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ABSTRACT

Free surface coastal models currently suffer from the difficulty of having to specify the global circulation
during the initialization process and along the open boundaries. As an alternative to the long spinup periods,
an original explicit approach based on inverse techniques has been developed. Data originating from in situ
observations and/or ocean general circulation models are optimally interpolated over the small-scale grid in such
a way that the tendency terms are reduced to physically consistent values. The errors on the ‘‘true’’ tendencies
and the truncated nonlinear term are evaluated to compute the model covariance. The observation covariance
matrix is divided into two parts: the homogeneous, isotropic matrix calculated with a global energy spectrum;
and a parameterized nonhomogeneous, nonisotropic matrix. The inverse method is applied to the study of the
interaction of a barotropic alongshore current over a narrow canyon. The transient processes following the
initialization are drastically reduced and the analysis field can efficiently be used in a flow relaxation scheme
along the open boundaries.

1. Introduction

Thanks to the numerous in situ observations now
available and to the global synoptic data provided by
satellites (Busalacchi 1997), oceanographic models can
offer a time-dependent realistic map of large-scale cur-
rents, from the surface of the oceans, to their abyss. We
have a fairly good idea of the main synoptic character-
istics of their general circulation with a spatial resolution
of a few minutes of degrees: description of the different
water masses, position, and evolution of the main gyres
(Bryan et al. 1995; Horton et al. 1997). However, com-
putational costs remain prohibitive as soon as we are
interested in meso- and small-scale dynamics. A reso-
lution of only a few kilometers is, for instance, neces-
sary to represent the first Rossby radii. One solution is
to model only the most salient parts of the basin: the
region of a jet where instabilities are most likely to
develop, the interactions of the general circulation with
small-scale topographic features. However, such a mod-
el is usually integrated over a small domain and, as a
consequence, cannot generate the general circulation on
its own. Different approaches have been proposed to
overcome the problem. Spall and Holland (1991) de-
veloped a method based on a multidomain method. A
general circulation model is dynamically coupled with
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a smaller-scale model. In this approach, both models are
iterated in parallel and exchange data both ways (feed-
back). In particular the small-scale model is well forced
by a time-dependent general circulation. However, the
cost of these simulations is rather expensive, and the
small-scale model cannot be used with different global
models that would be well adapted to the ocean con-
sidered.

If the models are not dynamically linked together, it
is necessary to specify the initial fields (velocity, tem-
perature, salinity, surface elevation anomaly, . . . ) and
as importantly, the open boundary conditions. However,
the initialization and boundary condition problems can
be particularly difficult. A crude, unbalanced specifi-
cation of the initial state can have numerous trouble-
some consequences, and the unrealistic motions exhib-
ited by the numerical models during the initialization
transient process were early recognized to be mostly
inertial-gravity waves (Hinckelman 1951), and a long
spinup would very often be required before some phys-
ically meaningful circulation be obtained. The treatment
of this problem gave rise to a large literature in mete-
orology: see, for instance, Machenhauer (1977) for a
nonlinear normal mode initialization, Bourke and
McGregor (1983) for a physical-space initialization, or
Courtier and Talagrand (1990) for a variational ap-
proach.

Due to the rigid-lid approximation, most large-scale
oceanographic models filter out the quickly propagating
inertia-gravity waves (Malanotte-Rizzoli et al. 1989),
but coastal free-surface models do not and have to be
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carefully iterated over a period of adjustment (spinup)
before some kind of well-behaved equilibrium state be
reached for the general circulation. However, these fast
waves are known to have undesirable consequences:
partial destruction of the initial field, or divergence of
the model. Indeed, the baroclinic part of the free-surface
model is very sensitive to high-frequency motions
(Woodgate and Killworth 1997), and in certain condi-
tions, the consequences can be catastrophic. Coastal re-
gions are particularly favorable to the generation of
these transient problems. Indeed, the coastal steep slopes
produce mesoscale noise when data are interpolated on
the model grid. This noise generates unrealistic patterns
that contaminate the whole domain. Woodgate and Kill-
worth (1997) and Woodgate (1997) proposed a solution
based on a ‘‘nudging’’ method. They showed that the
addition of nudging relaxation terms in the primitive
equations had important consequences on the period of
the inertia gravity waves modelized by a free-surface
model. The lowering of their frequency removed most
of the initialization problems, the price to be paid being
a loss of physical realism during the spinup period.

Another crucial problem to be addressed is the spec-
ification of the open boundary conditions. Open bound-
ary conditions must fill a double objective: prevent the
reflection of the various types of waves generated inside
the domain, and give some hints about the large-scale
circulation. Radiative boundary conditions, as pre-
scribed by Orlanski (1976), offer an efficient answer to
the spurious reflections of waves. Although Bennett and
Kloeden (1978) showed that the open boundary problem
was in fact ill-posed, Stevens (1990) proposed a com-
plete set of boundary conditions for a rigid-lid model,
in which a distinction is made between passive and ac-
tive boundary conditions. Another approach was chosen
by Davies (1976) or Engedahl (1995), namely, the Flow
Relaxation Scheme (FRS). Small bands are added along
the open boundary over which the interior flow is re-
laxed toward the exterior general circulation. However,
all these methods have in common the necessity to have
a good knowledge of the exterior general circulation,
and to specify it in such a way that it agrees with the
model dynamics. Gunson and Malanotte-Rizzoli (1996)
lately showed that this problem could not be separated
from the specification of the initial state.

It is therefore indubitable that before any type of ob-
servations be assimilated in a free-surface model, a trade
must be reached between the realism of these obser-
vations and their physical consistency with the model.
Different approaches have been developed in the last
decade to clearly define this optimal state and help re-
construct data fields from a few observations. Following
Sasaki’s approach (Sasaki 1958), the smoothing spline
methods all seek for such an optimal state (in a least
squares sense). It must be close enough to the available
data, and satisfies some physical constraints, the unique-
ness of the solution being obtained with the addition of
a smoothing operator. A clear mathematical formulation

and some analytical solutions for this problem were pro-
vided by Wahba and Wendelberger (1980). Provost and
Salmon (1986) introduced this spline-based method in
oceanography using both the Sverdrup and geostrophic
balance associated to a smoothing operator to constraint
the interpolation of observations. Brasseur (1991) added
an advection constraint to reconstruct the general cir-
culation fields in the northern Bering Sea. On the other
hand, the objective analysis method (Gandin 1965) uses
the statistical variance and covariance of the observa-
tions to determine the relative weights to be given to
the data and to the constraints. This approach is based
on the Gauss–Markov theorem and leads to a minimum-
variance or a best linear unbiased estimate (BLUE).
Bretherton et al. (1976) give a method to evaluate the
statistical mean, which provides the smallest minimum
error variance in a stationary case, the nonstationary
case being studied by Le Traon (1990). A scale-based
approach of the objective analysis method was followed
by Ooyama (1987). He showed that the geometrical dis-
tribution of the observing stations was determining the
resolvable scales and that a precise knowledge of the
second-moment statistics improved the analysis by de-
aliasing the amplitude of the resolvable scales but has
no effect on the definition of the unresolvable scales.
Based on observations on the continental shelf region
off southwest Vancouver Island, Denman and Freeland
(1985) provided analytical correlation functions and
noise levels for future objective analysis work. McIn-
tosh (1990) compared these two methods in the case of
a data interpolation over the ocean. The objective anal-
ysis appeared to be much demanding: the mean fields
are rather difficult to obtain and the method is quite
sensitive to length scales. On the other hand, he showed
that the reproducing kernel obtained with a spline meth-
od was necessary red, unlike the objective analysis,
which allows statistical approaches. He eventually con-
cluded that the data separation was more important than
the method used.

These methods, which include both observations and
theory, constitute what is called an inverse problem, a
definition of which is provided by Wunsch (1996): ‘‘The
Ocean Circulation Inverse Problem is the problem of
inferring the state of the ocean circulation, understand-
ing it dynamically, and even perhaps forecasting it,
through a quantitative combination of theory and ob-
servations.’’ Wunsch (1977) uses, for instance, global
constraints such as the conservation of tracers in an open
domain in order to compute the reference velocity need-
ed to integrate the thermal wind equations. A great
amount of theoretical research has lately been dedicated
to the optimal use of data in order to initialize and
control the open boundaries of various types of models.
It yielded to the emergence of the optimal control (Mill-
er 1986) and adjoint equation approaches (Le Dimet and
Talagrand 1986; Tacker and Long 1988; Bennett 1992),
see also De Mey (1997) for a complete review. Seiler
(1993) proposed an adjoint model approach to assimilate
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data into a quasigeostrophic model, while controlling
the evolution of the boundary conditions. Using the
same approach, Bennett and McIntosh (1982) and Bod-
gen et al. (1996) optimized the open boundaries for a
shallow-water model, offering an opportunity to elim-
inate the spurious solutions due the illposeness of the
problem. Gunson and Malanotte-Rizzoli (1996) went
further and included both the initial and boundary con-
ditions in their control variables for their barotropic vor-
ticity equation model. To optimize the use of available
data, Chu et al. (1997) developed lately a variational
approach based on a multiperturbation method in order
to use observations from inside the domain to determine
the open boundary conditions. To our knowledge, Zhang
and Marotzke (1998) are yet the only ones to apply an
adjoint model to determine the initial state and the
boundary conditions for a 3D primitive equation model,
the boundary conditions remains time-independent and
an equilibrium state is only sought for. However, even
if their development remains time demanding and their
computing cost remains important, the adjoint methods
are comparatively very efficient. Indeed, if the problem
studied is linear only two iterations are required to op-
timize a whole trajectory: one forward, and one adjoint
backward. Yet, the control variables must be chosen
close to their optimal values, and the use of the different
types of observations to specify the initial and open
boundary conditions still raises numerous problems.

