LL * 2 -L * 2 L ∈ L b C ∞ pol (R d ) , as ∂ s P s = LP s = P s L, we have ∂ s P s L * 2 P t-s = P s LL * 2 P t-s -P s L * 2 LP t-s = P s L # 3 P t-s . Hence the family (P t n k L * 2 P t-t n k -P s L * 2 P t-s , t ∈ [0, 1], n ≥ 1, k ∈ {0, . . . , ⌊nt⌋ -1}, s ∈ [t n k , t n k+1 ]) satisfies (46) P t n k L * 2 P t-t n k -P s L * 2 P t-s = - s t n k P u L # 3 P t-u du and thus is O(1/n) in L b C ∞ pol (R d ) . As a consequence, (47) A n 1,t = 1 2n ⌊nt⌋-1 k=0 t n k+1 t n k P t n k L * 2 P t-t n k -P s L * 2 P t-s ds - 1 2n t ⌊nt⌋/n P s L * 2 P t-s ds is O(1/n 2 ) in L b C ∞ pol (R d ) .
As for (A n 2,t , t ∈ [0, 1], n ≥ 1), note that

P n t n k L * 2 P t-t n k -P t n k L * 2 P t-t n k = ∆ n t n k L * 2 P t-t n k . Since (∆ n t , t ∈ [0, 1], n ≥ 1) is O(1/n) in L b C ∞ pol (R d ) , so is the family (P n t n k L * 2 P t-t n k - P t n k L * 2 P t-t n k , t ∈ [0, 1], n ≥ 1, k ∈ {0, . . . , ⌊nt⌋ -1}), as the composition of a bounded family by a O(1/n) family in L b C ∞ pol (R d ) .
This completes the proof of Theorem 9. Remark 14. It is noteworthy that the family (R ′n t , t ∈ [0, 1], n ≥ 1) defined by

R ′n t = R n t + 1 2n t ⌊nt⌋/n P s L * 2 P t-s ds - (t -⌊nt⌋/n) 2 2 P n ⌊nt⌋/n L * 2 P t-⌊nt⌋/n is O(t/n 2 ) in L b C ∞ pol (R d ) . In particular, (R n ⌊nt⌋/n , t ∈ [0, 1], n ≥ 1) is O(t/n 2 ) in L b C ∞ pol (R d ) .
3. Second step: expansion for the density of X n,x t This section is devoted to the proofs of Theorems 6 and 8.

3.1. Space convolutions. We begin by proving Proposition 5 which is the key argument.

Recall the definitions of Section 1.6. Let 1 and B 2 be two bounded subsets of

G(R d ), g ∈ C ∞ b (R d ) and γ ∈ N d . We want to prove that (i) {π 1 * g,γ π 2 |π 1 ∈ B 1 , π 2 ∈ B 2 } is a bounded subset of H |γ| (R d ), (ii) {π 1 * g,0 π 2 |π 1 ∈ B 1 , π 2 ∈ B 2 } is a bounded subset of H(R d ).
The functions π 1 * g,γ π 2 depend on (s, t, x, y). We shall proceed differently depending on s is small or large with respect to t. The main trick is to integrate by parts in the latter case, so that the derivatives should always rest on the regularizing part of the integral. This is analogous to V. Bally and D. Talay's use of Malliavin calculus integration by parts formula [START_REF] Bally | The Law of the Euler Scheme for Stochastic Differential Equations : Convergence Rate of the Distribution Function[END_REF]. This is the reason why we partition the unit triangle T 1 into T - 1 = {(s, t) ∈ T 1 |0 < s ≤ t/2} and T + 1 = {(s, t) ∈ T 1 |t/2 < s < t}, and, for ǫ = ±, we define (π 1 * g,γ π 2 ) ǫ (s, t, x, y) = 1 T ǫ 1 (s, t) (π 1 * g,γ π 2 ) (s, t, x, y). We then have π 1 * g,γ π 2 = (π 1 * g,γ π 2 ) -+ (π 1 * g,γ π 2 ) + .

Before proving Proposition 5 and for the sake of clarity, let us state apart the following technical lemma, whose proof is a straightforward application of Lebesgue's dominated convergence theorem: Lemma 15. Let l ∈ Z, (χ i , i ∈ I) be a family of measurable functions mapping

T 1 × R d × R d × R d into R such that • for all i ∈ I, (s, t) ∈ T 1 and ζ ∈ R d , χ i (s, t, •, •, ζ) is infinitely differentiable,
• for all α, β ∈ N d , there exists two constants c 1 ≥ 0 and c 2 > 0 such that for all i ∈ I, (s,

t) ∈ T 1 and x, y, ζ ∈ R d , (48) ∂ α x ∂ β y χ i (s, t, x, y, ζ) ≤ c 1 t -(|α| + |β| +d+l)/2 exp -c 2 x -y 2 /t -c 2 ζ 2 ,
and let us define

I(χ i )(s, t, x, y) = R d χ i (s, t, x, y, ζ) dζ. Then {I(χ i )|i ∈ I} is a bounded subset of H l (R d ).

