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LIAFA, Université Paris 7, case 7014
2, Place Jussieu
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Abstract. We consider infinite antagonistic games over finite graphs.
We present conditions that, whenever satisfied by the payoff mapping,
assure for both players positional (memoryless) optimal strategies. We
show that all popular payoff mappings, such as mean payoff, discounted,
parity as well as several other payoffs satisfy these conditions. This ap-
proach allows to give a uniform treatment of otherwise disparate results
concerning the existence of positional optimal strategies.

1 Introduction

We study antagonistic games played on finite oriented graphs G by two players
Max and Min. Each vertex of G belongs to one of the players. If the current
game position is a vertex v then the owner of v chooses an outgoing edge e and
the target of e becomes a new game position. After an infinite number of moves
we obtain an infinite path p in G that we call a play.

We suppose that the edges of G are coloured by elements of some set C. Then
each play yields an infinite sequence of colours of the edges traversed during the
play. The payoff functions indicates for each such infinite sequence of colours a
real number: the amount that player Min pays to player Max at the end of the
game.

This types of games is studied since many years in game theory even in much
more general setting of stochastic games[9].

In general optimal strategies of both players can depend on the whole past
history. However it turns out that for many games both players have optimal
positional strategies, i.e. optimal strategies where the players’ moves depend
only on the current position. This type of strategies is particularly interesting
in computer science since positional strategies allow an easy and efficient imple-
mentation.

Motivated by economic applications classical game theory studies mainly,
but not exclusively, two payoff functions: mean-payoff and discounted [6]. Since
the seminal paper of Shapley [9] it is known that even for stochastic discounted
games both players have positional optimal strategies.

The existence of optimal positional strategies for mean-payoff deterministic
games was established by Mycielski and Świerczkowski[4].



Let us note that recently discounted and even mean payoff games entered
also in computer science, see [3,2] where are also nicely exposed the motivations
behind discounting system properties.

Parity games have have much more recent history. They appear in the work of
Emerson and Jutla [5] in relation to the modal µ-calculus and in Mostowski [7]
in relation to the problem of determinizing finite automata over infinite trees
(Rabin theorem). Again these games admit optimal positional strategies (even
over infinite graphs).

As noted recently by Björklund et al. [1] it is possible to present highly similar
proofs of the existence of optimal positional strategies for mean-payoff and parity
games. Let us note however that [1] failed to extract explicitly the ingredients of
both proofs that make them so similar. One can only guess that there are some
common axioms hidden in the proof. Moreover the inductive method presented
in [1] fails for discounted games.

In this paper we return to the problem of unifying all, somehow disparate,
results of the existence of positional optimal strategies. We present three con-
ditions that, when satisfied by payoff mapping, assure the existence of optimal
positional strategies for both players. In the second part of the paper we show
that virtually all payoff mappings that allow positional optimal strategies, in-
cluding discounted payoff where the method of [1] failed, satisfy our conditions.
This provides a clear explanation why optimal positional strategies are so om-
nipresent.

Let us note finally that the inductive method developed in our paper was suc-
cessfully adapted by the second author to perfect information stochastic games
where it allowed to show in a simpler way the existence of optimal positional
pure (i.e. deterministic) strategies [10].

An intriguing open question is whether our three conditions assure the ex-
istence of optimal positional pure strategies for perfect information stochastic
games in general.

2 Preliminaries

For any (possibly infinite) set C, we write C+ to denote the set of all finite non
empty words over C. An infinite word c0c1c2 . . . over C is said to be finitely
generated if there is a finite subset A of C such that for all i, ci ∈ A. In our
paper Cω will stand always for a set of all finitely generated infinite words over
C. Let us note that this is a departure from the standard notation where Cω

stands usually for the set of all infinite sequences (infinite words) over C. The
difference appears of course only if C is infinite. However, in our paper while
it is usuful to allow infinite alphabets, only finitely generated sequences are of
interest.

For x ∈ C+, by xω = xxx . . . we note the infinite concatenation of words x.
We use also the standard mathematical notation: for any sequence an, n ≥ 0, of
real numbers, lim supn an = limn→∞ supi≥n ai.