In the present paper, our objective is thus to construct
a state of the ocean that is consistent with the obser-
vations, the available statistics, and the physics of the
free-surface model, at a cost that is affordable with re-
spect of the actual computer resources. From the various
types of observation data, we determine a ‘‘mean’’ field
and its covariance and variance. The energy spectrum,
which globally describes the circulation in the region,
is used to reconstruct an isotropic covariance matrix,
and some causes of nonhomogeneity and anisotropy are
then identified and parameterized in the observation co-
variance matrix. The constraints chosen to reconstruct
the optimal state are chosen in the tangent linear space
of the coastal free-surface model. The Euler–Lagrange
equations related to the optimization problem are ex-
plicitly derived and a solution is found by iterative meth-
ods. The initial field that has been reconstructed is also
used as a boundary condition to specify the incoming
and outgoing flows in the FRS. In this case, the open
boundary conditions are therefore not only determined
from the data found in the neighborhood of the domain,
but also from interior observations. However, they are
not allowed to vary continuously in time. They can
either be kept constant till an equilibrium state is
reached, or be varied linearly between two ‘‘analysis’’
fields.

The following section is dedicated to the presentation
of the inverse method. Original methods are in particular
described to construct the model and observation data
covariance matrices. In section 3, we use a twin-ex-

periment approach to show how the inverse approach
can improve the initialization of a small-scale coastal
simulation. The experiment chosen is the modeling of
an upwelling over a canyon (Klinck 1989). Some sen-
sitivity studies to the constraints and to the data co-
variance matrix are detailed in section 4. In a last sec-
tion, the validity of the various assumptions in the light
of the experiments is discussed.

2. Inverse method

a. Free-surface coastal model

The direct model used is the free surface coastal mod-
el SYMPHONIE (Estournel et al. 1997; Marsaleix et al.
1998). It is based on the primitive equations, using both
the Boussinesq and hydrostatic approximations. The fi-
nite difference scheme makes use of a ‘‘staggered’’ C
grid (Arakawa and Suarez 1983), with sigma coordi-
nates. The velocity components u, y , and w are derived
from the incompressibility relation, and the conserva-
tion of momentum:

]u ]y ]w
1 1 5 0 (2.1)

]x ]y ]z

]u ]uu ]yu ]wu
1 1 1 2 fy

]t ]x ]y ]z
hg ] ]h

5 2 (r 2 r ) dz9 2 gE 0r ]x ]x0 z95z

2 2] u ] u ] ]u
1 A 1 1 k (2.2)

2 2 1 2[ ]]x ]y ]z ]z

]y ]uy ]yy ]wy
1 1 1 1 fu

]t ]x ]y ]z
hg ] ]h

5 2 (r 2 r ) dz9 2 gE 0r ]y ]y0 z95z

2 2] y ] y ] ]y
1 A 1 1 k , (2.3)

2 2 1 2[ ]]x ]y ]z ]z

where (x, y, z) is the Cartesian coordinate system; r the
density, r0 a reference density; f the Coriolis parameter;
h the position of the sea surface or sea surface elevation;
g the gravity acceleration; and k and A are, respectively,
the vertical and horizontal diffusion coefficients and k
is computed using the turbulent kinetic energy. For more
details on the turbulent closure scheme refer to Estour-
nel et al. (1997).

The fast surface waves are solved by integrating the
set of depth-averaged equations with a smaller time step:
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]h ] ]
1 (hu ) 1 (hy ) 5 0 (2.4)

]t ]x ]y

]hu ] ] ]h
1 (huu ) 1 (hyu ) 2 hf y 1 gh 5 P (2.5)x]t ]x ]y ]x

]hy ] ] ]h
1 (huy ) 1 (hyy ) 1 hf u 1 gh 5 P , (2.6)y]t ]x ]y ]y

where h designates the total depth and the overbar a
depth average. The right-hand side terms Px and Py

correspond to the depth integration of the z-dependent
terms in the right-hand side of (2.2) and (2.3) (see Es-
tournel et al. 1997). This mode-splitting approach sep-
arating the calculation of u , y , and h from the internal
mode variables, allows the modeling of rapidly propa-
gating inertia–gravity waves at a reduced cost (Blum-
berg and Mellor 1987).

The density r is obtained from the equation of state:

r 5 r0f (T, S, P). (2.7)

The temperature T and salinity S are calculated using
their respective conservation equations:

](T, S) ]u(T, S) ]y (T, S) ]w(T, S)
1 1 1

]t ]x ]y ]z

2 2] ] ] ](T, S)
5 A9 (T, S) 1 (T, S) 1 k9 . (2.8)

2 2 1 2[ ]]x ]y ]z ]z

Different sets of boundary conditions are also avail-
able. For the experiments shown in this paper, the FRS
(Engedahl 1995) is used. Along each open boundary of
the domain, a band of points is added over which the
temperature, salinity and transport fields are relaxed to-
ward the exterior circulation. The relaxation coefficient
goes from 0 (no relaxation) at the inner edge of the band
to 1 (full relaxation) at the outer edge of the band and
is a second-order polynomial of the distance to the edge
of the domain. Such an approach is well adapted to relax
a limited area model toward an exterior circulation, and
is also efficient to avoid the reflection of waves gen-
erated inside the domain. Yet, the FRS does not nec-
essary conserve mass and momentum (Davies 1976;
Engedahl 1995), and one has to specify an external so-
lution that is correct with regard to the model dynamics
(Engedahl 1995).

b. Derivation of the analysis field

In the following we will use when it is possible the
notations recommended by Ide et al. (1997). A classic
procedure of initialization is to interpolate in situ ob-
servations or outputs of OGCM on the fine grid of the
model in order to obtain a ‘‘first-guess’’ field xb(t0).
Then, the nonlinear model M is iterated forward in time
leading to the so-called forecast xf (ti):

xf (ti11) 5 Mi[xf (ti)], (2.9)

with xf (t0) 5 xb(t0).
During the initialization process, the tendency terms

in Eqs. (2.2) to (2.8) can be divided into two parts:

t n
] ] ]

5 1 , (2.10)1 2 1 2]t ]t ]t

where the first term in the right-hand side stands for the
physically meaningful evolution of the fields (the ‘‘true’’
tendency), and the second is the results of the adjustment
of the model (the ‘‘numerical’’ tendency). For a per-
fectly adjusted initial field, this second term would van-
ish, but the specification of the true tendencies is a dif-
ficult problem and when the model is initialized without
any particular care, spurious tendencies due to transient
processes leads to

n t
] ]

k , (2.11)1 2 1 2]t ]t

which can be written

f f tx (t 1 Dt) 2 x (t ) ]x0 0lim k . (2.12))[ ]1 Dt ]tDt→0 1t0

One way to correct the nonphysical transient terms
could be to integrate the model till an observation is
available, and to correct the forecast from time to time
leading to a sequential assimilation [Kalman filter (Mill-
er 1986)] or to propagate backward the updating in order
to correct the first guess [adjoint methods (Bennett
1992)]. It is yet necessary to start from a first guess that
is not too far from its true value, and a set of obser-
vations large and reliable enough to evaluate the cor-
rection that has to be made.

Based on this observation, we propose to use explic-
itly the tangent to the coastal model to reduce the spu-
rious numerical tendencies in (2.10). We thus compute
the initial field that is close to the data, and does not
lead to meaningless tendencies at the first iterate of the
free-surface model. If the true tendency term can be
evaluated for each field, the tendency of the analysis
field is made as close as possible to its value, otherwise,
it is decreased to the same order of magnitude. Within
the tangent linear approximation, we thus consider the
tendency vector (t0) to be given byoy0

5 H0[xt(t0)] 2 F0 1 «0,oy0 (2.13)

where F0 stands for the forcing terms (appendix A) and
H0 is the observation operator, given in the present case
by the tangent linear to M0 (detailed in appendix A):

H0 [ ,M90 (2.14)

and «0 is the error due to the linearization process and
to the difficulty to ‘‘observe’’ the true tendencies. It is
assumed to have zero mean:

^«0& 5 0. (2.15)

^ & stands for the expectation of the statistical variable
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«0. The true field xt(t0) is thought as the ‘‘perfect’’
trajectory in the model phase space. Thus, (t0) is aoy0

‘‘measure’’ of the tendencies of the field at the first
iterate of the model. The innovation vector can then be
written

d0 5 2 H0 [xa(t0)] 1 F0.oy0 (2.16)

The solution of this optimization problem is obtained
by minimization of the cost function J:

J 5 ( 2 )T ( 2 ) 1 d0,a b 21 a b T 21x x B x x d R0 0 0 0 0 0 0 (2.17)

and the analysis field is eventually given by

xa(t0) 5 xb(t0) 1 K0[ 2 H0xb(t0) 2 F0],oy0 (2.18)

where the Kalman gain K0 is provided by

K0 5 B0 (H0B0 1 R0)21,T TH H0 0 (2.19)

and R0 is the model covariance matrix and is given by

R0 5 ^«0 &.T«0 (2.20)

Here, B0 is the approximate error covariance matrix for
the interpolated field xb(t0). If we define dx(t0) as the
difference between the true field and the interpolated
field, then

dx(t0) 5 xt(t0) 2 xb(t0), (2.21)

and the covariance matrix B0 is given by

B0 5 ^dx(t0)dx(t0)T&. (2.22)

We make the classic assumption that the interpolated
first-guess is statistically consistent. This holds as long
as there is no important bias in the first-guess fields. It
leads to

^dx& 5 0. (2.23)

All the quantities defined refer to the initial state, so
we will drop the indices ‘‘0’’ in the following.

c. Interpolation of the data

The choice of the interpolation scheme can be par-
ticularly critical to obtain xb. It is formally written

xb 5 Zyd, (2.24)

where Z is the interpolation matrix, and yd is observation
data vector.