Proof of Proposition 5-(i). It is enough to show that both

B ǫ ≡ {(π 1 * g,γ π 2 ) ǫ |π 1 ∈ B 1 , π 2 ∈ B 2 } are bounded.
Step 1. Let us first treat B -, i.e. the case when s is small. After the change of variables

z = x + ζ √ s, we get (π 1 * g,γ π 2 ) -= I(χ - π 1 ,π 2 ) with χ - π 1 ,π 2 (s, t, x, y, ζ) = 1 T - 1 (s, t)s d/2 g(x + ζ √ s)π 1 (s, x, x + ζ √ s)∂ γ 2 π 2 (t -s, x + ζ √ s, y).
It is enough to check that the family χ - π 1 ,π 2 , (π 1 , π 2 ) ∈ B 1 × B 2 satisfies the assumptions of Lemma 15 with l = |γ|. The first point is obvious. In order to check the second one, let us fix α, β ∈ N d . According to Leibniz's formula, ∂ α x ∂ β y χ π 1 ,π 2 (s, t, x, y, ζ) can be written as a weighted sum of terms of the form

χ -,α 1 ,α 2 ,α 3 π 1 ,π 2 (s, t, x, y, ζ) = 1 T - 1 (s, t)s d/2 ∂ α 1 g(x + ζ √ s) ∂ α 2 x π 1 (s, x, x + ζ √ s) ∂ γ+α 3 2 ∂ β 3 π 2 (t -s, x + ζ √ s, y), with |α 1 | + |α 2 | + |α 3 | = |α|,
so that in order to check (48) it is enough to show that for each such (α 1 , α 2 , α 3 ) one can find c 1 ≥ 0 and c 2 > 0 such that for all (π

1 , π 2 ) ∈ B 1 × B 2 , (s, t) ∈ T 1 and x, y, ζ ∈ R d , |χ -,α 1 ,α 2 ,α 3 π 1 ,π 2
(s, t, x, y, ζ)| is less than the r.h.s. of (48), with l = |γ|. Now, B 1 and B 2 are bounded subsets of G(R d ) so that from ( 15)-( 16) one can find c 3 , c 5 ≥ 0 and c 4 > 0 such that for all (π 1 , π

2 ) ∈ B 1 × B 2 , (s, t) ∈ T 1 and x, y, ζ ∈ R d , ∂ α 2 x π 1 (s, x, x + ζ √ s) ≤ c 3 s -d/2 exp -c 4 ζ 2 and 1 T - 1 (s, t) ∂ γ+α 3 2 ∂ β 3 π 2 (t -s, x + ζ √ s, y) ≤ 1 T - 1 (s, t)c 3 (t -s) -(|α 3 | + |β| + |γ| +d)/2 exp -c 4 x -y + ζ √ s 2 /(t -s) ≤ 1 T - 1 (s, t)c 5 t -(|α| + |β| + |γ| +d)/2 exp -c 4 x -y + ζ √ s 2 /t
where, for the last inequality, we have used the fact that when (s, t) ∈ T - 1 , t/2 ≤ t -s ≤ t ≤ 1. Now, using the fact that x -z 2 ≥ x 2 /2 -z 2 for all x, z ∈ R d , we see that for all (s, t)

∈ T - 1 , ζ 2 + x -y + ζ √ s 2 /t ≥ ( x -y 2 /t + ζ 2 )/2. Since g ∈ C ∞ b (R d )
, we can eventually find c 1 ≥ 0 and c 2 > 0 such that for all (π 1 , π

2 ) ∈ B 1 × B 2 , (s, t) ∈ T 1 and x, y, ζ ∈ R d , χ -,α 1 ,α 2 ,α 3 π 1 ,π 2 (s, t, x, y, ζ) ≤ c 1 t -(|α| + |β| +d+|γ|)/2 exp -c 2 x -y 2 /t -c 2 ζ 2 , which completes Step 1.
Step 2. Let us now treat B + , i.e. the case when s is large. After |γ| integrations by parts, we have

(π 1 * g,γ π 2 ) + (s, t, x, y) = 1 T + 1 (s, t) R d ∂ γ z (g(z)π 1 (s, x, z))π 2 (t -s, z, y) dz.
Using Leibniz's formula and making the change of variables z = y -ζ √ t -s, we get that (π 1 * g,γ π 2 ) + is a weighted sum of terms of the form

I(χ +,γ 1 ,γ 2 π 1 ,π 2 ) with χ +,γ 1 ,γ 2 π 1 ,π 2 (s, t, x, y, ζ) = 1 T + 1 (s, t)(t -s) d/2 ∂ γ 1 g(y -ζ √ t -s) ∂ γ 2 3 π 1 (s, x, y -ζ √ t -s)π 2 (t -s, y -ζ √ t -s, y)
and |γ 1 | + |γ 2 | = |γ|, so that we are now in the position to apply the same arguments as in Step 1 and get that the family (χ

+,γ 1 ,γ 2 π 1 ,π 2 , (π 1 , π 2 ) ∈ B 1 × B 2
) satisfies the assumptions of Lemma 15 with l = |γ|, which completes the proof.

