
HAL Id: hal-00160449
https://hal.science/hal-00160449v1

Submitted on 6 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPADE: Verification of Multithreaded Dynamic and
Recursive Programs

Gael Patin, Mihaela Sighireanu, Tayssir Touili

To cite this version:
Gael Patin, Mihaela Sighireanu, Tayssir Touili. SPADE: Verification of Multithreaded Dynamic and
Recursive Programs. 19th International Conference in Computer Aided Verification, Jul 2007, Berlin,
Germany. pp.254-257. �hal-00160449�

https://hal.science/hal-00160449v1
https://hal.archives-ouvertes.fr

SPADE: Verification of Multithreaded Dynamic and

Recursive Programs ⋆

Gaël Patin1, Mihaela Sighireanu2, and Tayssir Touili2

1 University of Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France.
2 LIAFA, CNRS & University of Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France.

{sighirea,touili}@liafa.jussieu.fr

1 Introduction

Recently, there are a lot of tools that have been considered for software verification. We

can for example mention BLAST [HJMS02], SLAM [BR01], KISS [QW04,QR05],

ZING [QRR04], and MAGIC [CCG+03,CCG+04,CCK+06]. However, none of these

tools can deal with parallelism, communication between parallel processes, dynamic

process creation, and recursion at the same time. The tool we propose, called SPADE,

allows to analyse automatically boolean programs presenting all these features. As far

as we know, this is the first software model checking tool based on an expressive model

that accurately models all these aspects in programs.

SPADE checks safety properties of programs by iteratively refining abstractions of

the sets of the program execution paths that violate the property. Since property check-

ing is undecidable for programs presenting all the features mentioned above, the SPADE

refinement algorithm may not converge. In case of convergence, it can either find a bug

in the program and returns a counterexample to the user, or certify that the program is

correct.

We have applied SPADE to different case studies. Our results are encouraging and

are reported in Section 4. In particular, we were able to automatically find two bugs

in two versions of a Windows NT Bluetooth driver. The bugs were already found

in [CCK+06]. But there, the verification was not completely automatic since the au-

thors needed to guess the number of processes for which the bugs occur. Whereas with

SPADE, the verification process was done in a completely automatic manner. Indeed,

we don’t need to make any guess since our tool handles dynamic creation of processes.

The current version of SPADE is available at http://www.liafa.jussieu.fr/∼sighirea/spade.

2 The underlying techniques

SPADE is based on the SPAD model [Tou05]. A SPAD is a finite set of rules of the

form t
a
−→ t ′, where a is a synchronisation action, t and t ′ are terms built up from the

null process “0”, a finite number of variables (X), the sequential composition “·”, and

⋆ This work has been supported by the French Governement program ACI Jeunes Chercheurs,

Contract No.02 2 0205.

the asynchroneous parallel composition “||”, where the operators “·” and “||” are re-

spectively associative and associative/commutative, and where each action a has its

corresponding co-action ā. Intuitively, the process “0” represents termination, a process

variable X corresponds to a control point of the program, and a process term t describes

the control structure of the program. A procedure call is represented by a rule of the

form X → Y ·Z, where the program at control point X calls the procedure Y and goes

to control point Z. This control point Z becomes active when Y terminates. Dynamic

creation of parallel processes is modeled by rules of the form X →Y ||Z, expressing that

a process in control point X can create two parallel processes in control points Y and Z,

respectively. Finally, handshakes between parallel processes are represented according

to the CCS style by rules of the form t1
a−→ t ′1 and t2

ā−→ t ′2, meaning that two parallel

processes t1 and t2 can synchronize and move simultaneously to t ′1 and t ′2, respectively.

SPADE deals with rechability queries for SPAD models. More precisely, given two

(possibly infinite) sets of configurations Init and Bad, the problem is to know whether

the set of bad configurations Bad can be reached from the initial configurations Init. The

approach implemented in SPADE consists in computing abstractions of the execution

path language that leads form Init to Bad and iteratively refining these abstractions

[Tou05]. Our techniques are based on (1) the representation of the sets of configurations

with binary tree automata, (2) the use of these automata to compute a set of constraints

whose least fixpoint characterize the set of execution paths of the program, and (3) the

resolution of this set of constraints in an abstract domain. Our algorithm is generic and

can deal with different abstract domains. In particular, we considered the domains Dn

of finite action words of length less or equal to n. These domains allow to compute

abstractions of the execution paths that are exact up to the depth n. These abstractions

are called n-prefix abstractions. The refinement step consists in considering a “more

precise” abstract domain by incrementing the depth n.

3 The SPADE tool

SPADE has two inputs. The first input is an ASCII file describing (1) the SPAD model of

the program (names of processes, names of actions, rewriting rules), (2) the (possibly

infinite) set of initial configurations Init (given by a tree automaton), and (3) the bad

configuration Bad (a tree automaton). The second input is optional and consists of an

integer that represents the depth n of the prefix abstraction. If this parameter is not

given by the user, the tool starts with a prefix abstration of depth one, and automatically

increases the abstraction depth until either an error is found or the program is proven to

be correct.

SPADE outputs (a) the language reachn representing the n-prefix abstraction of the

paths between Init and Bad, and (b) the result of the intersection of reachn with the

set of good execution paths. This result may be either (CANNOT) if the intersection is

empty (i.e., the n-prefix abstraction does not allow to find an execution leading from

Init to Bad), (MAYBE) if the intersection is not empty but the path found has been cut

by the abstraction, (CAN) if a real path (i.e., not cut by abstraction) has been found

between Init and Bad.