A good scheme must retain all the meaningful phys-
ical structures contained in the observation data, and
filter out the noise. The interpolation scheme must be
as transparent as possible and is only a way to construct
a gridded set of observations from data with different
origins, and particular specificities. The very first type
of data one can think about are in situ observations.
They include observations made during specific cruises,
or satellite remote observations. In this case, the ob-
servation data fields being used to reconstruct an op-
timized field, are considered to be simultaneous. An
instrumental error is also necessarily attached to the

measurement procedure and must be evaluated and re-
moved. The outputs from an OGCM can also be used
to initialize and force the coastal model. In any events,
the output fields are dealt with as if they were obser-
vation data, and the same types of problems have to be
faced, and for convenience, the word ‘‘data’’ will be
used in the following.

Each dataset is thus defined by a data vector (yd), and
its variance and covariance matrix (Bdd). Depending on
what type of data is available, the observation yd can
be multivariate and includes the temperature, salinity,
velocity, transport, and surface elevation fields. The ob-
servations can obviously not be used to solve all the
length scales present in the region, and we can define
a ‘‘window of observation.’’ The lower bound (L) of
this window is particularly important to interpolate the
observation on the model small scale grid. When one
is dealing with observations originating from an OGCM,
L is equal to twice the model horizontal grid scale (the
Nyquist critical length scale). With in situ data, the ob-
servation array is, most of the time, far from being
regular, and we shall make the assumption that the hor-
izontal scale L characterizing a minimum average dis-
tance between two neighboring observation points can
be defined.

As a consequence, when we interpolate the data on
the small-scale model grid, our objective is to retain all
the physical structures related to scales larger than L.
For the remaining observation scales, we need to filter
out which should be considered as unresolved scales.
Most of the classical interpolation schemes (distance
weighted schemes, statistical objective analysis, . . . )
can offer such a specificity (for details see Thiebaux
and Pedder 1987). For the simple example given in the
present study, a ‘‘radially symmetric Gaussian filter’’ is
used to interpolate the simulated OGCM data (see Breth-
erton et al. 1976 for sensitivity tests and Thiebaux and
Pedder 1987 for a description of the filter). A complete
expression for the interpolation filter is also given in
appendix B. This choice is also consistent with the a
priori statistical machinery that is set up, in so far as
no new length scale is brought in by the filter and the
observed large scales are rather well reproduced. In any
events, the ‘‘noise’’ produced by the interpolation
scheme is taken into account in the data covariance
matrix.

d. Covariance of the interpolated field

The data covariance matrix (2.22) depends on many
different parameters: the quality of the observation data
field; the horizontal and vertical interpolation proce-
dures, which both generate errors; or the prior statistics
of the fields, which are very often the only description
of the ‘‘real field’’ we have. In oceanography and par-
ticularly along the coast, this matrix is neither homo-
geneous nor isotropic. A realistic and accurate treatment
of the problem requires a large amount of observations
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and, as importantly, a great deal of computer re-
sources. Consequently, one cannot afford to deal with
a fully nonhomogeneous and anisotropic problem. As a
first guess, we choose to compute the covariance ma-
trices under homogeneity and isotropy assumptions.
Then, we correct this first approximation using our
knowledge of the bottom topography. This can be writ-
ten

B 5 Biso 1 Baniso. (2.25)

Using (2.21), Biso is thus derived from the true and
data prior covariance matrices,

B (a, b)iso

t t t t T5 ^(d x(a) 2 ^d x &(a))(d x(b) 2 ^d x &(b)) &

t t b b5 ^[(x (a) 2 ^x &(a)) 2 (x (a) 2 ^x &(a))]

t t b b T3 [(x (b) 2 ^x &(b)) 2 (x (b) 2 ^x &(b))] &

t t d d5 (x (a) 2 ^x &(a)) 2 Z (y (a9) 2 ^y &(a9))O a,a97[ ]a9

T

t t d d3 (x (b) 2 ^x &(b)) 2 Z (y (b9) 2 ^y (b9)&)O b,b9 8[ ]b9

tt td T td T dd T5 B | 1 B Z | 2 Z(B ) | 1 ZB Z | ,a,b a,b a,b a,b (2.26)

where Btt and Bdd are the prior covariance matrices for
the true and data fields, and Btd is their joint covariance
matrix. Here a and b stand for two grid points, and a9
and b9 two points of the observation array. Under the
assumptions of homogeneity and isotropy, the compu-
tation of the three prior covariance matrices Btt , Bdd, and
Btd only requires the knowledge of the spatial energy
spectrum of the corresponding fields, the covariance ma-
trices being computed using the inverse Fourier trans-
forms of a global homogeneous spectrum (F). We define
the normalized correlation and cross-correlation func-
tions for xt and yd:

`

tt ttf (r) 5 F (k) exp[2(2ip)kr] dkE
k50

`

td tdf (r) 5 F (k) exp[2(2ip)kr] dkE
k50

`

dd ddf (r) 5 F (k) exp[2(2ip)kr] dk, (2.27)E
k50

with f tt(0) 5 f td(0) 5 f dd(0) 5 1.
Hence,

tt t t t t TB (a, b) 5 ^(x (a) 2 ^x &(a))(x (b) 2 ^x &(b)) &

2 tt5 s f (r)tt

td t t d d TB (a, b) 5 ^(x (a) 2 ^x &(a))(x (b) 2 ^x &(b)) &

2 td5 s f (r)td

dd d d d d TB (a, b) 5 ^(x (a) 2 ^x &(a))(x (b) 2 ^x &(b)) &

2 dd d d T5 s f (r) 1 ^« « &I,dd (2.28)

where r is the distance between the points a and «d the
observation noise. The spectra can be computed based
on previous simulations on the same domain, or on ded-
icated observations (see Denman and Freeland 1985).
It can also be constructed from a prior knowledge of
the persistent structure of the general circulation (see
section 4). The covariances between different variables
(u 2 r, u 2 h, . . . ) are computed following Bretherton
et al. (1976).

The standard deviations stt , std and sdd are very de-
pendent on the physics of the domain and cannot be
determined a priori. We thus evaluate them using the
observation data:

5 5 5 (yd 2 ỹd)(yd 2 ỹd) t,2 2 2s s sdd td tt (2.29)

where the statistical means have been replaced by the
spatial mean ỹd over the domain. This is a rather strong
approximation, all the more as we saw that the obser-
vation data field yd described the circulation only for
scale larger or equal than L. This approach usually gives
us useful hints about the magnitude of the variables and
can be refined with the results of posterior runs on the
same domain.

The nonhomogeneity and the anisotropy of the fields
is of particular importance in coastal zones (Denman
and Freeland 1985). Many different sources of nonhom-
ogeneity and anisotropy can indeed be found. At tur-
bulent scales, the direction of the current or the shear
stress are for instance a possible cause of the anisotropic
distribution of energy (Turner 1973). The local strati-
fication, or the well-determined directions of propaga-
tion of internal waves are responsible for larger scale
anisotropic motions. The closeness to the coast and more
generally the bottom topography can also be two rele-
vant geographical indicators of the nonhomogeneity and
anisotropy of the currents (see for instance Brink 1982
or Huthnance 1995). Purely barotropic geostrophic cur-
rents are indeed constraint to follow the line of constant
topography in order to conserve vorticity (Roisin 1994).
On the other hand, the density flows follow the lines of
steepest topography gradients. Thus, the bottom topog-
raphy brings in the flow specific length scales and as
importantly specific directions of currents. These effects
are not very often taken into account in the statistical
description of the fields though they are may be the
most obvious sources of nonhomogeneity and anisot-
ropy in the coastal circulation. To parameterize these
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effects, the nonhomogeneous, anisotropic part of the
covariance matrix is itself divided into two parts:

Baniso(a, b) 5 j1Btopo(a, b) 1 j2Bdelta(a, b), (2.30)

where j1, and j2 are two constants chosen so that the
elements of the anisotropic matrices be less than 10%
of the corresponding elements of the isotropic matrix,
and

2 2d (a, b) [h (a) 2 h (b)]x xB (a, b) 5 exp 2 exp 2topo 2 21 2 1 2d href ref

3 [1 2 d(a, b)] (2.31)
2[h (a) 2 h (b)]x yB (a, b) 5 B (a, b) d(a, b),delta iso 2h (a)x

(2.32)

where hx and hy are the bottom topography fields on,
respectively, the small-scale grid and the observation
array. If the data yd is based on observations, then hy is
the smoothed topography of the area, the length scales
smaller than L being filtered out. If, on the other hand,
the data yd have been computed with an OGCM, the
topography field hy should be the rather smoothed field
used in this model. Here, d is the Kronecker delta func-
tion, d( ) is the distance between points a and b, and
dref and href are two parameters. Also, dref is chosen as
the smallest solution of

f (d ) 1tt ref 5 , (2.33)
f (0) ett

and is therefore a radius of influence along the lines of
constant topography, whereas href has the same meaning
but in the orthogonal direction. The importance of the
currents in this direction, or the magnitude of the to-
pography gradients can give indications on its value.

Thus, the first part of the anisotropic covariance ma-
trix, Btopo specifies in the covariance matrix the preferred
directions of flow. Such an expression proved to be well
adapted to cases where the geostrophic currents are
dominant. Two Gaussian-shaped functions have been
chosen in (2.31). One is related to the distance between
the points a and b (the smaller the distance the larger
the covariance), and the other concerns the difference
between the bottom topography at these points (the
smaller the difference the larger the covariance).

On the other hand, Bdelta is the normalized difference
between the bottom topographies hx and hy and describes
how different the small-scale bottom topographies are
in the fields xt and yd. It is added as an ‘‘error’’ term
to the diagonal of the covariance matrix.

Other parameterizations could have been chosen, but
(2.31) and (2.32) are simple enough to be physically
understandable (see section 4b) and the normal and
square laws used are smoothed enough to avoid unde-
sirable sharp gradients in the variance covariance ma-
trices.

e. Model covariance matrix

The set of linearized constraints being different from
the coastal model equations, the magnitude («0) of the
nonlinear contribution to the primitive equations must
be evaluated. The errors on the evaluation of the phys-
ical tendency terms must also be known. Based on
(2.20), this is achieved by computing the second order
moment of the nonlinear contribution to the primitive
equations (appendix A) and, if necessary, of the ten-
dency error terms.