Proof of Proposition 5-(ii). From (i), we know that {π

1 * g,0 π 2 |π 1 ∈ B 1 , π 2 ∈ B 2 } is a bounded subset of H 0 (R d ).
It remains to prove that (19) holds for ρ = π 1 * g,0 π 2 with constants c 1 and c 2 which do not depend on (π 1 , π 2 ) ∈ B 1 × B 2 . As in the proof of Proposition 5-(i), we treat (π 1 * g,0 π 2 ) -and (π 1 * g,0 π 2 ) + separately but analogously. That is, after integrating by parts, the term (π 1 * g,0 π 2 ) + can be treated in the same way as (π 1 * g,0 π 2 ) -. Thus we shall only deal with the latter term. We have (π

1 * g,0 π 2 ) -= I(χ - π 1 ,π 2 ) with χ - π 1 ,π 2 (s, t, x, y, ζ) = 1 T - 1 (s, t)s d/2 g(x + ζ √ s)π 1 (s, x, x + ζ √ s)π 2 (t -s, x + ζ √ s, y).
Then we write ∂ α x χ - π 1 ,π 2 s, t, x, x + y √ t, ζ as a weighted sum of terms of the form χ-,α 1 ,α 2 ,α 3

π 1 ,π 2 (s, t, x, y, ζ) = 1 T - 1 (s, t)s d/2 ∂ α 1 g(x + ζ √ s) ∂ α 2 x π 1 (s, x, x + ζ √ s) ∂ α 3 x π 2 (t -s, x + ζ √ s, x + y √ t) , with |α 1 | + |α 2 | + |α 3 | = |α|.
Then we use (16) twice and the same arguments as in the preceding proof to get c 1 ≥ 0 and c 2 > 0 such that for all (π

1 , π 2 ) ∈ B 1 × B 2 , (s, t) ∈ T 1 and x, y, ζ ∈ R d , | χ-,α 1 ,α 2 ,α 3 π 1 ,π 2 (s, t, x, y, ζ)| ≤ c 1 t -d/2 exp(-c 2 y 2 -c 2 ζ 2 )
, and an obvious adaptation of Lemma 15 completes the proof.

3.2. Proof of Theorems 6 and 8. In this section, we assume (B) and (C). We first want to prove Theorem 6. We recall that statement (i) is already known, see [START_REF] Friedman | Stochastic Differential Equations and Applications[END_REF], theorem 7, page 260. The next lemma is statement (ii).

Lemma 16. Under (B) and (C), for all t ∈ (0

, 1], n ≥ 1 and x ∈ R d , X n,x t has a density p n (t, x, •) and (p n , n ≥ 1) is a bounded sequence in G(R d ).
Proof. It is known that for all n ≥ 1, k ∈ {1, . . . , n} and x ∈ R d , X n,x t n k has a density p n,k (x, •) such that p n,k is infinitely differentiable and satisfies ( 15)-( 16) with t = t n k and two constants c 1 and c 2 which do not depend on n and k (see the proof of theorem 1.1, page 278, in [START_REF] Konakov | Edgeworth Type Expansions for Euler Schemes for Stochastic Differential Equations[END_REF]). Since ⌊nt⌋/n ≥ t/2 for all t ≥ 1/n, this shows that the sequence (p n , n ≥ 1) defined by pn (t, x, y) = 1 {nt≥1} p n,⌊nt⌋ (x, y) is bounded in G(R d ). If we denote by Γ(t, x, •) the density of x + b(x)t + σ(x)B t (t ∈ (0, 1]), we observe that when k ∈ {1, . . . , n -1} and t ∈ (t n k , t n k+1 ), X n,x t has the density p n (t, x,

•) = R d p n,k (x, z)Γ(t -t n k , z, •) dz = (p n * 1,0 Γ)(t n k , t, x, •).
Hence, for all t ∈ (0, 1], n ≥ 1 and x ∈ R d , X n,x t has the density

p n (t, x, •) =    p n,k (x, •) if t = t n k , k ∈ {1, . . . , n}, Γ(t, x, •) if t ∈ (0, t n 1 ), (p n * 1,0 Γ)(t n k , t, x, •) if t ∈ (t n k , t n k+1 ), k ∈ {1, . . . , n -1}.
Observing that Γ ∈ G(R d ) and applying Proposition 5-(ii), we get that (p n , n ≥ 1) is a bounded sequence in G(R d ).

We shall now prove statement (iii) of Theorem 6. Recall (45). We want to make explicit C t and R n t as integral operators on R d . To this end, note that, applying recursively Lebesgue's dominated convergence theorem, we have that for all t ∈ (0

, 1], f ∈ C ∞ pol (R d ), x ∈ R d and α ∈ N d , (49) ∂ α P t f (x) = R d f (y)∂ α 2 p(t, x, y) dy.
The next lemma explicits C t as an integral operator. The function π which appears there should be thought of as the kernel of C. Lemma 17. Under (B) and (C), there exists π ∈ G 1 (R d ), given by (21), such that for all t ∈ (0

, 1], f ∈ C ∞ pol (R d ) and x ∈ R d , C t f (x) = R d f (y)π(t, x , y) dy. 
Proof. Using (40) for the first equality, (29) for the third one and (49) for the fourth one, we have

2C t f (x) = t 0 P s L * 2 P t-s f (x) ds = t 0 R d p(s, x, z)L * 2 P t-s f (z) dzds = 1≤|α|≤3 t 0 R d g * 2,α (z)p(s, x, z)∂ α P t-s f (z) dzds = 1≤|α|≤3 t 0 R d R d f (y)g * 2,α (z)p(s, x, z)∂ α 2 p(t -s, z, y) dydzds.
Using Fubini's theorem, we see that to complete the proof it is enough to show that the function π defined by

= 1 2 1≤|α|≤3 t 0 (p * g * 2,α ,α p)(s, t, x, y) ds belongs to G 1 (R d ). Now, p ∈ G(R d ) and, from Remark 11, g * 2,α ∈ C ∞ b (R d ) so that we can apply Proposition 5-(i): p * g * 2,α ,α p ∈ H |α| (R d ). In particular, • 0 (p * g * 2,α ,α p)(s, •, •, •) ds ∈ G |α| -2 (R d ). (50) π(t, x, y) 
Since |α| ≤ 3 and by monotonicity of (G l (R d ), l ∈ Z), we finally get that π ∈ G 1 (R d ). To complete the proof, note that (50) can be rewritten as (21).