R = R ∪ {−∞,∞} will denote the set of reals extended with infinity values.
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An arena is a tuple

G = (VMax, VMin, E, C, ϕ),

where (VMax ∪ VMin, E) is a finite oriented graph with the set V = VMax ∪ VMin

of vertices partitioned onto the set VMax of vertices of player Max and the set
VMin of vertices belonging to player Min. E ⊆ V ×V is the set of edges. We shall
colour edges by means of a mapping ϕ : E → C which associates with each edge
e ∈ E a colour ϕ(e) ∈ C. Although the set of colours will be often infinite (for
example R or N) actually only finite subsets of C will be used since we restrict
our attention to finite arenas.

For any edge e = (v, w) ∈ E we note source(e) = v the source and target(e) =
w the target of e. For a vertex v ∈ V , by vE = {e ∈ E | source(e) = v} we
denote the set of edges outgoing from v.

We suppose that arenas have no dead-ends, i.e. each vertex has at least one
outgoing edge.

A path in G is a finite or infinite sequence of edges p = e0e1e2 . . . such that,
for all i ≥ 0, target(ei) = source(ei+1). The source of p is the source of the
first edge e0. If p is finite then target(p) is the target of the last edge in p. It is
convenient to assume that for each vertex v there exists an empty path λv with
no edges and such that source(λv) = target(λv) = v.

Players Max and Min play on G in the following way. If the current game
position is a vertex v ∈ VMax then player Max choses an outgoing edge e ∈ vE

and vertex target(e) becomes a new game position. Otherwise, if the current
game position v belongs to player Min then Min chooses an outgoing edge e ∈ vE

and vertex target(e) becomes a new game position. If the initial position was v

then in this way the players construct an infinite path e = e0e1e2 . . . of visited
edges such that source(e) = v. Such an infinite path will be called sometimes a
play in G. The set of all plays (infinite paths) in G will be denoted P ω

G . The set
of finite paths in G will be noted P ∗

G. Elements of P ∗
G will be sometimes called

histories or finite plays, especially when they are used to encode the history of
all movements of both players up to a current moment.

With any play e = e0e1e2 . . . we associate the payoff sequence

ϕ(e) = ϕ(e0)ϕ(e1)ϕ(e2) . . .

of visited colours.
Note that we have extended in this way the colouring mapping to ϕ : P ω

G →
Cω. In a similar way, we set for a finite path p = e0 . . . ek, ϕ(p) = ϕ(e0) . . . ϕ(ek).

A payoff function is a mapping

u : Cω → R.

Intuitively, after an infinite play p player Min pays to player Max the amount
u(ϕ(p)) (with the natural interpretation that if u(ϕ(p)) < 0 then it is rather the
player Max that pays to player Min the amount |u(ϕ(p))|). Let us note that since
our arenas are finite ϕ(p) will be always finitely generated for any infinite path
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p. This is important since in some rare cases of payoff mappings u the value u(p)
will not be even well defined for infinite words which are not finitely generated.

A game is a couple G = (G, u) made of an arena G and a payoff function.

Let G be an arena and p ∈ {Min, Max} a player. A strategy for player p in G

is a mapping σp which indicates for each finite history p an edge outgoing from
target(p) that player p should choose. Thus formally

σp : {p ∈ P ∗
G | target(p) ∈ Vp} → E

where σp(p) ∈ vE whenever v = target(p).

A finite or infinite path e = e0e1e2 . . . is said to be consistent with the
strategy σp of player p if whenever target(ei) ∈ Vp then ei+1 = σp(e0...ei) and
moreover e0 = σp(λv) where v = source(p).

Σp denotes the set of strategies of a player p.

In this paper we are especially interested in the class of positional strategies.

A positional strategy for player p is a mapping σp : Vp → E such that for
all v ∈ Vp, σp(v) ∈ vE. Intuitively, when p uses a positional strategy then his
choice of the outgoing edge depends only on the current position and not on the
previous history. Obviously, a positional strategy is a strategy in the previous
sense, for a finite history p = e0 . . . ek with target(p) ∈ Vp it suffices to set
σp(p) := σp(target(p)).

