
HAL Id: hal-00160519
https://hal.science/hal-00160519

Submitted on 23 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sigma coordinate pressure gradient errors : evaluation
and reduction by an inverse method.

F. Auclair, Patrick Marsaleix, C. Estournel

To cite this version:
F. Auclair, Patrick Marsaleix, C. Estournel. Sigma coordinate pressure gradient errors : evaluation
and reduction by an inverse method.. Journal of Atmospheric and Oceanic Technology, 2000, 17, (-),
pp.1348-1367. �10.1175/1520-0426(2000)0172.0.CO;2�. �hal-00160519�

https://hal.science/hal-00160519
https://hal.archives-ouvertes.fr


1348 VOLUME 17J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

q 2000 American Meteorological Society

Sigma Coordinate Pressure Gradient Errors: Evaluation and Reduction by an
Inverse Method

F. AUCLAIR, P. MARSALEIX, AND C. ESTOURNEL
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ABSTRACT

Sigma coordinate models currently suffer from the difficulty encountered in specifying the horizontal pressure
gradient. Most of the efforts to reduce this truncation error lead to the loss of at least one integral constraint in
the pressure gradient scheme (energy, tracer balance, etc.). Starting from a usual Arakawa-based scheme, it is
shown that judicious adjustment of the sigma surfaces together with control of the bottom topography slope
parameter and an ‘‘optimal modification’’ of the measured initial pressure field lead to a drastic reduction in
the truncation errors. The first experiment is based on a coastal academic domain in order to compare the results
of the proposed inverse method with published data. A few experiments are then conducted on the eastern part
of the Gulf of Lions in the Mediterranean using data from the Suivilion experiment.

1. Introduction

Terrain-following coordinates (s) are now widely
used in the oceanographic community, and more spe-
cifically in coastal oceanography (see, e.g., Blumberg
and Mellor 1987; Marsaleix et al. 1998). Compared to
z-coordinate models, the s formulation offers a much
better representation of the effect of topography and
several s levels can be dedicated to the description of
the bottom and surface layers (Gerdes 1993; Beckman
1998). However, Haney (1991) listed serious restrictions
to their generalization, among which could be found the
increased diapycnal diffusion or truncation errors linked
to the horizontal pressure gradient numerical scheme.
The specification of horizontal diffusion can indeed be
troublesome, and a spurious increased diffusion along
s levels can introduce artificial current and static insta-
bilities (Beckmann and Haidvogel 1993). Important
contributions to this problem have lately been made by
Beckman and Haidvogel (1997) and Barnier et al.
(1998), but so far, it remains unsolved, and in the words
of Mellor et al. (1998) it is still ‘‘endemic to all models.’’
Yet, the use of a nonlinear stretched sigma coordinate
(Song and Haidvogel 1994) or a ‘‘two-fold sigma co-
ordinate system’’ (Beckers 1995) can noticeably reduce
spurious diapycnal diffusion by avoiding large vertical
variations of sigma surfaces in the pycnocline.
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Aérologie UMR CNRS/UPS 5560, Observatoire Midi-Pyrénées, 14,
Av. E. Belin, 31400 Toulouse, France.
E-mail: aucf@aero.obs-mip.fr

On the other hand, the problem of the specification
of the horizontal pressure gradient has for a long time
been widely documented in the atmospheric community
(Corby et al. 1972; Arakawa and Suarez 1983), and
various approaches have been employed to reduce these
so-called truncation errors. Gary (1973) proposed to re-
duce their magnitude by subtracting a background den-
sity profile. This gives quite good results if the density
profile does not vary too much over the domain, that
is, if the horizontal extension of the domain is small
enough. Another solution can be the use of higher-order
schemes for the pressure gradient: fourth- and sixth-
order schemes have, for instance, been proposed
(McCalpin 1994; Chu and Fan 1997). More recently,
Mellor et al. (1994, hereafter referred to as MEO) eval-
uated the magnitude of the truncation error and showed
that the spurious geostrophic currents were advectively
eliminated after several months of integration. For the
academic case studied, they showed that the spurious
geostrophic current could be as high as 7 cm s21 after
a 90-day diagnostic spinup. However, after 2 yr of prog-
nostic integration, the current was reduced to only 0.2
cm s21. The author proposes in particular to run the
model for a spinup time in order to adjust the density
gradient and cancel out the horizontal pressure gradient
truncation error.

Both types of errors, the increase in diapycnal dif-
fusion and truncation errors, are thus fundamentally dif-
ferent. The first type can be seen as a ‘‘dynamic’’ error,
in so far as its spurious impact on the quality of model
results increases as time goes past, whereas the second
one is more ‘‘static’’: the geostrophic current is already
misrepresented in the initial field but the error slowly
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FIG. 1. Vertical section of the staggered s C-grid at point (I, J ).
Here K stands for s surfaces, and k for interface surfaces.

decreases though the pressure field itself has been con-
taminated.

The fact is that the truncation error is only one part
of the problem and the numerical scheme for the hy-
drostatic equation cannot be chosen solely on the basis
of pressure gradient accuracy arguments. Integral con-
straints, such as energy, must also be balanced in the
model (Arakawa and Suarez 1983), and the pressure
gradient scheme must be associated with the corre-
sponding advective scheme in order to preserve the en-
ergetic consistency of the model. Gerdes (1993) ac-
knowledges that ‘‘efforts to reduce this error in a s
model necessarily involve the abandonment of one or
more integral constraints’’ (conservation of tracers, con-
servation of energy, etc.). For instance, higher-order nu-
merical schemes (McCalpin 1994; Chu and Fan 1997)
must be associated with the corresponding advective
scheme. This eventually leads to difficulties in tracer
equations.

As a consequence, we chose to study the truncation
error problem for a classic horizontal pressure gradient
numerical scheme. To reduce these errors, the sigma
surface distribution is adapted both to a classic density
profile in the area and to the topography, and the pres-
sure field is optimized by an inverse method in order
to approach the ‘‘true’’ geostrophic field.