We have a similar representation for A n 1,t , recall (41). We say that a sequence (π

n , n ≥ 1) is O(1/n j ) in G l (R d ) if (n j π n , n ≥ 1) is bounded in G l (R d ).
Lemma 18. Under (B) and (C), there exists a

O(1/n 2 ) sequence (π n 1 , n ≥ 1) in G 3 (R d ) such that for all t ∈ (0, 1], f ∈ C ∞ pol (R d ) and x ∈ R d , A n 1,t f (x) = R d f (y)π n 1 (t, x , y) dy. 
Proof. Recall (46). From Remark 11, there is a family

(g # 3,α , 1 ≤ |α| ≤ 4) in C ∞ b (R d ) such that L # 3 = 1≤|α|≤4 g # 3,α ∂ α ,
so that, using (49), we have

(P t n k L * 2 P t-t n k -P s L * 2 P t-s )f (x) = - 1≤|α|≤4 s t n k R d R d f (y)g # 3,α (z)p(u, x, z)∂ α 2 p(t -u, z, y) dydzdu.
Using (47), we get

A n 1,t f (x) = R d f (y)π n 1 (t, x, y) dy with π n 1 = π n 1,1 + π n 1,2 and π n 1,1 (t, x, y) = - 1 2n 1≤|α|≤4 ⌊nt⌋-1 k=0 t n k+1 t n k s t n k p * g # 3,α ,α p (u, t, x, y) duds, π n 1,2 (t, x, y) = - 1 2n 1≤|α|≤3 t ⌊nt⌋/n (p * g * 2,α ,α p)(s, t, x, y) ds. Now Proposition 5-(i) states that p * g # 3,α ,α p and p * g * 2,α ,α p belong to H |α| (R d ). Hence ( t n k+1 t n k s t n k (p * g # 3,α ,α p)(u, •, •, •) duds, n ≥ 1, k ∈ {0, . . . , n -1}) is O(1/n 2 ) in G |α| (R d ) and ( • ⌊n•⌋/n (p * g * 2,α ,α p)(s, •, •, •) ds, n ≥ 1) is O(1/n) in G |α| (R d ). As a consequence, (π n 1,1 , n ≥ 1) is O(1/n 2 ) in G 2 (R d ) and (π n 1,2 , n ≥ 1) is O(1/n 2 ) in G 3 (R d ). Eventually, (π n 1 , n ≥ 1) is O(1/n 2 ) in G 3 (R d ).
We shall now prove an analogous lemma for A n 2,t .

Lemma 19. Under (B) and (C), there exists a

O(1/n 2 ) sequence (π n 2 , n ≥ 1) in G 3 (R d ) such that for all t ∈ (0, 1], f ∈ C ∞ pol (R d ) and x ∈ R d , A n 2,t f (x) = R d f (y)π n 2 (t, x, y) dy. Proof. Since P n t n k L * 2 P t-t n k = P t n k L * 2 P t-t n k when k = 0, (42) reads 2n 2 A n 2,t f (x) = ⌊nt⌋-1 k=1 (P n t n k -P t n k )L * 2 P t-t n k f (x) = ⌊nt⌋-1 k=1 R d (p n -p)(t n k , x, z)L * 2 P t-t n k f (z) dz = 1≤|α|≤3 ⌊nt⌋-1 k=1 R d (p n -p)(t n k , x, z)g * 2,α (z)∂ α P t-t n k f (z) dz = 1≤|α|≤3 ⌊nt⌋-1 k=1 R d R d (p n -p)(t n k , x, z)g * 2,α (z)f (y)∂ α 2 p(t -t n k , z, y) dydz
where we have used (29) for the third equality and (49) for the fourth one. From Remark 11, g * 2,α ∈ C ∞ b (R d ) so that to complete the proof it is enough to show that whenever g ∈ C ∞ b (R d ) and α ∈ N d , the sequence (π n , n ≥ 1) defined by

π n (t, x, y) = ⌊nt⌋-1 k=1 R d (p n -p)(t n k , x, z)g(z)∂ α 2 p(t-t n k , z, y)dz = ⌊nt⌋-1 k=1 ((p n -p) * g,α p)(t n k , t, x, y) is bounded in G |α| (R d ).
And to do so, it is enough to show that the sequence (ρ n t n k , n ≥ 2, k ∈ {1, . . . , n -1}) defined by