A preliminary experiment is thus conducted over the
same domain. During this experiment, the amplitude of
the nonlinear terms is carefully recorded and their var-
iance and covariance are evaluated.

It is shown in a sensitivity study (section 4d) that the
part of the matrix related to the nonlinear truncations
can be computed with a very good accuracy by such a
direct evaluation.

f. Mode splitting approach and general algorithm

Based on the same mode splitting approach as the
direct model, the analysis field is computed separately
and iteratively for the external and internal mode var-
iables. We thus introduce the indices E and I referring
to the external or internal variables. Using these nota-
tions, and are respectively referring tob bx xE I

 (u )i, j (i, j)∈V  (u )i, j,k (i, j,k)∈V9   (y )i, j (i, j)∈Vb bx 5 , x 5 (y ) , (2.34)   E I i, j,k (i, j,k)∈V9(h )  i, j (i, j)∈V (r )  i, j,k (i, j,k)∈V9 (r )i, j (i, j)∈V 

where V and V9 are the sets of grid points in two and
three dimensions.

The conservation of mass (2.4) must be treated with
a lot of care. Indeed, this equation is crucial in the
initialization process for two reasons. A nonzero trans-
port divergence in the initial field [right-hand side of
(2.4)] leads to transient processes without any physical
meanings. On the other hand, if the initial field is used
to specify the incoming and outgoing transport through
the open boundaries, it must be globally balanced. If
not, even a small misfit can rapidly alter the mean sur-
face elevation over the domain. We also mentioned that
the use of FRS could produce artificial divergence (En-
gedahl 1995), and, as a consequence, a ‘‘correct’’ ex-
ternal solution had to be specified. Equation (2.4) is also
a linear equation and it is equal to its tangent equation:
no approximation has to be made in the tangent linear
and the equation can be rigorously satisfied. However,
the use of a strong constraint such as (2.4) rises nu-
merous numerical problems. Indeed, in an explicit for-
mulation the matrix of a system including both strong
and weak constraints, is neither symmetric nor positive
definite, unlike the one for a system made of only weak
constraints. The minimization algorithm are therefore
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much more expensive in both CPU time and memory
storage (for an evaluation of the computer resources
needed see the following section). As a first approxi-
mation, we thus consider (2.4) to be a weak constraint,
then we constrain the analysis field just found to satisfy
(2.4) exactly. With such a procedure, the system giving
the Lagrange multiplier is much smaller and can be
solved numerically (see appendix C). When necessary,
the whole procedure is iterated until it converges. How-
ever, the Lagrange multipliers are rather small, and the
associated modification of the transport field does not
perturb drastically the previous equilibrium.

Following this iterative procedure, a minimum is first
reached for the external mode problem. The problem
can sometimes be simplified by interpolating the bar-
otropic streamfunction instead of the transport com-
ponents. With a simple change of variables in the model
tangent equations, the transport can be replaced by the
derivative of the streamfunction, avoiding the use of the
mass conservation equation and therefore reducing the
number of equations in the tangent linear .M9E

The internal mode variables are then corrected so that
their depth average be equal to the corresponding op-
timized vertically integrated variable. A minimum is
eventually obtained for the internal mode problem. The
contribution of to the vertical advection and diffusionbxI

terms is neglected and these terms do not appear ex-
plicitly in the tangent linear equations. Consequently,
the different internal mode equations are not coupled
with each other and the associated Euler–Lagrange
equations for each sigma surface can be solved inde-
pendently. The internal or external mode optimization
problems are thus very similar. This algorithm can be
iterated until the process converges. Practically, this can
be reached in only one or two iterations if the nonlinear
contributions are small enough.

For small systems (less than 3000 3 3000), the global
optimization matrices are inverted using a precondi-
tioned conjugate gradient algorithm. When large mem-
ory storage is required, limited-memory quasi-Newton
methods are now being tested. They indeed requires low
and adjustable storage requirements (see for instance
Zou et al. 1993 for their comparative study of such
methods for oceanographic problems). To avoid the
problems of ill-conditioning, a scaling of the optimi-
zation parameters is necessary (Gunson and Malanotte-
Rizzoli 1996).

Very often the temperature and salinity fields behave
in similar ways, that is, the same structures can be found
on their respective maps and the set of internal mode
constraints can be simplified. This is obviously far from
being true at molecular scales, where the physical pro-
cesses controlling these quantities are very different—
compare, for instance, their respective molecular dif-
fusions. However, at larger scales, their diffusion co-
efficients are very similar. The main difference concerns
in fact the forcings. Thus, if one is working in an estuary
or if strong surface forcings are applied the temperature

and salinity can exhibit very different structures. In such
a case, the temperature and salinity equations have to
be used as constraints in the internal mode optimization
procedure. Yet, if such is not the case, one can use a
single equation for density, reducing significantly both
the number of unknowns and variables: the size of the
system of Euler–Lagrange equations is reduced by about
25%. Thus, new density and velocity fields are obtained
and the resulting modifications on the temperature and
salinity fields are computed using a short optimization
algorithm. This leads to a system of one equation (the
equation of state) for two unknowns (the temperature
and salinity modifications): the problem is underdeter-
mined. One solution is to consider a system of three
unknowns—the density (rf ), the temperature (Tf ), and
the salinity (Sf ), submitted to four constraints, the first
one being applied as a strong constraint:

pa a pa a pa ar 5 r T 5 T S 5 S
pa pa pa ar 5 r f (T , S , P ). (2.35)0

This system is now overdetermined and an optimal
solution in a least squares sense is found via the min-
imization of the cost function JTS:

pa pa a paJ (i, j, k) 5 2m [r f (T , S , P ) 2 r ]TS r 0

pa a 2 pa a 2(T 2 T ) (S 2 S )
1 1 , (2.36)

2 2s sT S

where mr is the Lagrange multiplier associated to the
density. The solution for this last optimization problem
is found analytically, and its numerical computation is
rather cheap in so far as JTS can be minimized inde-
pendently at each grid point. The density being exactly
conserved in the process, the equilibrium state previ-
ously reached is conserved. So the initial field is not
altered by the final adjustment of T and S. However, the
change in temperature and salinity depends on the val-
ues of sT and sS, their respective prior standard devi-
ation.

3. Twin experiments

We chose to illustrate the usefulness of the inverse
model on a well-known coastal problem: the interaction
of a large-scale current with a canyon on a coastal shelf.
A twin-experiment approach was followed. To begin
with, the coastal model is integrated on a small-scale
grid (5 km), over a large domain including the conti-
nental shelf and its canyon (Fig. 1). In the following,
this very first experiment is referred to as the ‘‘reference
experiment.’’ This is in fact the best representation the
free surface model could give of the flow over the can-
yon. A barotropic current is forced parallel to the coast
and stands for the general circulation over the canyon.
Such a situation was studied by Klinck (1989) as the
‘‘weakly stratified upwelling case.’’

To simulate the results that a large-scale model could
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FIG. 1. Bottom topography (m) of the large reference domain in-
cluding the continental shelf and a canyon. Dash line: small domain
for the twin experiments.

give on such a problem, the same coastal model is in-
tegrated over the same domain, but using a large-scale
grid (25 km). Such a model cannot represent at all the
canyon whose transverse horizontal scale is smaller than
25 km (around 20 km). The results of this very coarse
resolution model are used to initialize two twin exper-
iments over a smaller domain above the canyon, using
a small-scale grid (5 km). A first experiment is achieved
over the small domain without any prior optimization.
The observation data field is interpolated on the 5 km
3 5 km grid using the Gaussian filter described in the
previous chapter. In parallel to this initialization, an op-
timized simulation is presented. To begin with, the ini-
tialization fields are compared with each other, then the
rms errors are studied after a 100-h run.

a. Reference and large-scale experiments

1) REFERENCE EXPERIMENT

A map of the bottom topography is shown on Fig. 1.
To generate this topography the same analytical func-
tions as Klinck (1996) were used but the canyon is a
little larger:

h y 2 Y (x)s 0h(x, y) 5 h 2 1 2 thm 1 2[ ]2 a

x 2 X0Y (x) 5 Y 1 Y 1 2 exp 2 , (3.1)0 n b 21 2[ ]2b

where h is the depth, hm 5 500 m, hs 5 400 m, a 5

25 km, b 5 5.2 km, yn 5 60 km, and Yb 5 50 km. The
canyon has an horizontal width between the fine grid
(5 km) and the large-scale grid (25 km).

The reference and large-scale experiments are both
initialized with a surface elevation gradient orthogonal
to the coast. This gradient creates an easterly barotropic
current of 10cm s21. The vertical density profile cor-
responds to a weakly stratified flow with a first baro-
clinic Rossby radius around 22 km, well represented by
the 5 km 3 5 km grid of the model. It is initially given
by

r(z) 5 r0(1 1 1.928 3 1024 z), (3.2)

which roughly corresponds to a decrease of 48C every
500 m. The salinity field is kept constant, and a single
prognostic equation for temperature is used.

This experiment has been integrated till an equilib-
rium was reached. Along the eastern and western open
boundaries, 10-point bands are added to relax the flow
toward the easterly barotropic current over which the
FRS is used. It is integrated long enough so that all
spurious inertia-gravity waves be damped (a 5-day spi-
nup was necessary). The use of the FRS drives quickly
the solution toward an equilibrium with alongshore bar-
otropic current along the eastern and western bound-
aries. The good behavior of the FRS concerning the
reflection of gravity waves is studied in the following
section.