In the present paper we show that the slope factor,
the sigma surface distribution, and finally the measured
density and surface elevation fields can be initially ad-
justed in order to reduce the truncation error and to give
the observed geostrophic current and Brunt–Väisälä fre-
quency with a satisfactory accuracy. To optimally adjust
the density and surface elevation fields, an inverse meth-
od is described in section 2, and is applied to a classic
formulation of pressure (Arakawa and Suarez 1983).
This initial adjustment of the known initial conditions
is particularly useful for short-term integrations of the
coastal ocean model.

MEO’s experiment is reviewed in order to evaluate
the amplitude of the truncation errors produced by the
Arakawa-based scheme and their reduction by the in-
verse method. Geostrophic currents are then evaluated
in the framework of the Suivilion experiment in the Gulf
of Lions (Durrieu de Madron and Panouse 1996) and
the impact of both the twofold sigma coordinate system
(Deleersnijder and Beckers 1992) and the proposed in-
verse method are investigated in detail.

2. Formulation of the free-surface pressure
gradient

a. Horizontal pressure gradient

The model used is the coastal free-surface model
Symphonie (Estournel et al. 1997; Marsaleix et al.
1998). This model is based on a mode-splitting approach
(Blumberg and Mellor 1987) and the 3D primitive equa-
tions are discretized on a staggered C grid (Arakawa

and Lamb 1977) (Fig. 1). Hereafter we shall refer to
the model in a compact form:

xf (ti11) 5 Mi[xf (ti)], (2.1)

where x is the model state vector and M the dynamics
operator. The notations are the classic notations given
by Ide et al. (1997), in which the superscripts f, t, a,
and o stand, respectively, for forecast, true, analysis,
and observation.

Of interest is the formulation of the horizontal pres-
sure gradient in sigma coordinates, and the diffusion is
simply applied along the s coordinates. Analytically,
the horizontal pressure gradient can be written:

]P* ]P ]s ]P
5 1 , (2.2)

]x* ]x ]x* ]s

where (x*, y*, z) and (x, y, s) are, respectively, the z
and s coordinates and are related to each other by

 x 5 x*
 y 5 y* (2.3)

h 1 zs 5 ,
h 1 h

where h 5 h(x, y) the ocean depth, and h 5 h(x, y) the
surface elevation anomaly. Here P* stands for
P(x*, y*, z) and P for P(x, y, s). In Eq. (2.4) r 5
r(x, y, s) is the density field and r0 a constant reference
density (r0 5 1024.8 kg m3). Without any lost of gen-
erality, the derivatives are written hereafter with respect
to x, the y derivative being derived the same way. The
first term on the right-hand side of (2.2) is the ‘‘s-pres-
sure gradient,’’ while the second term is sometimes re-
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ferred to as the ‘‘hydrostatic correction.’’ We then in-
troduce a perturbation density r9:

r(x, y, s) 5 r0 1 r9(x, y, s). (2.4)

With these notations, the hydrostatic assumption can be
written

]P*
5 2gr*, (2.5)

]z

where r* 5 r(x*, y*, z).
Neglecting the variation in atmospheric pressure, this

leads to the following expression for the horizontal pres-
sure gradient in s coordinates:

]P* x x5 P 1 P , (2.6)I E]x*

where and are, respectively, the internal and ex-x xP PI E

ternal part of the pressure gradient:

1

x x xP 5 P (s) 2 P (s) ds andI E
0

1]hx xP 5 r g 1 P (s) ds,E 0 E]x 0

with Px(s) given by

1] ]hxP (s) 5 2 g(h 1 h) r9 ds9 2 g(1 2 s)r9E]x ]x
s

]h
2 gsr9 .

]x

The classic numerical scheme by Arakawa and Suarez
(1983) is chosen for the computation of (2.6) on the
staggered C grid of the model. The horizontal pressure
gradient thus reads for K ∈ [1, N 2 1],

]P
r9,hP 5 (i, J, K )i,J,K ]x*

ds D[r9 (h 1 h)]K K i,J5 g[ 2 Dx

N D[r9 (h 1 h)]K9 i,J1 dsO K9 ]DxK95K11

Dh Dh Dhi,J i,J i,J2 g (1 2 s ) 2 s r̃9 1 grK K i,J,K 0[ ]Dx Dx Dx

(2.7)

for K 5 N:

]P
r9,hP 5 (i, J, K )i,J,K ]x*

1 D[r9 (h 1 h)]K i,J5 g dsK[ ]2 Dx

Dh Dh Dhi,J i,J i,J2 g (1 2 s ) 2 s r̃9 1 gr ,K K i,J,K 0[ ]Dx Dx Dx

(2.8)

with dXK 5 Xk11 2 Xk for vertical variations, DXi,J 5
Xi,j11 2 Xi,j for horizontal variations in the x direction
(Dx being the horizontal grid increment), and X K 5
(Xk11 1 Xk)/2 for vertical averages and X̃i,J 5 (Xi,j11 1
Xi,j)/2 for horizontal averages in the x direction. Here
N is the number of s levels. Capital indices (I, J) are
chosen for grid points, and lowercase indices (i, j) for
interface grid points. Vertically, the same type of no-
tation is used for s surfaces (k) and interface s surfaces
(K). A complete description of the staggered C grid is
also given in Fig. 1.

b. The s-pressure gradient truncation error

The s-pressure gradient and the hydrostatic correc-
tion being several orders of magnitude larger than their
difference, the ‘‘numerical’’ expressions (2.7)–(2.8) can
sometimes differ from the ‘‘true’’ pressure gradient.
Careful observation of the way (2.7)–(2.8) are obtained
leads to interesting conclusions on the possible distri-
bution of s levels. Indeed, Mesinger and Janjic (1985)
show that the construction of the numerical scheme for
the pressure gradient can be divided into three steps.
First of all, the hydrostatic equation is integrated to
obtain pressure P on s surfaces at density points (I, J, K)
and (I 1 1, J, K) (Fig. 2). Then, the hydrostatic equation
is used again to obtain the pressure at horizontal surfaces
in the neighborhood of point (i, J, K) (points A and B
on Figs. 2a and 2b). Last, the values of the pressure
thus obtained are used to compute the pressure gradient
at point (i, J, K) [horizontal velocity point in the x di-
rection (u)].