ρ n t n k (t, x, y) = 1 T 1 (t n k , t) ((p n -p) * g,α p) (t n k , t, x, y) is O(1/n) in G |α| +2 (R d ). Let us write ρ n,- t n k (t, x, y) = 1 T - 1 (t n k , t)ρ n t n k (t, x, y) and ρ n,+ t n k (t, x, y) = 1 T + 1 (t n k , t)ρ n t n k (t, x, y) so that ρ n t n k = ρ n,- t n k + ρ n,+ t n k .
Let us first prove that (ρ n,- (51) in the appendix for the definition of P n s π, P s π and ∆ n s π when π ∈ G l (R d )). Thus, from (38)-( 39) and (37) applied with j = 1,

t n k , n ≥ 2, k ∈ {1, . . . , n -1}) is O(1/n) in G |α| +2 (R d ). The sequence (π t n k , n ≥ 2, k ∈ {1, . . . , n -1}) defined by π t n k (t, x, y) = 1 T - 1 (t n k , t)g(x)∂ α 2 p(t - t n k , x, y) is bounded in G |α| (R d ), since t -t n k ≥ t/2 when (t n k , t) ∈ T - 1 . Now note that ρ n,- t n k = P n t n k π t n k -P t n k π t n k = ∆ n t n k π t n k (see
ρ n,- t n k = k-1 m=0 1/n 0 s 1 0 P n t n m Φ n,2 s 2 ,1/n P t n k -t n m+1 π t n k ds 2 ds 1 .
Proposition 24 in the appendix states that the family (P n

t n m Φ n,2 s,1/n P t n k -t n m+1 π t n k , n ≥ 2, k ∈ {1, . . . , n -1}, m ∈ {1, . . . , k -1}, s ∈ [0, 1/n]) is bounded in G |α| +4 (R d ). Since k ≤ ⌊nt⌋ when (t n k , t) ∈ T 1 , this implies that (ρ n,- t n k , n ≥ 2, k ∈ {1, . . . , n-1}) is O(1/n) in G |α| +2 (R d ).
Let us now prove the same for ρ n,+ . After |α| integrations by parts and after setting z = y -ζ √ t -s, we get that ((p n -p) * g,α p) + is a weighted sum of terms of the form I(χ n,+ α 1 ,α 2 ) -see Lemma 15 -with 

χ n,+ α 1 ,α 2 (s, t, x, y, ζ) = 1 T + 1 (s, t)(t -s) d/2 ∂ α 1 g(y -ζ √ t -s) ∂ α 2 3 (p n -p)(s, x, y -ζ √ t -s)p(t -s, y -ζ √ t -s,
, n ≥ 1) in G 4 (R d ) such that for all t ∈ (0, 1], f ∈ C ∞ pol (R d ) and x ∈ R d , A n 3,t f (x) = R d f (y)π n 3 (t, x, y) dy.
Statement (iii) of Theorem 6 is now proved: it follows from (45), (44) and Lemmas 17, 18, 19 and 20.

We now also have all the tools to prove Theorem 8. Indeed, note that (38) combined with Lemmas 21 and 23 imply that we have an expansion of arbitrary order j for p n -p:

(p n -p)(t, •, •) = j i=2 1 i!n i ⌊nt⌋-1 k=0 ψ n,i t n k (t, •, •) + r n,j (t, •, •) + j i=2 (t -⌊nt⌋/n) i i! ψ n,i ⌊nt⌋/n (t, •, •). Since (r n,j , n ≥ 1) is O(1/n j ) in G 2j (R d ) and (ψ n,j t n k , n ≥ 1, k ∈ {0, . . . , n}) is bounded in G 2j (R d ), this gives (23) with (π n,i , n ≥ 1) bounded in G 2i-2 (R d ) and (π ′ n,i , n ≥ 1) and (π ′′ n,i , n ≥ 1) bounded in G 2i (R d ).
4. Appendix 4.1. Kernel of R n,j . Here we make explicit the kernel of the remainder R n,j t , recall (39): Lemma 21. Under (B) and (C), for each j ∈ N * , there exists a O(1/n j ) sequence (r n,j , n ≥ 1) in G 2j (R d ) such that for all t ∈ (0

, 1], n ≥ 1, f ∈ C ∞ pol (R d ) and x ∈ R d , R n,j t f (x) = R d
f (y)r n,j (t, x, y) dy.

Proof. From (39) and (37), R n,j t = R n,j 1,t + R n,j 2,t where

R n,j 1,t = ⌊nt⌋-1 k=0 1/n 0 s 1 0 • • • s j 0 P n t n k Φ n,j+1 s j+1 ,1/n P t-t n k+1 ds j+1 • • • ds 2 ds 1 , R n,j 2,t = t-⌊nt⌋/n 0 s 1 0 • • • s j 0 P n ⌊nt⌋/n Φ n,j+1 s j+1 ,t-⌊nt⌋/n ds j+1 • • • ds 2 ds 1 .
Let us first deal with R n,j 1,t . Using the fact that k ≥ 1 for the first equality, (32) for the second one, the fact that P 1/n-s P t-t n k+1 = P t-t n k -s for the third one, and (49) and Fubini's theorem for the last one, we have for all