SPADE implements in OCAML the algorithm described in [Tou05]. OCAML pro-

vides a rich and efficient built-in library of data structures (e.g., hash tables, maps,

sets), a powerful system of modules, and garbage collection facilities. Due to these

features, the algorithm is implemented as a generic module parameterized by two sig-

natures (interfaces): the first signature collects types and operations dealing with tree

automata, and the second signature collects types and operations of the abstract domain

of execution paths. The current version of SPADE instantiates the first parameter of the

algorithm with the OCAML implementation of tree automata provided by the TIMBUK

tool [GT01]. This implementation provides a large list of operations on tree automata

(union, intersection, emptiness test, minimization, etc) and an easy access to the states

and the transitions of automata. For the second parameter, we implemented in OCAML a

library for the abstract domain Dn (i.e., finite sets of finite words of length less or equal

to n). The library provides efficient implementation of operations intensively used by

the algorithm: union, concatenation, shuffle, prefix, and inclusion.

4 Summary of the results

SPADE has been applied to several examples. The performances are given in Table 1.

The experiments were obtained on a 4GHz Pentium IV with 4GB of memory.

Example Time Space

BlueTooth v1 1623mn28s 50 MB

BlueTooth v2 1216mn28s 46 MB

ConcVector v1 7s 3.4 MB

ConcVector v2 14s 14.8 MB

Lock/unlock 8s 3.6MB

Table 1. Performances of SPADE

The BlueTooth v1 is the SPAD model of the BlueTooth driver program used by

Windows NT and given in [QW04]. We were able to find a bug in this program. To

find this error, the [QW04] authors needed to guess the number of driver’s requests for

which the error occurs, and then run their tool; whereas with SPADE, the verification

was done in a completely automatic manner, since we did not have to guess the number

of requests for which the error occurs because our tool can deal with dynamic creation

of processes.

The BlueTooth v2 is a corrected version of BlueTooth v1 proposed by the authors

of [QW04]. SPADE finds an error in this version as well. This bug was already found in

[CCK+06]. Again, to be able to find the bug, the authors of [CCK+06] needed to guess

the number of requests that causes the bug before running their tool, whereas SPADE

did not need to perform this guess.

ConcVector is a SPAD model of a multithreaded program using concurrently meth-

ods of the class java.util.Vector from the Java Standard Collection Framework.

The program’s threads create and remove the elements of a Vector object. Wand and

Stoller [WS03] reported a high-level data race that occurs on such programs because

the constructor of the Vector class is not atomic. SPADE found this bug for a program

with an unbounded number of threads (ConcVector v1). Version v2 fixes the bug by

taking an atomic implementation of the constructor. SPADE was able to prove that this

version is correct.

The Lock/unlock example is a system that handles an arbitrary number of concur-

rent insertions on a binary search tree. The algorithm was proposed in [KL80], and can

be applied to handle simultaneous insertions (done by several users) into a database, or

to reduce the time necessary for a single insertion. We considered a buggy version of the

algorithm where one or several processes do not adhere to the required lock and unlock

policy. This version was considered in [CCK+06], where the bug was found only for

systems where the number of concurrent processes is less or equal to 7. With SPADE,

we were able to check this buggy program for arbitrary number of concurrent insertion

processes.

References

[BR01] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety prop-

erties of interfaces. Lecture Notes in Computer Science, 2057, 2001.

[CCG+03] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular

verification of software components in C. In International Conference on Software

Engineering (ICSE), pages 385–395, 2003.

[CCG+04] Sagar Chaki, Edmund Clarke, Orna Grumberg, Joel Ouaknine, Natasha Sharygina,

Tayssir Touili, and Helmut Veith. An expressive framework for state/event systems.

Technical report, Carnegie Mellon University, 2004.

[CCK+06] S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying concurrent message-

passing C programs with recursive calls. In TACAS, 2006.

[GT01] Thomas Genet and Valérie Viet Triem Tong. Reachability analysis of term rewriting

systems with timbuk. In Robert Nieuwenhuis and Andrei Voronkov, editors, LPAR,

volume 2250 of Lecture Notes in Computer Science, pages 695–706. Springer, 2001.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy

abstraction. In Symposium on Principles of Programming Languages, pages 58–70,

2002.

[KL80] H. T. Kung and P. L. Lehman. Concurrent manipulation of binary search trees. ACM

Trans. Database Syst., 5(3):354–382, 1980.

[QR05] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In

proceedings of TACAS’05, 2005.

[QRR04] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent

programs. In POPL 04: ACM Principles of Programming Languages, pages 245–

255, 2004.

[QW04] S. Qadeer and D. Wu. Kiss: Keep it simple and sequential. In PLDI 04: Programming

Language Design and Implementation, pages 14–24, 2004.

[Tou05] T. Touili. Dealing with communication for dynamic multithreaded recursive pro-

grams. In 1st VISSAS workshop, 2005. Invited Paper.

[WS03] Liqiang Wang and Scott D. Stoller. Run-time analysis for atomicity. In Proceedings of

the Third Workshop on Runtime Verification (RV), volume 89(2) of Electronic Notes

in Theoretical Computer Science. Elsevier, July 2003.