The density profile is thus approximated by a piecewise
linear function of s, which leads Mesinger and Janjic
(1985), Haney (1991), and others to identify the so-called
hydrostatic consistency problem. To be hydrostatically
consistent, the numerical pressure gradient is supposed
to use the same scheme for the hydrostatic equation in
steps 1 and 2. In particular, for a staggered C grid, the
scheme is shown to be hydrostatically consistent as long
as points A and B of Fig. 2a are in the same s layer as
point (i, K). Figure 2b is an example of a hydrostatically
inconsistent scheme. MEO suggest that hydrostatic con-
sistency is not an additional limitation to the use of s
levels, but rather a particular case of the truncation error
problem. In fact, the major difficulties appear in regions
of sharp density gradients where the piecewise linear
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FIG. 2. Horizontal pressure gradient for a staggered C grid, piecewise linear approximation of
the density profile: (a) hydrostatically consistent grid, (b) hydrostatically inconsistent grid.

approximation itself can be somewhat different from the
‘‘true’’ profile. Sharp density gradients, if they are as-
sociated with variations in s surfaces, lead to large ‘‘trun-
cation’’ errors in the computation of the pressure gradient
force. Different approaches can help. The only way to
conserve horizontal s levels inside the pycnocline in re-
gions of sharp topography gradients seems to be the use
of a twofold s-coordinate system (Deleersnijder and
Beckers 1992). It is shown in section 4 that a constant
upper fold provides a good resolution just below the
surface where most physical processes are likely to take
place, but also prevents the crossing of iso-s surfaces

with iso-density surfaces, which significantly reduces the
truncation errors.

A few interesting observations can also be made by
expanding the pressure gradient force with respect to s.
In the neighborhood of point z0, the density can be
written

r(x, y, z) 5 r(x, y, z )0

]r
1 (x, y, z )[(1 2 s)h(x, y) 2 z ] 1 · · · .0 0]z

(2.9)
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Substituting (2.9) into (2.7), we obtain the complete
expression for the truncation error (first order):

2g D(ah )i,Jn t 2 2P 2 P 5 [(1 2 s ) 2 (1 2 s ) ]i,J,K i,J,K K K2 Dx
2g(1 2 s ) D(a)K i,J 22 (h h 2 h ),I,J I11,J i,J2 Dx

(2.10)

where

]r
a 5 (x, y, z ),0]z

and for the analytical profile (2.9),
2g(1 2 s ) D(a)K i,Jt 2P 5 2 h .i,J,K i,J2 Dx

For the present discussion, the terms

D(h)i,Jg(1 2 s )r̃9K i,J,K Dx

have been neglected in (2.10) as we can easily show
that |s /r0 | , 1023.r̃9

The zeroth-order terms all vanish because they only
involve linear terms that cancel out. In fact, the trun-
cation errors appear with the first ‘‘nonlinearity,’’ that
is, the misrepresentation of the quadratic terms. Thus,
at order 1, the errors result from the finite-difference
analog of (1 2 s)2 [first term in the right-hand side of
(2.10)]. The computation of the second term also con-
firms the previous observation concerning the misrep-
resentation of nonlinear contributions, with the appear-
ance of square terms in h. At order 2, lengthy compu-
tation shows that problems arise from both square and
cubic terms, etc. The first term of the right-hand side
of (2.10) is depth-independent if the s levels are spaced
uniformly in the vertical. Indeed, we can write:

2
dsK2 2(1 2 s ) 2 (1 2 s ) 5 . (2.11)K K 1 22

This is consistent with the results obtained by Haney
(1991), and he removes this term by considering only
the difference from the mean density gradient. MEO
also obtained a vanishing truncation error for a linear
density profile by removing an area average density pro-
file. However, this ‘‘first order’’ term leads to a spurious
barotropic current that affects both the average depth
density and the surface elevation anomaly of the free-
surface model external mode. The second term in (2.10)
is related to the x dependency of the density profile and
vanishes for a 5 0. This leads to the conclusion that
the truncation error for a given experiment cannot be
fully evaluated by considering only a horizontally ho-
mogeneous profile.

MEO showed that the previous truncation error was
advectively removed during a prognostic run and even-

tually vanishes after several inertial oscillations, the
counterpart of this removal obviously being a modifi-
cation of the density and surface elevation fields. The
curl of the truncation error (2.10) does not normally
vanish either and Mellor et al. (1998) showed that it
leads to the appearance of a new type of error in the
vorticity conservation equation, namely the ‘‘sigma er-
ror of the second kind.’’ They further showed that this
error was not advectively removed and leads to small
asymptotic values of the truncation error, which do not
cancel out with respect to the geostrophic current.

c. Inverse method

Thus, the horizontal pressure gradient truncation error
can lead to a spurious evaluation of the geostrophic
components (ug, y g) of the current in regions of steep
bottom topography gradients. In the present paper, re-
covering the geostrophic components is transformed
into an optimal control problem: knowing the initial
‘‘true’’ geostrophic current, the optimal problem is to
find the smallest disturbance of the pressure field (den-
sity and surface elevation anomaly) such that the hor-
izontal pressure gradient truncation error is as small as
possible. Yet, the adjustment of the pressure gradient is
not sufficient to realistically define the density field,
besides which the Brunt–Väisälä frequency of the den-
sity profile must also be considered. While the geo-
strophic component of general circulation can easily be
evaluated from density observations, the direct com-
putation of the Brunt–Väisälä frequency from obser-
vations is much more difficult: the vertical derivative
of the density is very sensitive to observation noise.
Thus, the Brunt–Väisälä frequency is computed from
the interpolated density field itself, and we require that
the adjustment of the geostrophic component does not
lead to any major changes in this frequency.