Klinck (1989) showed that this configuration yields
to an upwelling at the canyon head. The mechanism can
be explained writing the conservation of potential vor-
ticity. The water inside the canyon is initially at rest,
but is subjected to the surface elevation gradient. The
lines of vorticity are thus stretched at the canyon head
and compressed at the other end. An upwelling is there-
fore created at the head. The dense water initially in the
canyon is advected upward, and once the geostrophic
adjustment is reached, a baroclinic pressure counter gra-
dient is created, inducing an anticyclonic surface cur-
rent. Figures 2–4 illustrate these processes. At the can-
yon head, the mean current separates into two parts (Fig.
2). One of them has enough anticyclonic vorticity to
follow the bottom topography. The second part flows
in the alongshore direction and creates a coastal jet. The
surface elevation anomaly is shown on Fig. 3. The gra-
dient of the surface elevation, initially orthogonal to the
coast, is smoothed above the canyon, inducing locally
a positive anomaly. A horizontal section of the density
at 90-m depth (Fig. 4 for the density anomaly with
respect to r0 5 1024.8 kg m23) shows that dense water
is pushed upward in the upwelling, giving a negative
temperature anomaly at the canyon head. Part of the
water is advected downstream with the alongshore and
cross-shore branches of the downstream current.

2) SENSITIVITY TO THE FRS

In order to study the generation and propagation of
the gravity waves, the surface elevation and the vertical
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FIG. 2. Horizontal mean velocity: reference simulation over the
canyon.

FIG. 3. Surface elevation anomaly (cm): reference simulation over
the canyon.

FIG. 4. Density anomaly (kg m23) at 80-m depth: reference simula-
tion over the canyon.

velocity (V, in s coordinates) are recorded during the
first hours of simulation, V is given by

] ] ] ] z 1 h
V 5 (H 1 h) 1 u 1 y 1 w . (3.3)1 2[ ]]t ]x ]y ]z h 1 h

Deleersnijdner (1989) shows that V gives a better
representation of the true upwelling processes than the
physical vertical velocity w. Figures 5a and 5b show
the time evolution of the surface elevation (h) and the
vertical velocity (V) of the fields at respectively 75 and
110 km off the coast. On both plots, the abscissa is the
distance in the y direction from the western open bound-
ary. Figures 5a and 5b show waves propagating east-
ward and westward from the center of the canyon (dis-
tance 5 90 km) with an amplitude decreasing with space
and time. The phase speed for these waves can be com-
puted using the lines of constant phase on the space–
time plot. During the very first hours of simulation, this
measurement gives, on Fig. 5a, a speed of about 32 6
5 m s21 for the waves propagating downstream and 30
6 5 m s21 for the others, which is very close to the
theoretical phase speed for external waves: c 5 ghÏ
5 34.8 m s21. The evaluation of the phase speed for
the waves shown on Fig. 5b is a little more difficult.
Indeed these waves do not propagate horizontally and
we can only see them leaving the canyon. However, the
slopes indicate a speed of about 0.95 6 0.20 m s21.
Using the procedure detailed by Tintore et al. (1995),
the computation of the internal wave phase speed gives
a value of the same order of magnitude. These results

indicate the generation of both external and internal
gravity waves inside the canyon right after the initial-
ization. Indeed, the canyon, like any other topographic
small-scale variations, induces a perturbation of the ini-
tial fields, with rather large values of the vertical ve-
locity. These perturbations propagate at first all over the
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FIG. 5. (a) Time evolution of the surface elevation at 75 km off the coast (color map), from 229 cm (black) to 22 cm
(white); (b) time evolution of the vertical velocity (V) at a depth of H/2 and at 110 km off the coast (color map), from
20.047 m h21 (black) to 0.047 m h21 (white).

domain via gravity waves. This is consistent with the
results presented by Lacarra and Talagrand (Lacarra and
Talagrand 1988) who show that inertia–gravity waves
are generated during the first hours of simulation, that
their amplitude is decreasing exponentially with time
before slowly propagating Rossby waves became even-
tually dominant and energy was transferred toward the
large-scale geostrophic motion.

The usefulness of the FRS is thus particularly evident
in Fig. 5a where the external gravity wave amplitude is
drastically damped when entering the FRS (after only
0.6 h). There is also no evidence of large wave reflec-
tions. Yet, a more careful examination of the results
shows that small amplitude reflected waves can be
found, but they are several orders of magnitude smaller.
This rather good results are a consequence of the large
number of relaxation points along the boundary and the
simplicity of the barotropic general circulation. We can
thus conclude that no spurious reflections contaminated
the reference solution, and that the long spinup dedi-
cated to the adjustment leads to a physically consistent
circulation.

3) LARGE-SCALE EXPERIMENT

The 25-km grid does not allow the representation of
the canyon bottom topography. This type of simulation

stands for what a general circulation model would give
in the same coastal region. For this simulation the same
FRS boundary conditions as for the reference simulation
were used. The velocity, temperature and salinity fields
are extracted once the model has reached a geostrophic
equilibrium.

b. Forced simulations over a small domain

1) TWIN EXPERIMENTS

The general circulation given by the large-scale ex-
periment is interpolated on the small-scale grid in order
to initialize two twin experiments: one is started with a
simple interpolation, although the other is ‘‘optimized’’
using the inverse method.

We make the assumption that no statistics is available
about the ‘‘real’’ circulation, and we choose a standard
normal spectrum S:

2 22a k
F (k) 5 S(k) 5 exp , (3.4)tt 1 24

with a 5 12.5 km. Here Fdd(k) and Ftd(k) are equal to
Ftt(k) but are truncated for k 5 1/25 km. Indeed, no
structures with a length scale smaller than the grid scale
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FIG. 6. Horizontal mean velocity optimally interpolated on the
small-scale grid.

FIG. 7. Surface elevation anomaly (cm) optimally interpolated on
the small-scale.

FIG. 8. Density anomaly (kg m23) at 80-m depth optimally interpo-
lated on the small-scale grid.

(25 km) can be found in the large-scale experiment. At
the shelf break, the difference of topography between
two points separated by 25 km is roughly equal to 50
m. As a consequence, we chose for the anisotropic co-
variance parameter: href 5 50 m, which is a correlation
length orthogonal to the lines of constant topography.

The measurement noise «d was considered to vanish.
The addition of a measurement noise « would have very
straightforward consequences: less trust is put into the
observations, and the influence of the physical con-
straints is thus larger. The model covariance matrix is
computed by evaluating the truncated nonlinear terms
following the algorithm given in section (2.5). As an
equilibrium field is only searched for, the ‘‘true’’ ten-
dencies are expected to vanish.

Both the external and internal parts of the inverse
model were used for the optimization. However, the
salinity field being kept constant, the equation for the
density field is used. In the present experiment, the non-
linear effects are also rather small. Indeed, the magni-
tude of the currents remains small (10 cm s21) and no
surface forcing is applied, which limits the advective
and turbulent adjustments. As a consequence, the results
shown were obtained after only one iteration of the al-
gorithm presented in section 2f.

The optimized fields are presented in Figs. 6–8. As
in the reference circulation (Fig. 2), the coastal jet is
about 45 km wide at the canyon head, and the second
offshore branch along the downstream edge of the can-
yon shows a meander of the same length. The conse-
quences of the upwelling can also be seen on the pres-

sure fields. Indeed, it induces a positive surface eleva-
tion anomaly above the canyon (see Fig. 7), its cross-
shore gradient has been smoothed over the canyon. The
density anomaly shown on Fig. 8 is higher at the canyon
head and downstream, cold salty water being brought
from the bottom of the canyon.
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The complete inversion was realized on an HP server
ESS-800 with 256 Mbytes memory. Most of the ma-
trices are stored and handled with Matlab 5.0 sparse
matrix package (Gilbert et al. 1992). The optimization
of the external mode for the 30 3 20 point grid requires
the inversion of a 2350-point square matrix containing
only 35% of nonzero elements. For larger systems, the
nonzero elements can reach less than 8% of the total
number of elements. The matrix being in most cases
definite positive, Cholesky preconditioned conjugate
gradients can be used. In so far as a single equation is
used for density, the internal mode matrices have very
similar characteristics. The CPU time necessary for a
complete iteration is very dependent on the algorithm
used for the inversion of the optimization matrix, which
requires about 80% of the total CPU time.

2) RMS ERRORS WITH RESPECT TO THE REFERENCE

EXPERIMENT

The previous fields, constructed respectively with and
without optimization, are used to initialize and force the
direct model along its open boundaries during 100
hours. The evolution of the rms errors is plotted in Figs.
9a–d. For a given variable x, the rms error is given by

(M2m) (N2n)

ref 2[x 2 (x ) ]O O i, j i, j
i5m j5nÎrms(x ) 5 (3.5)E (M 2 2m 1 1)(N 2 2n 1 1)

and

(M2m) (N2n) L

ref 2[x 2 (x ) ]O O O i, j,k i, j,k
i5m j5n k51Îrms(x ) 5 , (3.6)I (M 2 2m 1 1)(N 2 2n 1 1)L

where M, N, and L stand for the number of grid points
in, respectively, the x, y, and z directions and xref is the
reference simulation field. The rms error is recorded
inside the domain, but not along the relaxation bands
(their width being given by m and n). The flow is indeed
submitted to different types of boundary conditions
along the frontiers and its comparison with the reference
simulation does not give any useful hints about the dy-
namical behavior of the model.

Figures 9a to 9d show the evolution of the global rms
errors for the surface elevation anomaly, the cross and
alongshore mean velocity and the density. For each var-
iable, the rms error has been taped during the first 100
h of the experiment for an optimized (‘‘Optimization I’’
curves) and a nonoptimized run (‘‘Interpolation’’
curves). The generation and propagation of gravity
waves, can be observed on the plot of the nonoptimized
surface elevation and mean velocities rms errors (Figs.
9a–c). We saw in a previous section (Fig. 5) that these
waves were generated in the canyon. They last for a
few hours and are followed after one and a half inertial
period by a linear increase of the surface elevation rms

error. Indeed, the divergence of the crudely interpolated
transport toward which the simulation is relaxed along
its opened boundaries does not globally vanish. Thus,
as the numerical schemes of the direct model conserve
both mass and energy, these boundary conditions lead
to an increase of the surface elevation, more water being
forced inside the domain than outside.