f ∈ C ∞ pol (R d ), x ∈ R d , t ∈ [0, 1], n ≥ 1, k ∈ {1, . . . , ⌊nt⌋ -1} and s ∈ (0, 1/n), P n t n k Φ n,j s,1/n P t-t n k+1 f (x) = R d p n (t n k , x, z 1 )Φ n,j s,1/n P t-t n k+1 f (z 1 ) dz 1 = 1≤|α|≤2j m j,α l=1 R d p n (t n k , x, z 1 )g j,α,l (z 1 )P n s (h j,α,l ∂ α P 1/n-s )P t-t n k+1 f (z 1 ) dz 1 = 1≤|α|≤2j m j,α l=1 R d R d p n (t n k , x, z 1 )g j,α,l (z 1 )p n (s, z 1 , z 2 )h j,α,l (z 2 )∂ α P t-t n k -s f (z 2 ) dz 2 dz 1 = R d f (y)ϕ n,j t n k (s, t, x, y) dy where ϕ n,j t n k = 1≤|α|≤2j m j,α l=1 ϕ n,j t n k ,α,l with ϕ n,j t n k ,α,l (s, t, x, y) = 1 (0, 1 n ) (s)1 [t n k+1 ,1] (t) R d (p n * g j,α,l ,0 p n )(t n k , t n k + s, x, z 2 )h j,α,l (z 2 )∂ α 2 p(t -t n k -s, z 2 , y) dz 2 . Now, setting q n,j t n k ,α,l (u, x, z) = 1 (t n k ,1] (u)(p n * g j,α,l ,0 p n )(t n k , u, x, z), it follows from Propo- sition 5-(ii) that (q n,j t n k ,α,l , n ≥ 1, k ∈ {1, . . . , n}) is a bounded sequence in G(R d ). Since ϕ n,j t n k ,α,l (s, t, x, y) = 1 (0, 1 n ) (s)1 [t n k+1 ,1] (t)(q n,j t n k ,α,l * h j,α,l ,α p)(t n k + s, t, x, y), Proposition 5-(i) shows that (ϕ n,j t n k ,α,l , n ≥ 1, k ∈ {1, . . . , n}) is bounded in H |α| (R d ), so that (ϕ n,j t n k , n ≥ 1, k ∈ {1, . . . , n}) is bounded in H 2j (R d ).
When k = 0, we have in the same way for all

f ∈ C ∞ pol (R d ) Φ n,j s,1/n P t-1/n f (x) = R d
f (y)ϕ n,j 0 (s, t, x, y) dy where ϕ n,j 0 = 1≤|α|≤2j m j,α l=1 ϕ n,j 0,α,l with ϕ n,j 0,α,l (s, t, x, y)

= 1 (0, 1 n ) (s)1 [ 1 n ,1] (t)g j,α,l (x)(p n * h j,α,l ,α p)(s, t, x, y). Again Proposition 5-(i) imply that (ϕ n,j 0 , n ≥ 1) is bounded in H 2j (R d ). Eventually, for all f ∈ C ∞ pol (R d ), we have R n,j 1,t f (x) = R d f (y)r n,j 1 (t, x, y) dy with r n,j 1 (t, x, y) = ⌊nt⌋-1 k=0 1/n 0 s 1 0 • • • s j 0 ϕ n,j+1 t n k (s j+1 , t, x, y) ds j+1 • • • ds 2 ds 1 ,
and since the family (ϕ n,j+1

t n k , n ≥ 1, k ∈ {0, . . . , n}) is bounded in H 2j+2 (R d ), the sequence (r n,j 1 , n ≥ 1) is O(1/n j ) in G 2j (R d ).
As for R n,j 2,t , similar arguments lead to

P n ⌊nt⌋/n Φ n,j s,t-⌊nt⌋/n f (x) = R d f (y)φ n,j (s, t, x, y) dy where φ n,j = 1≤|α|≤2j m j,α l=1 φ n,j α,l with φ n,j α,l (s, t, x, y) = 1 [ 1 n ,1] (t)1 0,t-⌊nt⌋ n (s) R d (p n * g j,α,l ,0 p n ) ⌊nt⌋ n , ⌊nt⌋ n + s, x, z 2 h j,α,l (z 2 )∂ α 2 p t - ⌊nt⌋ n -s, z 2 , y dz 2 + 1 {0<s<t< 1 n } g j,α,l (x 
) p n * h j,α,l ,α p (s, t, x, y). We can treat φ n,j α,l exactly as we have treated ϕ n,j t n k ,α,l , and get that (φ n,j , n ≥ 1) is bounded in H 2j (R d ), so that R n,j 2,t has a kernel (r n,j 2 , n ≥ 1) defined by

r n,j 2 (t, x, y) = t-⌊nt⌋/n 0 s 1 0 • • • s j 0 φ n,j+1 (s j+1 , t, x, y) ds j+1 • • • ds 2 ds 1 which is O(1/n j ) in G 2j (R d ).
Eventually, putting r n,j = r n,j 1 + r n,j 2 completes the proof. In particular we have

Corollary 22. Under (B) and (C), (p n -p, n ≥ 1) is O(1/n) in G 2 (R d ).
Proof. From (38) applied with j = 1 and Lemma 21, we have for all 

f ∈ C ∞ pol (R d ) R d f (y)(p n -p)(t, x, y) dy = ∆ n t f (x) = R n,1 t f (x) = R d f (y)r n,
, n ≥ 1, k ∈ {0, . . . , n}) in G 2j (R d ) such that for all t ∈ (0, 1], n ≥ 1, k ∈ {0, . . . , ⌊nt⌋}, f ∈ C ∞ pol (R d ) and x ∈ R d , P n t n k L * j P t-t n k f (x) = R d f (y)ψ n,j t n k (t, x, y) dy.
The proof is omitted since it copies the arguments of the proof of Lemma 21 -it is even a bit simpler. We also write ∆ n s π = P n s π -P s π. For j ∈ N * we denote by Φ j the family (Φ n,j s,1/n , n ≥ 1, s ∈ [0, 1/n]) of operators on G l (R d ) defined as in (31) by Φ n,j s,1/n π(t, x, y) = E L x j P 1/n-s π (t, X n,x s , y) ,

Operators on

G l (R d ). When π ∈ G l (R d ), π(t, •, y) ∈ L ∞ (R d ) so that for s ∈ [0,
i.e., using (30),