Before the analysis, the initial density anomaly (r9)
and surface elevation (h) are given by the multivariate
‘‘background or first guess vector’’ xb(t0):

br (t )0bx (t ) 5 . (2.12)0 b[ ]h (t )0

The analysis density and surface elevation fields after
optimization are given by the multivariate ‘‘analysis’’
vector xa:

xa(t0) 5 xb(t0) 1 dx(t0), (2.13)

where dx is the optimal perturbation. Let yo be the ob-
servation vector made of the geostrophic component of
the general circulation and of the Brunt–Väisälä fre-
quency of the interpolated density profile at t 5 t0, that
is, before the initialization of the coastal model M and
H the observation operator that gives the geostrophic
components and the Brunt–Väisälä frequency of the
state vector xa(t0). Using the formulation of the hori-
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zontal pressure gradient (2.7)–(2.8), the constraints of
the optimal problem can now be written for dx:

a b oHx 5 H(x 1 dx) 5 y

 1 b br 1dr,h 1dh t2 P 5 ( fy )i,J,K geo i,J,Kr0 1 b br 1dr,h 1dh t⇔ 2 P 5 (2 fu ) (2.14)I, j,K geo I, j,Kr0

1 (dr 2 dr )I,J,K11 I,J,K2g 5 0
r Dz 0

where (I, J, K) is a point of the model C grid, and for
the last constraint K ∈ [1, N 2 1]. The first two con-
straints are derived from the geostrophic current and the
last one is related to the Brunt–Väisälä frequency. The
‘‘true’’ components of the geostrophic current
( , ) are given by the interpolation of the observedt tu ygeo geo

geostrophic current or by the geostrophic current from
an ocean general circulation model.

The cost function associated with the previous opti-
mal control problem is given by

J 5 dxTB21dx

1 [(yo 2 Hxb) 2 Hdx]TR21[(yo 2 Hxb) 2 Hdx].

(2.15)

The perturbation dx is the control variable and B and
R are the background and model covariance matrices.
According to Gill (1982), the solution of the optimal
problem can be written

dx(t0) 5 BHT[HBHT 1 R]21(yo 2 Hxb). (2.16)

The computation of the covariance matrices is based on
the values of slope parameter (r) and the specification
of the maximum disturbance for density and surface
elevation fields (drmax and dhmax). The background co-
variance matrix B is written

B 5 D1/2CD1/2, (2.17)

where C is the matrix of the smoothing operator given
by Wahba and Wendelberger (1980):

6
J (F) 5 O3 a !a !a !a 1a 1a 53 1 2 31 2 3

23] F
3 dx dy dz, (2.18)EEE a a a1 21 2 3]x ]y ]z

where J3 is normalized so that the diagonal elements in
C are equal to one, and F is either the density or the
surface elevation anomaly. Here D and R are the di-
agonal matrices containing the variance of the obser-
vations [s(r) and s(h)], and of the model (g). As a first
approximation, the variances are taken to be homoge-
neous and a small corrective nonhomogeneous term
(10%) is inserted in D to take into account the presence

of steep bottom topography gradients. This can be writ-
ten

DI,J,K 5 [s(r), s(h)](1 1 0.1 \r \I,J). (2.19)

For the present study, s(r) 5 1 and s(h) 5 0.005, and
the slope parameter r 5 (r I,j , r i,J ) is given on the C
grid by

Dh DhI,j i,J(r , r ) 5 ,I, j i,J 1 22h 2hI,j i,J

h 2 h h 2 hi11, j i, j i, j11 i, j
5 , . (2.20)1 2h 1 h h 1 hi11, j i, j i, j11 i, j

Due to the presence of slope factor r, the covariance
matrix is not homogeneous horizontally, and the higher
the slope factor (the higher the topography gradient),
the higher the covariance. This means that the greatest
modifications in density and surface elevation are al-
lowed in regions with steep topography gradients, which
is consistent with the occurrence of large truncation er-
rors in the horizontal pressure gradient in these regions.

As a first approximation, the model covariance matrix
R is given by

R 5 { , }Id,21 21g ggeo bv (2.21)

and the weights ggeo for the geostrophic constraints and
gbv for the Brunt-Väisälä constraints are chosen so that
the maximum modification of the density and surface
elevation anomaly is less than a specified value:

|dr | , drmax (2.22)5|dh | , dh .max

Numerous algorithms are now available to minimize
a cost function such as (2.15). For the various experi-
ments shown in the present paper, a preconditioned con-
jugate gradient algorithm from the Matlab 5.0 sparse
system package (Gilbert et al. 1992) has been used on
an HP ESS-800 server with 256 megabytes of memory
to solve (2.16). The inverse method is iterated a few
times to find an optimal value for weight g.

The removal of the Brunt–Väisälä frequency con-
straint could be thought to be a great numerical blessing
in so far as the optimal problem could then be solved
independently for the various s levels. However, the
problem is not that simple and such a simplification
leads to real numerical difficulties. The reconstruction
of the pressure field from knowledge of its gradient
components alone is badly formulated: it is very sen-
sitive to the boundary conditions of the inverse problem
along the open frontiers of the domain; the resulting
density field shows sharp spurious gradients near the
bottom and the numerical problem is ill-conditioned,
which leads to severe restrictions on ggeo variations. The
use of the Brunt–Väisälä frequency avoids the problem
of having to choose the open boundary conditions, pre-
serves the density profile and, just as importantly, leads
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TABLE 1. Parameters used in experiment A.

Parameter Value

Number of grid nodes in the x direction
Dx, Dy
Number of sigma levels
ds
External mode time step
Internal mode time step
Horizontal viscosity
Vertical viscosity
Coriolis parameter

41
20 km
21
0.05

10 s
20 s

2000 m2 m21

1023 m2 s21

1024 s21

FIG. 3. Experiment A, initial potential alongshelf velocity (cm s21).

to a diagonal dominant optimal system, which is nu-
merically well conditioned.

3. Study of a well-documented configuration
(experiment A)

The 2D experiment proposed by MEO is now re-
viewed in the light of the inverse method just described.
It is shown that the spurious truncation current can be
decreased by at least one order of magnitude. This 2D
experiment was chosen because the amplitude of the
truncation errors and the resulting modification in the
density field and its Brunt–Väisälä frequency is well
documented. It was preferred to the classic seamount
studied by Beckman and Haidvogel (1993) and more
recently by Mellor et al. (1998) because it is also much
closer to the type of problems encountered in coastal
oceanography.

The first run is a one-month prognostic run. It pro-
vides an evaluation of the truncation error resulting from
the use of the classic pressure gradient numerical
scheme. For the second run, the pressure gradient was
optimized using the inverse method presented in the
previous section. The optimized truncation error is
shown to have the same order of magnitude as in the
experiment by MEO after several months of prognostic
running.