Given a vertex v and strategies σ and τ for player Max and player Min
respectively, there exists a unique play starting in v and consistent with σ and
τ . This play is denoted by pG(v, σ, τ).

Let us set

val(G(v)) = supσ∈ΣMax
infτ∈ΣMin

u(ϕ(pG(v, σ, τ)))

val(G(v)) = infτ∈ΣMin
supσ∈ΣMax

u(ϕ(pG(v, σ, τ))).

Intuitively, player Max can assure himself the payoff of at least val(G(v)) while
player Min can assure that his loss will not be greater than val(G(v)). The
quantity val(G(v)) is called the lower value of the game G at v while val(G(v))
is the upper value of G at v. Note that always

val(G(v)) ≤ val(G(v)).

If val(G(v)) = val(G(v)) then G is said to have a value at v and we note
such a value val(G(v)).

Strategies σ] ∈ ΣMax and τ ] ∈ ΣMin are said to be optimal if for all vertices
v ∈ V and all strategies σ ∈ ΣMax and τ ∈ ΣMin

u(pG(v, σ, τ ])) ≤ u(pG(v, σ], τ ])) ≤ u(pG(v, σ], τ)). (1)

If (1) holds then the value of G exists for any initial vertex and val(G(v)) =
u(pG(v, σ], τ ])).
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3 Fairly mixing payoffs yield positional strategies

The aim of this section is to present sufficient conditions for the payoff mapping
u assuring the existence of optimal positional strategies for both players.

Definition 1. A payoff mapping u : Cω → R is said to be a fairly mixing if the
following conditions hold

(C1) for all x ∈ C+, y0, y1 ∈ Cω, if u(y0) ≤ u(y1) then u(xy0) ≤ u(xy1),
(C2) for all x ∈ C+, y ∈ Cω, min{u(xω), u(y)} ≤ u(xy) ≤ max{u(xω), u(y)},
(C3) for any infinite sequence xi ∈ C+, i ∈ N, of non empty colour words such

that the infinite word x0x1x2 . . . is finitely generated

min{u(x0x2x4 . . .), u(x1x3x5 . . .), inf
i∈N

u(xω
i )}

≤ u(x0x1x2x3 . . .) ≤

max{u(x0x2x4 . . .), u(x1x3x5 . . .), sup
i∈N

u(xω
i )}. (2)

Theorem 1 Let u : Cω → R be a fairly mixing payoff function. Then both
players have optimal positional strategies in any game G = (G, u) over a finite
arena G.

For the sake of simplicity the following lemma is formulated only for player
Max, however it should be clear that analogous characterization holds also for
player Min. This point will be discussed briefly in the sequel.

Lemma 1 Let G = (G, u) be a game with fairly mixing payoff function u. Sup-
pose that

(1) there exists a vertex v ∈ VMax such that |vE| > 1, where vE = {e ∈ E |
source(e) = v} is the set of all edges with the source v,

(2) vE = A1 ∪ A2 is a partition of the set vE onto two non empty sets A1 and
A2,

(3) E′ = {e ∈ E | source(e) 6= v}, E1 = E′ ∪ A1, E2 = E′ ∪ A2, and G1 =
(VMax, VMin, E1, C, ϕ) and G2 = (VMax, VMin, E2, C, ϕ) are arenas obtained
from G by removing all edges not belonging to E1 and E2 respectively (but
keeping all vertices V ),

(4) players Max and Min have optimal positional strategies in the games G1 =
(G1, u) and G2 = (G2, u).

Then Max and Min have optimal strategies σ] and τ ] in the game G = (G, u).
More exactly, we can assume without loss of generality that

val(G2(v)) ≤ val(G1(v)) (3)

and then
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(i) the optimal positional strategy of player Max in G1 is also optimal for the
same player in the game G,

(ii) for all w ∈ V , val(G(w)) = val(G1(w)).