Φ n,j s,1/n = 1≤|α|≤2j m j,α l=1 g j,α,l P n s h j,α,l ∂ α P 1/n-s . Denoting by L b (G l (R d ), G l ′ (R d )) (52) 
the space of all morphisms mapping any bounded subset of G l (R d ) into a bounded subset of l ′ (R d ), we then have Proposition 24. Under (B) and (C), (P s , s ∈ [0, 1]) and

(P n s , s ∈ [0, 1], n ≥ 1) are bounded families in L b (G l (R d )), and Φ j is a bounded family in L b (G l (R d ), G l+2j (R d )).
Proof. Let us first deal with (P s ). Let π ∈ G l (R d ). P s is measurable. Moreover, Lebesgue's dominated convergence theorem shows that P s π(t, x, •) is infinitely differentiable and that for all β ∈ N d ∂ β y P s π(t, x, y) = 1 {s≤t} E ∂ β 3 π (t, X x s , y) .

Hypothesis (A) ensures that a version of X x can be chosen such that for each t ≥ 0, the map x → X x t is infinitely differentiable (see, for example, [START_REF] Kunita | On the Decomposition of Solutions of Stochastic Differential Equations[END_REF]). Since ∂ β 3 π(t, •, y) ∈ C ∞ pol (R d ), it follows from Theorem 3.14 page 16 in [START_REF] Kusuoka | Applications of the Malliavin Calculus[END_REF] . Now, partitioning Ω into { X s x -y ≤ x -y /2} and { X s x -y > x -y /2}, we have (56) E exp -c 2 X s x -y 2 /t ≤ P ( X s x -y ≤ x -y /2) + exp -c 2 x -y 2 /4t . Eventually, from (56) and (57), we can find c 7 ≥ 0 and c 8 > 0 such that for all s ∈ [0, 1], t ∈ (0, 1] and x, y ∈ R d ,

1 {s≤t} E exp -c 2 X s
x -y 2 /t ≤ c 5 exp -c 6 x -y 2 /t + exp -c 2 x -y 2 /4t ≤ c 7 exp -c 8 x -y 2 /t . (58) It is enough to inject (58) into (55) to complete the proof for (P s ).

This proof naturally extends to the case of (P n s ). Indeed, (53) holds with (X n , P n ) instead of (X, P ). Moreover, from Lemma 26, (54) holds uniformly in n with X n instead of X. Eventually, (57) holds with X n instead of X, uniformly in n because (p n , n ≥ 1) is bounded in G(R d ).

As for Φ j , it is enough to use (52), the boundedness of (P s ) and (P n s ), Remark 11 and the facts that multiplication by a function in B belongs to L b (G l (R d ), G l (R d )) and that

∂ α 2 ∈ L b (G l (R d ), G l+|α| (R d )).
4.3. Moments for the Euler scheme and its derivatives. Let us assume (A). Then it is known that X n,x t has bounded moments of any order and that for all q ∈ N, one can find c ≥ 0 such that for all x ∈ R d , (59) sup t∈[0,1],n≥1 E X n,x t q ≤ c (1 + x q ) (see [START_REF] Talay | Probabilistic Numerical Methods for Partial Differential Equations: Elements of Analysis[END_REF]). From (4), x → X n,x t is infinitely differentiable and we shall see that analogous upper bounds hold for its derivatives. Following [START_REF] Kusuoka | Applications of the Malliavin Calculus[END_REF], for m ≥ 1, we denote by X (m),n,x t the m-th derivative of x → X n,x t at point x. It should be thought of as a d × d m matrix. For instance, X

(1),n,x t is the jacobian matrix of x → X n,x t . Differentiating (4), we have (60) X where I stands for the identity matrix and σ j is the j-th column of σ. Besides, by induction, there are for each m ≥ 2 universal polynomials P m,j , j ∈ {0, . . . , r}, such that Q n,x m,j,⌊ns⌋/n dB j s , where Q n,x m,0,t = P m,0 (b (2) (X n,x t ), . . . , b (m) (X n,x t ), X

(1),n,x t , . . . , X (m-1),n,x t

), Q n,x m,j,t = P m,j (σ

j (X n,x t ), . . . , σ (m) j (X n,x t ), X

(1),n,x t , . . . , X (m-1),n,x t

). (62) This is analogous to (1.8) page 4 in [START_REF] Kusuoka | Applications of the Malliavin Calculus[END_REF]. Then we have Lemma 25. Under (A), for all m ≥ 1 and q ∈ N, there exists c ≥ 0 and q ′ ∈ N such that for all x ∈ R d , (63) sup

t∈[0,1],n≥1 E X (m),n,x t q ≤ c 1 + x q ′ .
Proof. We give a proof by induction on m. Let us first assume that m = 1. Let q ∈ N. From (60), and observing that (A) states that b (1) and all the σ Taking this inequality at time ⌊nt⌋/n and applying Gronwall's lemma, we get that sup t∈[0,1],n≥1,x∈R d E X

(1),n,x ⌊nt⌋/n q < ∞.

From (4), one easily checks that the same holds at time t instead of ⌊nt⌋/n, so that (63) holds for m = 1 with q ′ = 0.