The 2D (cyclic) topography and the potential density
used can both be found in MEO and are given by

2D (x, y)xh(x, y) 5 4000 1 2 exp 2 , (3.1)5 1 2 6[ ]100 km

where Dx is the distance to the nearest coast. The density
and surface elevation fields are initially:


zr(x*, y*, z) 5 1000 1.028 2 0.003 exp1 2[ ] 1000 m


h(x*, y*, z) 5 0,

(3.2)

with no initial horizontal gradient. No surface forcing
is applied. The same horizontal and vertical grid is also
used, with a horizontal spacing of 20 km and 21 sigma
levels. The values of the remaining parameters can be
found in Table 1.

a. Prognostic run

The horizontal pressure gradient truncation error can
be estimated by computing the ‘‘potential’’ geostrophic
current error associated with the density distribution
(3.2):

 1 ]P
err tu 5 2 2 u r f ]y0 (3.3)

1 ]P
err ty 5 2 y ,

r f ]x 0

where pressure P is given by (2.5). This velocity is
named ‘‘potential geostrophic current error’’ because
(3.3) is a measurement of the truncation error for po-
tential energy that is initially available. Part of this en-
ergy is transformed into kinetic energy, giving the trun-
cation error velocity. For the first run, this potential
geostrophic current error is given in Fig. 3 with (ut, y t)
5 0 since the density profile and surface elevation are
horizontally homogeneous. The potential error maxi-
mum is located in those regions where the topography
gradient is steepest (11.3 cm s21), and has an antisym-
metric structure.

During the first hours of experimentation, the velocity
adjusts geostrophically to the pressure gradient trun-
cation error. Then, in the regions of highest velocity,
the density field is advected in such a way that the error
is removed for velocity (MEO). The resulting modifi-
cation on the velocity, density anomaly, surface ele-
vation anomaly, and Brunt–Väisälä frequency anomaly
after a 1-month run are plotted in Fig. 4. The results
are very similar to those obtained by MEO, although
we did not study the geostrophic adjustment process
and velocity error removal process separately as they
did by running the model M diagnostically first. Figure
4a shows that the velocity is already reduced after 1
month to 1.14 cm s21 and surface elevation to 1.9 cm.
Meanwhile, the density has adjusted and an anomaly of
0.07 kg m23 is created. The density profile is also mod-
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FIG. 4. Experiment A, 30-day prognostic run: (a) alongshelf potential geostrophic current error (cm s21), (b) density anomaly (kg m3), (c)
surface elevation anomaly (cm), (d) percentage change in the Brunt–Väisälä frequency.

ified and the largest percentage change is equal to
16.6%. The spatial structure of the errors is also very
similar to that obtained by MEO. It is antisymmetric
and its maximum is reached where the bottom topog-
raphy gradient is steepest.

If one can afford a one-month spinup, the truncation
error can therefore be reduced to about 1 cm s21, with
small changes in the density and surface elevation fields.
However, if one wishes to work on short-term simula-
tion, starting, for instance, from in situ measurements,
the situation is more critical.

b. Optimized prognostic run

The density field studied in the previous section is
used as a first-guess field (xb). The computation of the
analysis field requires the computation of the solution
of a 15 600 3 15 600 sparse symmetric positive-definite
system containing 10% of nonzero elements.

Figure 5 shows the initial optimized truncation error,
density, surface elevation, and Brunt–Väisälä frequency
change for the second, optimized run. The maximum of
the potential geostrophic current error has been reduced
to 0.6 cm s21. This maximum velocity is nearly 20 times
smaller than the potential geostrophic current error ob-
tained without optimization (11.3 cm s21). At the same
time, the mean error velocity is reduced by about 50.
A very interesting comparison can be made with the
results obtained by MEO. The optimized potential geo-
strophic current error is already one order of magnitude
smaller than their geostrophic velocity obtained after 90
days (7 cm s21), and three times larger than the geo-
strophic velocity obtained after 2 yr (0.2 cm s21). The
maximum values of the density and percentage change
of the Brunt–Väisälä frequency are also very close to
those obtained by MEO after a 2-yr run (0.07 and 6%,
respectively).

The optimized fields being in a quasi-equilibrium

Unauthenticated | Downloaded 02/23/23 09:13 AM UTC



1356 VOLUME 17J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 5. Experiment A, optimized initial state: (a) alongshelf potential geostrophic current error (cm s21), (b) density anomaly (kg m23),
(c) surface elevation anomaly (cm), (d) percentage change in the Brunt–Väisälä frequency.

state with respect to the free-surface model M, their
magnitude does not change significantly after 1 month
of integration (Fig. 6a). The area of the regions affected
by the truncation errors is much smaller than in Fig. 4a.
The truncation error velocity has been completely re-
moved in the lower layers, particularly in the regions
with the steepest topography gradient. The maximum
velocity is reached in the upper layers where it is still
smaller than in Fig. 4a. The density (Figs. 6b and 6d),
and surface elevation (Fig. 6c) are only slightly affected
by the truncation error. Figure 7 also provides an in-
teresting comparison of the evolution of the maximum
velocity in both experiments over 30 days. It shows that
the optimized field maximum error is reduced by one
order of magnitude. These rather promising results must
however be tempered by the idealized nature of the
MEO problem.

Different sensitivity tests were carried out in order to

study the variation in the truncation error with respect
to the variation in the maximal density and surface el-
evation initial disturbance. Results are shown in Table
2. Three analyses were conducted with D given by
(2.19), that is, with a nonhomogenous horizontal co-
variance, and then a further three with a homogeneous
field, that is, D is given by

Di,j,K 5 {s(r), s(h)}. (3.4)

We can clearly observe a decrease in the truncation error
maximal velocity ymax when the covariance matrix is a
function of slope factor r. The nonhomogeneous for-
mulation (2.19) must therefore be preferred to the classic
diagonal homogeneous formulation (3.4). This is due to
the fact that the truncation errors are clustered in regions
of steep bottom topography gradients. Allowing larger
modifications of the density and surface elevation fields
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FIG. 6. Experiment A, 30-day optimized prognostic run: (a) alongshelf potential geostrophic current error (cm s21), (b) density anomaly
(kg m23), (c) surface elevation anomaly (cm), (d) percentage change in the Brunt–Väisälä frequency.

FIG. 7. Experiment A, comparison of the maximum of the potential
geostrophic current error for the optimized and nonoptimized fields.

in these regions leads to smaller truncation error max-
imum velocities.