Both problems, the initial generation of gravity waves
and the increasing of the surface elevation anomaly have
been solved by the inverse model. Indeed, the plot of
the rms in the optimized case shows a quasi-constant
rms error during the whole simulation.

4. Sensitivity studies

a. Sensitivity to the physical constraints

The previous optimized fields have been computed
using all the available constraints: conservation of mass,
of momentum (external and internal modes), and con-
servation of density. Various initializations have also
been performed using only some of the constraints.

The equations for the conservation of momentum or
density could have been inverted without the linearized
advective or the bottom friction terms. Figure 10 shows
the mean velocity field that would be obtained if these
terms were neglected. Two major differences can be
noticed. At the canyon head, the coastal jet is much
larger when the bottom friction terms are used, which
is consistent with the reference experiment results given
on Fig. 2. This can be explained by the strong bottom
current on the shallow continental shelf, which induces
large bottom friction terms in the conservation equa-
tions. The second major difference between Figs. 6 and
10 is the creation of a nonsymmetrical current above
the canyon when advective terms are used and linearized
in the constraint equations. The downstream offshore
current meanders, which had been reconstructed by the
full optimization (Fig. 6) has disappeared on Fig. 10.
The rms error of the second optimized initialization
(without advection nor bottom friction), plotted on Fig.
9, Optimization II, is larger and adjusts slower than in
the first optimized initialization. The CPU time neces-
sary to invert the various matrices is only slightly de-
creased by the removal of the few advective and bottom
friction terms (the matrices are only a little sparser).
This test also insures that both the geostrophic and
ageostrophic parts of the flow are corrected by the in-
verse method.

One initialization field was also obtained using only
the external-mode Eqs. (2.4)–(2.6) as physical con-
straints. The rms errors are shown on Fig. 9, Optimi-
zation III. As can be expected when considering the
barotropic structure of the general circulation, the rms
curves for the surface elevation and mean velocity are
only slightly influenced by the absence of adjustment
of the internal equations. The few small amplitude in-
ertial oscillations present in the full optimization have
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FIG. 10. Horizontal mean velocity optimized without the advective
and bottom friction terms.

disappeared. They were indeed mainly due to the small
misfit introduced in the external mode equations by the
separate optimization of the internal mode constraints.
They could easily have been reduced by one additional
iteration of the algorithm. The influence of the internal
mode optimization is, however, more important on the
density field. The rms error is indeed increased if they
are neglected (especially for the deeper sigma levels,
not plotted here). Yet, the slope of the curve remains
the same. It is in fact closely linked to the adjustment
of the turbulent diffusion coefficients which are only
crudely taken into account by the inverse model. These
coefficients are considered to be constant (A 5 1024 m2

s21). For the present experiment, only one inversion was
required: the 2350 3 2350 external mode matrix.

A crude optimization using only one constraint [the
conservation of mass, given by (2.4)] has also been
performed. This type of initialization has been used suc-
cessfully in meteorology for more than two decades
(see, for instance, Washington and Baumhefner 1974).
In this case, no geostrophic adjustment is initially re-
alized and the local upwelling is not reconstructed above
the canyon. The rms error is given on Fig. 9, Optimi-
zation IV. We shall first compare this optimization with
the simple interpolation case. The surface elevation rms
does not increase any more with time. Indeed, the di-
vergence of the transport, which is relaxed at the opened
boundaries vanishes. Oscillations of the rms errors of
the various parameters have been reduced but can still
be observed and last longer, showing the adjustment of
the geostrophic circulation. It takes a few hours to the

different parameters to adjust. The flow is also of very
poor quality along the boundaries (not shown). It is
indeed relaxed toward the initial field which is not dy-
namically adjusted. Such a configuration is, however,
very attractive since it is much less expensive and only
requires the inversion of 580 3 580 sparse matrix. This
optimization is yet insufficient if only a few observa-
tions are known. In this case, the boundary conditions
cannot be efficiently reconstructed and one cannot assert
that the general circulation is optimally represented. A
barotropic current being used in the experiments shown,
we can infer that the situation is going to be even worth
if the conservation of mass is used alone in a strongly
baroclinic and nonlinear case.

It is therefore clear that a trade-off has to be reached
between the number of physical constraints which are
optimized and the computer resources devoted to the
optimization. This obviously depends strongly on the
physics involved in the circulation studied, and if one
has any prior knowledge of the main phenomena in-
volved, we saw that a well-behaved solution could be
approached with only a very few constraints. In more
elaborate cases, one can infer from the present results
that the prior adjustment of the dominant physical phe-
nomenon leads to a drastic diminution of the transient
processes after the initialization. The sensitivity study
also confirms the importance of the balance of mass to
avoid the generation of inertia-gravity waves and if the
field is to be used in the boundary conditions. The choice
of the constraint does not have to be restricted to the
set of tangent equations and one can think about com-
binations of these constraints in order to specify for
instance the conservation of energy.

b. Data covariance matrix

Based on (2.25), the data covariance matrix is divided
into two parts. Figure 11 gives the diagonal and off-
diagonal terms corresponding to the density points in
matrix BE. The spectrum S in (3.4) is still used, and the
parameters of influence of the anisotropic matrices are
the same as for the experiment presented in the previous
section. Figure 11a shows the diagonal elements of the
isotropic matrix. Local minima can be observed in the
vicinity of the forcing points, that is, every 25 km. Then,
the further the forcing points, the larger the variance.
The shape of the hills and holes depends on the type of
interpolation used. In the present case, a Gaussian in-
terpolation with a small radius R 5 10 km (appendix
B) gives rather sharp slopes in the vicinity of the minima
and maxima. In Fig. 11b, the diagonal terms of the delta
covariance matrix are maximum where the discrepan-
cies between the bottom topography on 5 km and 25
km grids are maximum, that is, above the canyon and
along the slope. Indeed, the canyon is too narrow to be
described by the large-scale grid, and the sharp slope
cannot be accurately represented either.

Figures 11c and 11d give the off-diagonal terms cor-
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FIG. 11. Data covariance matrices: (a) diagonal terms of the isotropic matrix (2.26), (b) diagonal terms of the
anisotropic delta matrix (2.32), (c) off-diagonal terms of the isotropic matrix (2.26), and (d) off-diagonal terms of the
anisotropic matrix (2.31). Distances are given in kilometers.

responding to the density at a point located in the middle
of the canyon. Figure 11c shows a bell-shaped curve,
which is a consequence of the use of the Gaussian global
energy spectrum S. A small anisotropy can be observed,
and the alongshore covariance terms are larger than the
cross-shore ones. This is a consequence of the greatest
number of ‘‘data’’ points in the along shore direction.
Even if the global energy spectrum is isotropic, the in-
terpolation matrix Z is not necessarily, and, due to
(2.26), Biso,E is not exactly isotropic either. Figure 11d
shows for the same point the greatest correlations along
the lines of constant topography and perpendicular to
them. The chosen point is right in the middle of the
canyon, and we can easily recognize the shape of the
canyon in the contour plot. The influence of the param-
eters dref and href can easily be studied on such a plot in
so far as they are responsible for the thickness of the
‘‘hill’’ along the lines of constant bottom topography
and perpendicular to it.

Fig. 11 gives a detailed presentation of the numerous
phenomena that are taken into account in the data co-
variance matrix such as the type of interpolation, the
spatial distribution of the observation points, the ac-
curacy of the bottom topographies, the isotropic energy
spectrum in the region, and the local shape of the bottom
topography. These are combined to describe the mul-

tivariate field ( ) statistically. The same procedure issxE

followed and the same type of conclusions can be
reached for the data covariance matrix Biso,I. As a com-
parison, Fig. 12 shows the same type of results but for
the model error covariance matrix (R)(see section 4d).

For the twin experiments, the optimized initial field
was obtained with a standard normal spectrum. The spe-
cific influence of the off-diagonal elements of the data
covariance matrix on the analysis field is quite difficult
to separate from the remaining of the solution. The only
direct and trivial influence is linked to their magnitude:
the larger it is, the larger the modification of the initial
field (see, for instance, the discussion about the influ-
ence of the decay length scale in Denman and Freeland
1985). However, the influence of the shape of the spectra
is not straightforward. The use of various types of en-
ergy spectra for the previous experiment shows that the
main characteristics of the circulation (the upwelling)
was strongly persistent. The only significant change that
could be obtained by specifying a particular covariance
matrix is the creation of small amplitude meanders on
the upstream side of the canyon (not shown) when the
spectrum contains energy around the first Rossby radius
(22 km). This observation leads to the conclusion that
the specification of a covariance matrix has a strong
influence on the analysis fields only when it induces
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processes that agree with the physics of the coastal mod-
el. However, further tests based on more realistic ex-
periments are still necessary. In fact, this implies that
the inverse method does not ‘‘create’’ structures, but
rather ‘‘corrects’’ the interpolated fields where they con-
tradict the most the physics of the model on the small-
scale grid (topographic constraints, geostrophic balance,
. . . ). One can also infer that even if no a priori statistics
about the global energy spectra is available, this one
can be approximated with some prior knowledge of the
main physical structures of the circulation of the region,
and in cases where no statistics at all can be provided,
a Gaussian spectra can be adjusted to obtain a smoothed
solution, the nonhomogeneous anisotropic part of the
matrix being used to ‘‘adapt’’ this crude isotropic co-
variance matrix to the topography of the region.

c. Isotropic spectrum and nonisotropic
parameterization in a simple case

For the twin experiments, the optimized initial field
was obtained with a standard normal spectrum (S). We
investigate here the sensitivity of the optimized solution
to the type of global energy spectrum and to the aniso-
tropic part of the covariance matrix. The influence of
the extradiagonal terms of the covariance matrix is in-
vestigated in term of the length scales of the circulation.