Proof. Let σ
]
i , τ

]
i be optimal positional strategies of players Max and Min re-

spectively in the games Gi = (Gi, u), i = 1, 2. We then set

σ] = σ
]
1 (4)

It is clear that σ] is a positional strategy for Max not only in the game G1

but also in the game G. We shall show that σ] is optimal for Max in the game
G = (G, u) and that for all vertices w ∈ V , val(G(w)) = val(G1(w))

Note the following remark holding under the hypotheses of Lemma 1 and
conditions (3) and (4)

Remark 1. Let τ be any strategy of Min in the game G and w an initial vertex.
Then u(pG(w, σ], τ)) ≥ val(G1(w)), i.e. for games starting at w the strategy σ]

can assure to player Max the payoff of at least val(G1(w)).

Indeed, if we restrict τ to finite paths in G1 we obtain a strategy τ1 of Min in
the game G1. Then the plays in G consistent with σ] and τ are the same as the
plays in G1 consistent with σ

]
1 and τ1, which proves Remark 1.

To finish the proof of Lemma 1 we should construct a strategy τ ] for player
Min assuring that for any strategy σ of player Max in G and any initial vertex
w

u(ϕ(pG(w, σ, τ ]))) ≤ val(G1(w)). (5)

We define first a mapping

b : P ∗
G → {1, 2} (6)

Let p ∈ P ∗
G be a finite path in G. Set

b(p) =











1 if either p does not contain any edge with the source v or

the last edge of p with the source v belongs to G1,

2 if the last edge of p with the source v belongs to G2.

(7)

Then the strategy τ ] of Min in G is defined as

τ ](p) =

{

τ
]
1(target(p)) if b(p) = 1

τ
]
2(target(p)) if b(p) = 2

(8)

In other words, playing in G player Min applies either his optimal strategy τ
]
1

from the game G1 or his optimal strategy τ
]
2 from the game G2. Initially, up to

the first visit to v, player Min uses the strategy τ
]
1 . After the first visit at v the

choice between τ
]
1 and τ

]
2 depends on whether the last time when visiting v his

adversary Max chose an outgoing edge in E1 or an edge in E2. Intuitively, if the
last time at v player Max chose a outgoing edge from E1 then it means that the

6



play from this moment is like a play in G1 thus player Min tries to respond with
his optimal strategy from G1. Symmetrically, if during the last visit at v player
Max chose an outgoing edge from E2 then from this moment onward the play is
like a play in G2 and player Min tries to counter with his optimal strategy from
G2.

It should be clear that the strategy τ ] needs in fact just two valued memory
{1, 2} for player Min to remember if during the last visit to v an edge of E1 or
an edge of E2 was chosen by his adversary. This memory is initialized to 1 and
updated only when vertex v is visited.

In the sequel we shall say that a finite or infinite path p in G is homogeneous
if one of the following three conditions folds: (1) p never visits v or (2) each edge
e of p with source v belongs to E1 or (3) each edge e of p with source v belongs
to E2.

The proof of (5) is divided on four cases.

Case 1: w = v and the memory state of player Min is ultimately con-

stant during the play p = pG(v, σ, τ ]).
This means that p can be factorized as

p = p0p1...pnq

where pi are finite non empty homogeneous paths such that source(pi) = target(pi) =
v and q is an infinite homogeneous path with source v.

Since p is consistent with τ ] and pi are homogeneous, each infinite play
pω

i = pipipi . . . is either consistent with τ
]
1 (if pi contains only edges of G1) or

with τ
]
2 (if pi contains only edges of G2).

By optimality of strategies τ
]
1 and τ

]
2 we get that either u(ϕ(pω

i )) ≤ val(G1(v))
or u(ϕ(pω

i )) ≤ val(G2(v)). Thus, by (3),

for all i, 0 ≤ i ≤ n, u(ϕ(pω
i )) ≤ val(G1(v)). (9)

Similarly, the infinite path q is either consistent with τ
]
1 or with τ

]
2 implying

that u(ϕ(q)) cannot be greater than either val(G1(v)) or val(G2(v)). Thus, again
by (3),

u(ϕ(q)) ≤ val(G1(v)) (10)

From (C2) of Definition 1, by a trivial induction on n, we can deduce that
u(x0 . . . xny) ≤ max{u(xω

0 ), . . . , u(xω
n), u(y))} for any xi ∈ C+ and y ∈ Cω .