4. Modeling the western part of the Gulf of Lions

a. Characteristics of the region

The Gulf of Lions in the northwestern Mediterranean
offers a large variety of oceanographic processes (see,
e.g., Millot 1990). However, their numerical modeling
is not straightforward due to severe forcing: steep to-
pography gradients, strong gusts of wind, etc. This re-
gion therefore offers a perfect field of investigation for
the horizontal pressure gradient truncation error in
s-coordinate systems. The western part of the Gulf of
Lions off Roussillon is of particular interest and is stud-
ied with a 1.66-km grid and 17 s levels. The bottom
topography is shown in Fig. 8. It was obtained from
French Navy maps (SHOM maps). It includes a con-
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TABLE 2. Impact of the maximum density and surface elevation
modifications on the maximum truncation error for experiment A.

g

Covari-
ance ma-

trix D
rmax

(kg m23)
hmax

(mm)
N2

max

(%)
ymax

(cm s21)

1023

2 3 1024

1024

1023

2 3 1024

1024

(2.19)
(2.19)
(2.19)
(3.4)
(3.4)
(3.4)

0.070
.069

0.072
0.029
0.043
0.047

0.01
0.024
0.8
0.04
0.07
0.1

8
8
8
2.26
3.8
8

2.28
1.22
0.59
7.15
5.24
3.96

FIG. 8. Bottom topography and slope parameter of the southwest-
ern part of the Gulf of Lions.

tinental shelf on its northern part followed by a steep
continental slope. Along the Cabo Creus (Spain), the
absence of continental shelf leads to a sharp slope. Nu-
merically, this part of the gulf is particularly trouble-
some in so far as iso-s surfaces vary sharply in the
pycnocline.

Figure 8 also shows a vector representation of the
slope parameter r 5 (rI,j, ri,J), given on the C grid by
(2.20). The largest values of r can be found along the
Catalan and Roussillon coasts where they can reach 0.5.
This maximum is a little higher than the maximum value
of about 0.4 found by MEO in the North Atlantic.

Three different experiments were conducted. To start
with, the density field was supplied by an analytical
profile varying linearly both vertically and horizontally
(experiment B). In such a case, the geostrophic current
can easily be derived analytically, and provides a useful
tool to study the validity of (2.10). Experiments C and
D were both based on the observations made in the
region during the Suivilion experiment (Durrieu de
Madron and Panouse 1996). In experiment C, model M
was initialized with an average depth density profile,
whereas in experiment D, real data was interpolated on
the model grid and used to compute the spurious trun-
cation errors in a realistic case.

b. Linear density profile (experiment B)

The linear density profile used in experiment B is
provided by

rI,J,K 5 rL,1(I 1 J) 1 rL,2z, (4.1)

where rL,1 5 3/[max(I) 1 max(J)] and rL,2 5 5/2000.
Figure 9 shows two sections of the potential geostrophic
current error given by (3.3), the ‘‘true’’ geostrophic cur-
rent (ut, y t) being computed analytically from (4.1). The
first section is a cross section of the large slopes in the
Cabo Creus region off the Spanish coast and the second
section shows both the continental shelf and a cross
section of one of the numerous canyons that can be
found on the edge of the shelf. The dashed lines show
the distribution of the interface s levels (uniform dis-
tribution in experiment C). The errors are uniform ver-
tically. A maximum current of 1.2 cm s21 is found inside
the canyon. This is consistent with (2.10), which pre-
dicts such uniform truncation errors with a maximum

of 1.4 cm s21. This consolidates the idea that a linear
profile does not lead to vanishing truncation errors, but
gives spurious barotropic currents.

The optimized potential geostrophic current error
(Fig. 9b) shows that the error has been reduced to 0.2
cm s21 and, just as importantly, that the well-organized
structures along the lines of constant bottom topography
have been removed. A maximum correction of only 1
mm was necessary for surface elevation (Fig. 10). This
linear experiment also illustrates the necessity of in-
corporating the surface elevation gradient in the dis-
cussion of the truncation error. A small modification in
surface elevation leads in this linear case to the removal
of most of the errors, while at the same time, the change
in density is obviously small (less than 0.01 kg m23).

c. Homogeneous density field (experiment C)

In experiment C, the density profile is homogeneous
and was obtained from the Suivilion experiment (Fig.
11), where the winterlike pycnocline is about 50–70 m
deep on the shelf and can reach 100 m at the south-
eastern edge of the domain. The density field being
homogeneous horizontally, no geostrophic currents
should theoretically be observed [(ut, y t) 5 0]. Yet,
truncation errors lead to large currents along the con-
tinental slope and Fig. 12 shows maximum potential
velocity errors of about 23 cm s21.

To investigate the impact of the slope parameter on
the maximum truncation error, the topography gradients
were smoothed (see MEO for a description of the it-
erative filter used), and Table 3 shows how the maxi-
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FIG. 9. Experiment B, potential geostrophic current error obtained for a linear density profile: (a) and (b) x and y velocity
components without optimization, (c) and (d) x and y velocity components after optimization.

mum geostrophic current behaves depending on slope
parameter r. An obvious observation is that the maxi-
mum error increases quickly with r (up to 22 cm s21

for \rmax \ 5 0.5). Table 3 also provides the percentage
of topography points affected by the smoothing of the
topography, and it appears that a reduction of \rmax \ to
0.3 or even 0.2 only affects a limited number of points
(about 5%). Moreover, all the points concerned are lo-
cated close to the coastline. A value of \rmax \ 5 0.2 cm
s21 is thus chosen for the remainder of the study.

The impact of s-surface distribution is also investi-
gated and Figs. 13a,b show the result of a twofold dis-
tribution. This can be compared with the homogeneous
distribution (Fig. 12). The thickness of the upper fold
of this last distribution is bounded at 100 m, which
roughly corresponds to the thickness of the pycnocline
(Fig. 11), and is given by

h·100
h 5 min 100, . (4.2)1 [ ]160

The distribution of the s surfaces is then described by

K 2 n1n 2 K 1 s 1 2 exp 21 A 1 2[ ]sB

K , n s 5 1 21 K

1 2 n1n 2 1 1 s 1 2 exp 21 A 1 2[ ]sB

log[1 1 s (K 2 n )]C 1K $ n s 5 ,1 K log[1 1 s (N 2 n )]C 1

(4.3)

where n1 is the number of levels in the lower layer, and
sA, sB, and sC are three parameters given by sA 5 10,
sB 5 40, and sC 5 0.20.
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FIG. 10. Experiment B, surface elevation anomaly (cm).