The specific influence of the off-diagonal elements of
the data covariance matrix are quite difficult to separate
from the remaining of the solution. The only direct and
trivial influence is linked to their magnitude: the larger
it is, the larger the modification of the initial field (see,
for instance, the discussion about the influence of the
decay length scale in Denman and Freeland 1985). How-
ever, no clear conclusion can be drawn concerning the
influence of the shape of the spectra.

To go a little further, we propose a very simple ex-
periment. We consider the same easterly current as for
the twin experiments, but the only constraint that is kept
in the inverse method is the conservation of mass (2.4)
(as a weak constraint). In this section, RE is not com-
puted following the algorithm given in section 2f. It is
instead chosen diagonal with rather large misfit [1025

(m s21)2]. In such a configuration, no strong physical
length scales are introduced in the flow by the con-
straints and the influence of the off-diagonal elements
of the covariance matrix becomes crucial.

Figure 13 shows the results obtained with the isotro-
pic spectra given in Table 1, and a fourth mean velocity
field obtained when the anisotropic part of the data co-
variance matrix is added. The mean velocity fields ob-
tained with the pick spectra S2 and S3 (Figs. 13a and
13b) clearly show the appearance of meanders and ed-
dies of 10 and 20 km, respectively. A comparison of
Figs. 13b and 13c shows that with the parameterized
anisotropy (2.32) the strongest meanders and eddies are
trapped by the bottom topography on the shelf or inside
the canyon. We have shown in the previous section that

a larger variance was specified right above the canyon
and along the slope (Fig. 13b). In this region, the data
covariances are larger, and the constraints are well ad-
justed. The situation is now different if we compare
Figs. 13b and 13d. The latest was obtained using only
the anisotropic matrix given by Eq. (2.31). We observe
that unlike in Fig. 13c, some specific directions of flow
have appeared. Indeed, we can notice 20-km meanders
along the coast in the northern part of the domain, and
a meandering current going around the canyon. We spec-
ified that the line of constant bottom topography were
preferred directions of flow. As a consequence, the in-
verse method adjusts the conservation of mass along
these directions.

The results of this latest sensitivity test have to be
considered with a lot of care. It would be a mistake to
conclude that one can ‘‘artificially’’ create any types of
flow specifying the corresponding covariance matrix.
Indeed, it must be reminded that the previous results
were obtained with only one (very) weak constraint.
This obviously does not ensure the stability of the so-
lution, and the ‘‘transient’’ tendency terms are very large
in (2.9). Moreover, the use of various type of energy
spectra in the previous experiment have shown that the
main characteristics of the circulation (the upwelling)
was strongly persistent. The only significant change that
could be obtained by specifying a particular covariance
matrix is the creation of very small amplitude meanders
on the upstream side of the canyon when the spectrum
contains energy around the first Rossby radius. This
very first observation, which still has to proven on a
more elaborated case, would lead to the conclusion that
the specification of a physically inconsistent covariance
matrix does not lead to spurious meandering or eddy
generation.

d. Model covariance matrix with randomly varying
initial field

The same domain, grid, and boundary conditions as
for the reference simulation are eventually used to per-
form a set of statistical reference simulations in order
to evaluate the magnitude and spatial correlations of the
nonlinear terms in the direct model. With such a pro-
cedure we expect to show that the direct evaluation of
the nonlinear components of the model covariance ma-
trix computed following the algorithm given in (2.5) is
statistically realistic.

Every simulation is integrated till an equilibrium state
is reached (5 days). However, the runs differ from each
other by the addition of spatially correlated noise on the
initial mean velocity (Evensen 1994) and FRS relaxation
fields. The main correlation length is chosen to be five
times the grid scale, that is 25 km. Figure 12a shows
the evolution of the 2-norm of the covariance matrix RE

as a function of the number of statistical runs. As can
be seen, the procedure converges for about 100 reali-
zations. The interesting point is the L2-norm converges
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TABLE 1. Classic spectra used in the sensitivity study (J0 is the Bessel function).

S Normal Gaussian spectrum (3.4) exp(2a2k2/4) a 5 12.5 km

S2 Pick spectrum at 10 km (Denman and Freeland 1985)
`

2 2exp(2r /a )J (r /b) exp[2(2ip)kr] drE 0

0

a 5 1 km
b 5 1.6 km

S3 Pick spectrum at 20 km
`

2 2exp(2r /a )J (r /b) exp[2(2ip)kr] drE 0

0

a 5 2 km
b 5 3.2 km

to a value that is very close to the direct evaluation
which was used in the previous section (dash line in
Fig. 12a). This implies that, at least in simple cases,
such an approximate matrix can be used with confi-
dence. Tests have been conducted in more realistic cases
using different correlation scales, and they also show
that the direct evaluation of the model covariance matrix
gave at least the correct order of magnitude.

Figures 12b and 12c show the diagonal elements of
the covariance matrix. The regions of larger currents
are also the regions of larger variance. On both plots,
the variance is maximum at the bottom of the canyon,
where the circulation follows the bottom topography and
changes direction. A second, smaller maximum can be
observed at the canyon head. This is consistent with the
large bottom currents and, as a consequence, with the
large bottom friction observed in the region (not shown).

5. Discussion

We proposed an inverse method that is quite afford-
able in terms of computing resources and which allows
the initialization of a coastal free-surface model with
various types of data. It is also well adapted to specify
the incoming flow along the open boundaries. If dif-
ferent OGCM output fields are known at various dates,
a linear interpolation of the reconstructed fields can be
used at the open boundary. Methodological, physical,
and dynamical assumptions have been made to reach
such a result. The ‘‘methodological’’ assumptions are
related to the least squares optimization, and by ‘‘phys-
ical’’ assumptions we mean the approximations or pa-
rametrizations that were used to deal with the obser-
vations themselves, lastly the ‘‘dynamical’’ assumptions
concern the use of the tangent linear.

The most fundamental type of assumption concerns
in fact the least squares optimization. It can be shown
that whatever the a priori statistics in the observation
and model spaces are, the least squares estimator min-
imizes the variance (Tarantola 1987). However, the min-
imization of the variance is not such a good criterion
most of the time, and mathematically speaking, this can
be a serious restriction to the use of least squares op-
timization. It must therefore be kept in mind that the
covariance matrix must always remain close to Gaussian
approximations. If such is not the case, the best vali-
dation one can think about, is the good behavior of the
reconstructed fields: weak transient processes during the

initialization procedure, physically realistic behavior of
the circulation around the FRS and close resemblance
with the observations. Anyway, one must always re-
member that only ‘‘quasi-optimal’’ solutions are dealt
with, and that posterior validations are always neces-
sary.

Two physical assumptions emerge. First, concerning
the interpolation scheme: one needs to grid the data. We
thus focused on the lower length scale (L) that could
be extracted from the observations in order to choose
an interpolation method that does not bring in too much
small-scale noise and as importantly that does not
smooth in excess the large-scale structures. For the can-
yon experiment, the large-scale circulation was very
simple, and the interpolation scheme was not crucial.
However, the diagonal elements of the data covariance
matrix (Fig. 11a) take into account the position of the
‘‘observations’’ and the interpolation scheme [via
(2.26)]. To end up with, we considered that the data did
not include any bias (2.23). This assumption is related
to the difficulty to evaluate the variable mean in optimal
analysis (‘‘kriging’’; Le Traon 1990). This rather clas-
sical problem is a consequence of the fact that, very
often, the observation noise can be characterized ade-
quately, but no data about the signal itself is available.
Moreover, only very poor tests of the validity of the
assumption can be made.

The second physical assumption is related to the
choice of the data covariance matrix. We showed that,
in coastal oceanography, an anisotropic correction was
to be added to the conventional homogeneous, isotropic
covariance matrix. The various parameters involved in
this specification have been determined based on phys-
ical considerations such as the bottom topography, and
the a priori strength of the geostrophic current. In cases
where the isotropic energy spectrum is not available, an
analytical spectrum can be derived based on a priori
knowledge of the general circulation or on smoothing
requirements. The study of the structure of the data
covariance matrix in section 4b has shown that the var-
ious assumptions made to derive the matrix lead to a
result which was physically acceptable. Another point
concerns the computation of the standard deviations of
the different fields which has to be considered with care.
Indeed, the underestimation of the standard deviation of
one of the fields can lead to small modifications of this
field by the inverse method, which in turn leads to larger
modifications of all the other fields to reach the objec-
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FIG. 12. (a) Solid line: norm of the model covariance matrix as a function of the number of statistical realizations;
dashed line: norm of the model covariance matrix with no additional noise; (b) diagonal elements of the model
covariance matrix: momentum equation in the x direction; (c) diagonal elements of the model covariance matrix:
momentum equation in the y direction.

tive. This can be important to weight the relative effect
of the free-surface elevation and of the integrated den-
sity, yet, only the order of magnitude proved to be nec-
essary. In the experiment proposed the adjustment is
easily obtained using a spatial average. In more elab-
orate cases, some physical insights might be necessary

to adjust the variance, if not the method has to be it-
erated.

The last type of assumptions concerns the treatment
of the free-surface model dynamics. The use of the tan-
gent linear equations can be a crude approximation when
strongly nonlinear flows are treated. In such cases, the
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FIG. 13. Sensitivity of the mean velocity to the data covariance matrix. Solid lines: bottom topography contours. (a)
Isotropic matrix with spectrum S2 (10-km pick); (b) Isotropic matrix with spectrum S3 (20-km pick); (c) Anisotropic
matrix: spectrum S3 (20-km pick), Bdelta; (d) Anisotropic matrix: spectrum S3 (20-km pick), Btopo.
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method hopefully converges after a few iterations. We
also showed that the variables and constraints could be
chosen depending on the physics of the circulation. In
certain cases, a single internal constraint for density can
in particular be used. In this case, the computation of
the new temperature and salinity fields based on the
optimized density did not change the dynamical behav-
ior of the solution (the density is not modified), but
reduces significantly the number of variables. In fact,
this assumption can be met more often that one can first
think of. Indeed, the inverse method does not reconstruct
the whole fields, but only makes little modifications of
the various variables so that the constraint misfits be
reduced. As a first approximation, one can consider that
the adjustments of the temperature and salinity fields
are similar.