This inequality and (9), (10) imply

u(ϕ(p)) = u(ϕ(p0) . . . ϕ(pn)ϕ(q)) ≤

max{u(ϕ(p0)ω), . . . , u(ϕ(pn)ω), u(ϕ(q))} ≤ val(G1(v)).

Case 2: w = v and the memory state of player Min changes infinitely

often during the play p = pG(v, σ, τ ]).
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In other words this means that p can be factorized as

p = p0p1p2 . . .

where, for all i,

(1) pi is a homogeneous non empty path with source and target v,
(2) the path pipi+1 is not homogeneous, i.e. if the first edge of pi is in E1 then

the first edge of the next subpath pi+1 is in E2 and vice versa.

The conditions above imply that the infinite paths q0 = p0p2p4 . . . and q1 =
p1p3p5 . . . are homogeneous and one of them, say q0, is consistent with τ

]
1 while

the other, say q1, is consistent with τ
]
2 (in the case where q0 is consistent with

τ
]
2 while q1 is consistent with τ

]
1 we proceed analogously).

By optimality of τ
]
1 and τ

]
2 , u(q0) ≤ val(G1(v)) and u(q1) ≤ val(G2(v)),

implying by (3)

u(ϕ(p0p2p4 . . .)) ≤ val(G1(v)) and u(ϕ(p1p3p5 . . .)) ≤ val(G1(v)).

Note also that each pω
i is not only homogeneous but also consistent either

with τ
]
1 or with τ

]
2 , thus as previously by optimality of both strategies and (3),

we get u(ϕ(pi)
ω) ≤ val(G1(v).

Therefore using condition (C3) of Definition 1 and the bounds established
above we get

u(ϕ(p)) = u(ϕ(p0)ϕ(p1) . . .) ≤

max{u(ϕ(p0p2p4 . . .)), u(ϕ(p1p3p5 . . .)), sup
i∈N

u(ϕ(pi)
ω)}

≤ val(G1(v)). (11)

Case 3: w 6= v and the play p = pG(w, σ, τ ]) never visits the vertex v.

If we set σ1 to be the restriction of σ to the paths in G1 then σ1 is a strategy
of Max in G1. Moreover since v is never visited player Min using τ ] in fact
applies always the strategy τ

]
1 optimal for him in G1. Thus p can be seen as

a play in G1 consistent with σ1 and with τ
]
1 and by optimality of τ

]
1 we get

u(ϕ(p)) ≤ val(G1(w)).

Case 4: w 6= v and the play p = pG(w, σ, τ ]) visits at least once the vertex

v.

Let us factorize p: p = rq, where r is the finite prefix of p until the first visit
to v, i.e. r is the shortest prefix of p with target(r) = v.

Let q] = pG1(v, σ
]
1, τ

]
1), where σ

]
1 is the optimal positional strategy of Max in

G1. Thus since both σ
]
1 and τ

]
1 are optimal in G1 we have u(q]) = val(G1(v)).
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Now note that q is in fact a play in G starting at v and consistent with τ ].
This situation was already examined above (case 1 and case 2) and we have
learned there that u(ϕ(q)) ≤ val(G1(v)).