FIG. 12. Experiment C, potential geostrophic current error obtained
for a homogeneous density profile using a uniformly spaced s co-
ordinate: (a) and (b) x and y components without optimization.

FIG. 11. Horizontal mean density profile from the Suivilion experi-
ment in the Gulf of Lions.

The comparison of Figs. 12a,b with Figs. 13a,b shows
a substantial reduction in the errors when twofold s
coordinates are used: from 22.1 cm s21 to 9.7 cm s21

in the first section and from 22.6 cm s21 to 5.6 cm s21

in the second section. Indeed, the twofold sigma co-
ordinates provide horizontal s surfaces in the region of
large density variations leading to a better representation
of the horizontal pressure gradient (Table 3).

Figures 13c and 13d show the truncation error com-
puted from the ‘‘analysis’’ density, reduced to only a
couple of cm s21. Most of the well-organized patterns
of the initial truncation error currents have disappeared.
However, due to the modification of the density field,
small spurious currents can now be found in the upper
fold where the s surfaces are horizontal. They are lo-
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TABLE 3. Influence of the slope parameter (r) and s surface distribution on the maximum of the potential geostropic current error.

\rmax\
Modified points

(%)

Number of
iterations of

the filter
umax

(homog. s)
ymax

(homog. s)
umax

(twofold s)
ymax

(twofold s)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

24.40
8.23
5.00
3.23
2.63
0.91
0.40
0.20
0.00

32
14

9
5
2
2
2
2
0

22.37
26.87
26.87
26.87
26.87
26.87
26.87
26.87
26.87

20.83
21.45
21.45
21.45
21.45
21.45
21.45
21.45
21.45

7.83
8.17
9.77

13.88
18.33
17.66
17.66
17.66
17.66

7.71
7.73
7.23
7.73
7.73
7.73
8.14

16.41
16.41

FIG. 13. Experiment C, potential geostrophic current error obtained for a homogeneous density profile using a twofold s
coordinate: (a) and (b) x and y components without optimization, (c) and (d) x and y velocity components after optimization.

Unauthenticated | Downloaded 02/23/23 09:13 AM UTC



1362 VOLUME 17J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 14. Experiment C, distribution of the truncation error velocity
in the x and y direction after 2 days of diagnostic run. Black: without
optimization, white: with optimization.

cated above the region of large initial truncation errors.
Indeed, the removal of the truncation errors implies a
modification of the density field, which is spread over
the water column to conserve the Brunt–Väisälä fre-
quency. The maximum correction of the density and
surface elevation fields allowed is 0.07 kg m23 and 1
mm, respectively.

Starting from the first-guess and analysis fields,
‘‘twin’’ diagnostic experiments of 2 days each were con-
ducted. Along the open boundaries, vanishing normal
gradient conditions were specified. Figure 14 shows the
distribution of the truncation error in the x and y direc-
tion at the end of the experiments. The velocities were
averaged over an inertial period (about 17 h). For the
purposes of this experiment, this distribution was pre-
ferred to the evolution of the maximum error, which can
‘‘hide’’ very important discrepancies behind a low max-
imum value. The distribution obtained with the ‘‘anal-
ysis’’ density field exhibits an exponential decrease for
increasing amplitude. This is related to the absence of
well-organized error structures. On the other hand, the
distribution obtained with the first-guess field shows
small maxima between 4 and 5 cm s21, which corre-
sponds roughly to the amplitude of the spurious current
flowing along the continental slope.

d. Suivilion density field (experiment D)

For the last experiment (D), the density field from the
Suivilion experiment was interpolated on the 1.66-km
model grid, the twofold s-surface distribution being giv-

en by (4.2)–(4.3). Figure 15 shows the observation array
of the winter experiment over the whole Gulf of Lions
and the position of the model domain. Vertically, ob-
servations are made every meter.

A classic Gaussian filter is used for the horizontal
interpolation of density (Thiébaux and Pedder 1987).
The first-guess density at point (I, J) is given as a func-
tion of observed density (yd) by

2j
dexp 2 yO a,b21 2V(a,b)

bx 5 , (4.4)I,J
2j

exp 2O 21 2V(a,b)

where j is the distance between the model point (I, J)
and the observation array point (a, b), V is the smooth-
ing radius, and yd is the Suivilion observation vector
density field. For this experiment, a smoothing radius
of 17 km was used to avoid an excessive smoothing of
the main structures.

Two vertical interpolations were used to obtain the
density field on the coastal model Sigma grid (first-guess
density xb) (Fig. 16a) and on the z grid whose horizontal
levels correspond to observation levels (xz) (Fig. 16b).
Two geostrophic currents are thus obtained from the
density fields (xb) and (xz). The first one is the model
geostrophic current computed from the first-guess den-
sity and includes the truncation error. The second one
is the ‘‘true’’ geostrophic field for the density obser-
vations (yd). From the density field only the vertical
shear of the current can be known and, as a consequence,
a vanishing current is chosen at the surface of the ocean.

As the vertical density of observations is quite high
(one observation every meter), the steplike represen-
tation of the bottom topography is considered to be ac-
curate enough for this second geostrophic current to be
error free. The magnitude and direction of the horizontal
pressure gradient truncation error (3.3) are thus obtained
by computing the difference between the model geo-
strophic current (using xb) and the ‘‘true’’ field (ut, y t),
computed by interpolating the geostrophic current ob-
tained with density xz on the model s grid. Figure 17
shows the true geostrophic current associated with den-
sity field xz. The signature of the Liguro-Provençal Cur-
rent can be observed with magnitudes of about 10 cm
s21 for a vanishing surface current.