Let us now assume that (63) holds for the m -1 first derivatives. Let q ∈ N. From (61), and observing again that (A) states that b (1) and all the σ Using (62), the induction hypothesis, (A) and (59), we find c 2 ≥ 0 and q ′ ∈ N such that for all s ∈ [0, 1], n ≥ 1 and x ∈ R d , r j=0 E Q n,x m,j,⌊ns⌋/n q ≤ c 2 1 + x q ′ . Thus, taking (64) at time ⌊nt⌋/n and applying Gronwall's lemma, we find c ≥ 0 such that for all x ∈ R d , sup

t∈[0,1],n≥1
E X (m),n,x ⌊nt⌋/n q ≤ c 1 + x q ′ . From (4), one easily checks that the same holds at time t instead of ⌊nt⌋/n, which completes the proof.

Observe that, under (B), the above proof holds with q ′ = 0 so that we have (m),n,x t q < ∞.

Using ( 16 )R d 1 {d 1 { 3 R d 1 {

 161131 for p ∈ G(R d ) for the fourth inequality, we can find c 3 , c 5 ≥ 0 and c 4 , c 6 > 0 such that for all s ∈ (0, 1] and x, y ∈ R d ,P ( X x s -y ≤ x -y /2) ≤ P ( X x s -x ≥ x -y /2) = z-x ≥ x-y /2} p(s, x, z) dz = R ξ ≥ x-y /2 √ s} p(s, x, x + ξ √ s)s d/2 dξ ≤ c ξ ≥ x-y /2 √ s} exp(-c 4 ξ 2 ) dξ ≤ c 5 exp -c 6 x -y 2 /s . (57)

( 1 ) 0 b ( 1 )

 101 ,n,x t = I + t (X n,x ⌊ns⌋/n )X (1),n,x ⌊ns⌋/n ds + j (X n,x ⌊ns⌋/n )X(1),n,x ⌊ns⌋/n dB j s ,

( 1 )

 1 j are bounded, Jensen's and Burkholder-Davis-Gundy's inequalities lead to the existence of c ≥ 0 such that for all t ∈ [0, 1], n ≥ 1 and x ∈ R d ,

( 1 )

 1 j are bounded, Jensen's and Burkholder-Davis-Gundy's inequalities lead to the existence of c 1 ≥ 0 such that for all t ∈ [0, 1], n ≥ 1 and x ∈ R d ,

Lemma 26 .

 26 Under (B), for all m ≥ 1 and q ∈ N,sup t∈[0,1],n≥1,x∈R d E X

  . (P t , t ∈ [0, 1]) and (P n t , t ∈ [0, 1], n ≥ 1) are bounded families in L b C ∞ pol (R d ) , see the discussion preceding Theorem 9. Besides, multiplication by a function in C ∞ pol (R d ) and differentiation are bounded operators on C ∞ pol (R d ). As a sum of compositions of bounded families

  y) and |α 1 | + |α 2 | = |α|. Now, from Corollary 22 in the appendix, (p n -p, n ≥ 1) is O(1/n) in G 2 (R d ) so that, using the same arguments as in Step 2 of the proof of Proposition 5-(i), we get that ((p n -p) * g,α p) + is O(1/n) in H |α| +2 (R d ). Since ρ n,+

	p) * g,α p) + (t n k , t, x, y), we conclude that (ρ n,+ t n k G |α| +2 (R d ).	t n k , n ≥ 2, k ∈ {1, . . . , n -1}) is O(1/n) in (t, x, y) = 1 T + 1 (t n k , t)((p n -
	Lastly, starting from (43), Lemmas 21 and 23 with j = 2 imply
	Lemma 20. Under (B) and (C), there exists a O(1/n 2 ) sequence (π n 3

  1 (t, x, y) dy so that p n -p = r n,1 , and Lemma 21 gives the result.

	Eventually, we have kernels for the operators P n t n k	L * j P t-t n k :
	Lemma 23. Under (B) and (C), for each j ∈ N * , there exists a bounded sequence (ψ n,j t n k

  1]and n ≥ 1 we can define two functions P s π and P n s π on (0, 1] × R d × R d by P s π(t, •, y) = 1 {s≤t} P s (π(t, •, y)) and P n

	s π(t, •, y) = 1 {s≤t} P n s (π(t, •, y)), i.e.
	(51) P s π(t, x, y) = 1 {s≤t} E [π (t, X x s , y)] and P n s π(t, x, y) = 1 {s≤t} E [π (t, X n,x s , y)] .

  that ∂ β y P s π(t, •, y) is infinitely differentiable and that for all α ∈ N d there exists universal polynomials (Π α,µ , |µ| ≤ |α|) such thatE[Π α,µ (∂ ν x X x s , |ν| ≤ |α|) 2 ] < ∞for all |µ| ≤ |α|. As a consequence, P s π(t, •, •) is infinitely differentiable and using Cauchy-Schwarz's inequality, (14) and (54), we see that for all bounded B ⊂ G l (R d ) and α, β ∈ N d , there exists two constants c 1 ≥ 0 and c 2 > 0 such that for all π ∈ B, s ∈ [0, 1], t ∈ (0, 1] and x, y ∈ R d , P s π(t, x, y) ≤ c 1 1 {s≤t} t -(|α| + |β| +d+l)/2 E exp -c 2 X s x -y 2 /t

	(53)	∂ α x ∂ β y P s π(t, x, y) = 1 {s≤t}	|µ|≤|α|	E ∂ µ 2 ∂ β 3 π (t, X x s , y) Π α,µ (∂ ν x X x s , |ν| ≤ |α|)
	with			
	(54)	sup		
		s∈[0,1],x∈R d		
	(55)	∂ α x ∂ β y 1/2
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