The computation of the model covariance matrix us-
ing a Monte Carlo method shows that the direct com-
putation of the truncated nonlinear terms leads to a result
that was statistically acceptable. In more elaborated cas-
es where the ‘‘true’’ tendencies do not vanish, a second
error term has to be added to the matrix to take into
account the errors on the evaluation of the tendencies.

6. Conclusions

Based on optimal interpolation techniques, the in-
verse method we have developed offers an original ap-
proach to the problem of the realistic initialization of a
free-surface model. We have shown that the optimized
run exhibits a realistic circulation after only a few it-
erations of the direct model. This is particularly inter-
esting in coastal oceanography where short runs are very
often designed to study particular feature of the circu-
lation. The initial field can also be used to specify the
large-scale circulation at the open boundary in a way
that is consistent with the dynamical model and thus
enables the use of an FRS. The physical constraints used
for the optimization can be adapted to the physics of
the region considered. This flexible procedure allows
the adaptation of the optimization to the computing re-
sources.

An original approach is also detailed to construct the
data covariance matrix when very few statistical reali-
zations are available. The covariance matrices are in-
deed divided into two parts: the isotropic matrix, com-
puted from the global energy spectrum; and the non-
homogeneous, anisotropic matrix, parametrized using
the bottom topography. It appeared that an approxi-
mation of the global energy spectra can be found based
on the knowledge of the circulation of the region. In
the worst case, a smoothing analytical Gaussian spec-
trum can be used. The second covariance matrix, name-
ly, the model covariance matrix, contains statistics about
the nonlinear terms approximated in the tangent equa-
tions. It is computed by evaluating the errors on the
tendencies and the nonlinear terms truncated in the tan-
gent linear model.
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APPENDIX A

Tangent Equations

The tangent equations are a linearized version of the
primitive Eqs. (2.1)–(2.6) in the vicinity of the ‘‘first-
guess’’ solution (Courtier and Talagrand 1990). The va-
lidity of a similar linear tangent assumption has been
studied carefully by Lacarra and Talagrand (1988) based
on perturbations of an atmospheric field. A rather in-
teresting characteristic of the tangent equations is that,
following the free-surface coastal model approach, they
are based on a mode-splitting approach. In order to sim-
plify these equations, we first define the ‘‘advection op-
erators’’ ADV 2 (b; a1 , a 2 ) and ADV 3 (b; a1 , a 2 , a 3 ),
which give the advection of the quantity b by the ve-
locity components (a1, a2, a3),

]a b ]a b1 2ADV (b; a , a ) 5 12 1 2 ]x ]y

]a b ]a b ]a b1 2 3ADV (b; a , a , a ) 5 1 1 .3 1 2 3 ]x ]y ]z

Substituting (u , y ) by (u b 1 du , y b 1 dy ), the con-
servation of mass (2.4) can be written

t
]hb bQ (du, dy ) 5 2Q (u , y ) 2 , (A1)1 1 )]t

where

] ]
Q (u, y ) 5 (hu ) 1 (hy ).1 ]x ]y

When the second-order term in du and dy are ne-
glected, the conservation of momentum for the external
mode [(2.5) and (2.6)] can be written

b bQ (du, dy , dr, dh) 1 ADV (du; Hu , Hy )2 2

b x1 ADV (u ; Hdu, Hdy ) 1 G92 B

t
]Hu b b b b5 2 2 Q (u , y , r , h )2)]t

h hg ] bb2 (r 2 r 1 r ) dz9 dzE E 0r ]x0 z50 z95z

b b b x x2 ADV (u ; Hy , Hu ) 1 G 2 G2 W B (A2)
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b bQ (du, dy , dr, dh) 1 ADV (dy ; Hu , Hy )3 2

b y91 ADV (y , Hdu, Hdy ) 1 G2 B

t
]Hy b b b b5 2 2 Q (u , y , r , h )3)]t

h hg ] bb2 (r 2 r 1 r ) dz9 dzE E 0r ]y0 z50 z95z

b b b y y2 ADV (u , Hu , Hy ) 1 G 2 G ,2 W B (A3)

where
h hg ]

Q (u, y , r, h) 5 2Hf y 1 r dz9 dz2 E Er ]x0 z50 z95z

2 2] u ] u ]h
2 A 1 1 gH ,

2 2[ ]]x ]y ]x
h hg ]

Q (u, y , r, h) 5 Hf u 1 r dz9 dz3 E Er ]y0 z50 z95z

2 2] y ] y ]h
2 A 1 1 gH .

2 2[ ]]x ]y ]y

The bottom friction is given by

5 CD\V b\ and 5 CD\V b\ ,x b y bG u G yB B B B

and, for its linearized version,
b1 u bBx b bG9 5 C (2y dy 1 2u du ) 1 C \V \du andB D b D2 \V \

b1 y bBy b bG9 5 C (2y dy 1 2u du ) 1 C \V \dyB D b D2 \V \

where \V b\ 5 ( 1 )1/2 is the norm of the mean2 2b bu y
velocity, and are the wind stress components, CD

x yG GW W

is the drag coefficient, and ( , ) is the bottom ve-b bu yB B

locity.
For the internal mode, the linearization with respect

to du, dy and dr of the momentum Eqs. (2.2) and (2.3)
now read

b b b bQ (du, dy , dr) 1 ADV (du; u , y , w ) 1 ADV (u ; du, dy)4 3 2

t
]u

b b b b b b b5 2 2 Q (u , y , r 2 r ) 2 ADV (u ; u , y , w )4 0 3)]t

b b](h 1 dh) ] ]u
2 g 1 K , (A4)1 2]x ]z ]z

b b b bQ (du, dy , dr) 1 ADV (dy ; u , y , w ) 1 ADV (y ; du, dy)5 3 2

t
]y

b b b b b b b5 2 2 Q (u , y , r 2 r ) 2 ADV (y ; u , y , w )5 0 3)]t

b b](h 1 dh) ] ]y
2 g 1 K , (A5)1 2]y ]z ]z

where

hg ]
Q (u, y , r 2 r ) 5 2 fy 1 (r 2 r ) dz94 0 E 0r ]x0 z95z

2 2] u ] u
2 A 1 ,

2 2[ ]]x ]y
hg ]

Q (u, y , r 2 r ) 5 fu 1 (r 2 r ) dz95 0 E 0r ]y0 z95z

2 2] y ] y
2 A 1 .

2[ ]]x ]y

To decrease the number of variables, the equations
for T and S can be replaced by one single equation for
the density r, and the last constraint is thus written for
c ∈ {T, S, r}:

b b b bQ (dc) 1 ADV (dc; u , y , w ) 1 ADV (c ; du, dy)6 3 2

t
]c

b b b b b5 2 2 Q (c ) 2 ADV (c ; u , y , w )6 3)]t

b] ]c
1 K ,1 2]z ]z

(A6)

where
2 2 2 2Q (c) 5 2A[(] c /]x ) 1 (] c /]y )].6

In the case where c 5 r, (A6) is the linearized version
of the conservation of density:

]r ]ur ]yr ]wr
1 1 1)]t ]x ]y ]zphysical

2 2] r ] r ] ]r
5 A 1 1 K . (A7)

2 2 1 2[ ]]x ]y ]z ]z

Last, the vertical velocity (wb) is computed from the
diagnostic equation (2.1)

b b b]w ]u ]y
5 2 1 . (A8)1 2]z ]x ]y

The tendency terms (written ]/]t|t) are rather difficult
to estimate but can be computed when OGCM outputs
are used. However, even in that case, the present method
does not allow a control of the posterior trajectory of
the model, and the specification of the first derivative
can be pointless if the circulation is complex. However,
the magnitude of the error due this shortage is taken
into account in the model covariance matrices (RE or
RI). As far as the present study is concerned, an equi-
librium field is seek for and the tendency terms all van-
ish.

In matrix notations, is defined from Eqs. (A1)–M9E
(A3) and is written

dx 5 yo 2 xb 1 FE,M9 M9E E (A9)

and from Eqs. (A4)–(A6):M9I
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dx 5 yo 2 xb 1 FI.M9 M9I I (A10)

APPENDIX B

Gaussian Interpolation

The external and internal mode variables xb are in-
terpolated using a radially symmetric Gaussian filter:

2r
dexp 2 yO a,b21 2R(a,b) L

bx 5 (B1)i, j
2r

exp 2O 21 2R(a,b) L

2r
d dexp 2 [y d 1 y (1 2 d)]O a,b,g a,b,g1 221 2R(a,b) L

bx 5 , (B2)i, j,k
2r

exp 2O 21 2R(a,b) L

where (i, j) is a point of the small-scale grid and (a, b)
a point of the observation field. The distance between
the points (i, j) and (a, b) is given by r and RL is a
constant which has the same order of magnitude as L.
The vertical distance between points (i, j, k) and
(a, b, g) is given by d and the vertical interpolation is
linear, g1 and g2 satisfying z(g2) # z(k) # z(g1). Using
matrix notations, (B1) and (B2) can be written

xb 5 Zyd. (B3)

APPENDIX C

Euler–Lagrange Equations for Mass Conservation

Starting from the analysis field, we define a new cost
function Jm in order to correct the remaining misfits in
the mass conservation equation

Jm 5 2mmc[Mmcdx 2 (yo 2 Mmcxa)], (C1)

where mmx is a Lagrange multiplier, and Mmc is defined
by (A1), written as

Mmcdx 5 yo 2 Mmcxa. (C2)

The new analysis field is eventually given by

xA 5 xa 1 (yo 2 Mmcxa).21Mmc (C3)
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