The characteristics of the errors with and without op-
timization are shown in Fig. 18. For a maximal density
and surface elevation disturbance (rmax and hmax) equal
to 0.09 kg m23 and 2.5 3 1022 mm, the potential geo-
strophic current error is reduced to 2 cm s21. Moreover,
as maximum errors are sparse, they are not a major
problem for future modeling in so far as the local gra-
dient they create will be quickly diffused. Figure 19
clearly confirms that the optimized field reveals any
well-organized current structures: the optimized current
histogram (drawn in white) decreases exponentially, al-
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FIG. 15. Observation stations during the Suivilion winter experiment, from Durrieu de Madron and Panouse (1996). Black rectangle:
position of the domain studied.

though the nonoptimized histogram (drawn in black)
shows, along the shelf, several well-identified structures
whose magnitude lies between 6 and 9 cm s21.

5. Discussion

The various experiments presented so far give an
overall picture of the capacity of an inverse method to
reduce the horizontal pressure gradient truncation error.
This type of error was in fact recognized as a bias of
s coordinate models, and the choice was made to work
as accurately as possible with it. The underlying idea
is to choose the geostrophic current as the main param-
eter of the interpolation scheme and, as a consequence,
to deduce the pressure (density and surface elevation)
from the interpolated geostrophic current. Such ideas
were suggested for the atmosphere more than a decade
ago by Mesinger and Janjic (1985, p. 109).

We show for well-documented experiment A (MEO)
that the initial modification of the density and surface
elevation fields by the inverse method was small and

located in the bottom boundary layer along the shelf
break. However, the interpolation of the density field in
such regions is subject to large errors due in particular
to the difficulty in specifying the bottom topography.
For instance, the initialization of a coastal model from
the outputs of an ocean general circulation model raises
the problem of the compatibility of the bottom topog-
raphies in the models, and, as a consequence, the in-
terpolation of the density close to the bottom is very
often transformed into an extrapolation problem. Thus
the adjustment of the density profile in order to give the
observed geostrophic current can be seen as an elegant
way of avoiding this dangerous extrapolation.

However, the inverse method is only used to decrease
the truncation error on the initial horizontal pressure
gradient. It implies that this initial horizontal pressure
gradient is known with a sufficient accuracy, which is
not necessarily the case. For instance, the steplike bot-
tom topography of an ocean general circulation model
using z coordinates can lead to large errors on the geo-
strophic current over the shelf break. Such errors must
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FIG. 16. Suivilion observations: (a) and (b) sections of the baro-
clinic geostrophic velocity with vanishing surface velocity.

FIG. 17. Vertical interpolation on the s and z grid: (a) interpolation
of the first-guess density xb on the s grid, (b) interpolation of the xz

on the z grid, with (V): observation points, (3): density points of
the model C grid, (1): velocity points of the model C grid.

be taken into account and if possible corrected before
the large-scale pressure field is used in the inverse meth-
od to initialize the coastal model (Auclair 1999). Sparse
in situ measurements can also be insufficient to compute
the geostrophic current, but if one has a good knowledge
of the initial pressure field, the inverse method leads to
small errors on the modeling of the corresponding geo-
strophic current. Yet, it does not reduce other types of
errors associated with the use of s coordinates (e.g.,
increased diapycnal diffusion, modeling of strongly
forced systems, etc.).

In the present paper, we have not developed in detail
the minimization of the cost function. We focused on
the construction and testing of the cost function (2.15),
which reduces the magnitude of the truncation error.
The actual optimal problem varies asymptotically like
[(L/Dx)2N]4 where L is the horizontal size of the do-
main. This is however an asymptotic upper bound of

the problem, and the use of algorithms for sparse sys-
tems leads to drastic improvements. The Suivilion prob-
lem leads to the optimization of a 35 3 60 3 16 grid,
which necessitates less than 150 megabytes of memory.
The same approach has been applied successfully to the
optimization of a coastal model initial field near Mar-
seilles (France) involving 30 000 variables on the same
256 megabytes memory machine, the necessary CPU
corresponding roughly to a few hour direct simulation
over the same domain using the 3D model (Auclair
1999).

The domain can also easily be separated into smaller
regions and only the regions located along the shelf
break need to be processed. Such a procedure signifi-
cantly reduces the number of control variables. The min-
imization of the cost function can also be incorporated
into a variational problem when one has access to the
adjoint model. As a consequence, there should not be
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FIG. 18. Experiment D, potential geostrophic current error obtained for the interpolated density field: (a) and (b) x and y
velocity components with optimization, (c) and (d) x and y velocity components after optimization.

any computational restrictions to the use of such an
inverse method with prognostic model runs.

6. Conclusions

Different solutions have been studied in order to sig-
nificantly decrease the sigma coordinate truncation error
while preserving all the integral pressure gradient con-
straints: the adjustment of the slope factor, the distri-
bution of the sigma surface, and the use of an inverse
technique to adjust the initial density and surface ele-
vation fields.

The decrease in the slope parameter is not in general
a good solution in so far as the accuracy of the bottom
topography is crucial in coastal modeling. However, we
have shown that reducing this parameter from 0.5 to 0.2
results in the truncation error being reduced by about 50,

while only a few sparse topography points along the
coastline were affected. As a matter of fact, higher values
for the slope parameter do not offer a more realistic bot-
tom topography, but result in much higher discrepancies
in the computation of the horizontal pressure gradient.

The twofold sigma coordinate also has a very positive
impact on the magnitude of the truncation error. Indeed,
it provides horizontal s surfaces in the upper part of
the ocean, that is, in regions of high vertical density
gradients. It also has a very positive impact on spurious
diapycnal diffusion.

Last, we have shown that an appropriate inverse tech-
nique was an efficient way of significantly reducing the
truncation error. The maximal disturbance of the density
and surface elevation fields was less than 0.2 kg m23

and 1 mm. It is also very interesting to observe that the
resulting truncation errors after optimization are sparse
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FIG. 19. Experiment D, distribution of the potential truncation error
velocity in the x and y direction, black: without optimization, white:
after optimization.

and are not found in well-organized structures above
the shelf break. As a consequence, they are more easily
destroyed by diffusion as time goes on. Experiment A
also showed that the density and surface elevation dis-
turbance is of the same order of magnitude as the dis-
turbance obtained after a month of prognostic modeling
by MEO. The computation of an optimized field avoids
long spinup periods and reduces the second-order trun-
cation error, which cannot be decreased by advection.
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gramme Atmosphère et Océan à Moyenne échelle, and
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