In this way we have obtained

u(ϕ(q)) ≤ val(G1(v)) = u(ϕ(q])) (12)

which by condition (C1) of fairly mixing payoffs yields

u(ϕ(r)ϕ(q)) ≤ u(ϕ(r)ϕ(q])) = u(ϕ(rq])). (13)

However, rq] is an infinite play in G1 starting at w and consistent with τ
]
1

(r is consistent with τ
]
1 since until the first visit to v in p = rq player Min

plays according to τ
]
1 while q] is consistent with τ

]
1 just by definition). Thus

by optimality of τ
]
1 in G1 we get u(ϕ(rq])) ≤ val(G1(w)). This and (13) imply

u(ϕ(p)) = u(ϕ(rq)) ≤ val(G1(w)).
This concludes the proof of Lemma 1.

ut

Before applying Lemma 1 let us note what happens if all hypothesis of
Lemma 1 are satisfied except that the vertex v belongs rather to Min. Sup-
pose also that, as in Lemma 1, val(G2(v)) ≤ val(G1(v)). Then it is the optimal

strategy τ
]
2 of Min from G2 that is optimal in G. This can be deduced immedi-

ately from Lemma 1 since player Min can be seen as the maximizer of the payoff
−u.

Proof of Theorem 1

Let G = (VMax, VMin, E, C, ϕ) be a finite arena and G = (G, u) with fairly
mixing payoff u.

We prove the theorem by induction on nG = |E| − |V |.
If nG = 0 then, since G has no dead ends, each vertex of V has only one

outgoing edge. Thus the players have no choice and there is only one possible
strategy for each of them and these strategies are positional. Obviously they are
also optimal.

Let nG > 0 and suppose that the thesis holds for each game G′ over an arena
such that nG′ < nG.

If all vertices v ∈ vM of player Max have only one outgoing edge then Max
has only one possible strategy and this strategy is positional. Obviously, this
unique strategy is also optimal for Max.

Now suppose that there exists v ∈ vM having at least two outgoing edges.
We decompose G onto two subarenas G1 and G2 exactly as in Lemma 1. Since
G1 and G2 have the same number of vertices as G but their number of edges
is strictly less than |E| we can apply to Gi = (Gi, u), i = 1, 2, the induction

hypothesis to deduce the existence of optimal positional strategies σ
]
i for Max

in Gi, i = 1, 2. Again by Lemma 1, either σ
]
1 or σ

]
2 is an optimal positional

9



strategy of Max in G, depending on whether val(G2(v)) ≤ val(G1(v)) or the
inverse inequality holds.

The existence of an optimal positional strategy for player Min follows by a
symmetric argument.

ut

4 Applications

In this section we show that virtually all popular (as well as many less pop-
ular) payoff mappings satisfy conditions (C1)-(C3). This implies immediately
the existence of positional optimal strategies due to Theorem 1. Due to space
restrictions all proofs are relegated to Appendix.

If not stated explicitly otherwise, in the examples examined below we suppose
that C = R, i.e. the edges are labeled by real numbers. In particular, R

+ will
stand always for the set of non empty finite sequences of real numbers and R

ω

is the set of finitely generated infinite sequences of reals.

Sup game. Max wins the highest value seen during the play, i.e. the payoff is

us(c0c1 . . .) = sup{c0, c1, . . .}, where ci ∈ C.

Limsup game. Now we suppose that Max wins the highest value seen infinitely
often during the play, i.e. the payoff is given by

ul(c0c1 . . .) = lim sup
i

ci.

This payoffs are used for example in gambling systems.

Total reward game. In the total reward game player Max accumulates the payoffs
:

ut(c0c1 . . .) = lim sup
n

n
∑

i=0

ci.

Note that in this case the payoff can take infinite values ±∞. This type of
payoffs is classical in game theory [6].

Parity game. C = N is the set of non negative integers. The payoff is defined as

up(c0c1 . . .) = (lim sup
i∈N

ci) mod 2

In other words, player Max wins 1 if the highest colour visited infinitely often
is odd, otherwise his payoff is 0. This is the most relevant type of payoff for
computer science, [5].
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Weighted reward game. C = R is again the set of real numbers. The payoff is
given by

uλ
m(c0c1...) = λ · lim inf

i∈N

ci + (1 − λ) · lim sup
i∈N

ci,

where λ ∈ [0, 1] is any fixed constant from the closed interval [0, 1].
The interpretation for uλ

m is the following. If ci is the capital of player Max
on the day i then using the coefficient λ he can weight relatively his “good” and
“bad” days. If he is optimistic then he will use λ = 1 and take into account
only the good days when his capital is maximal, this is the play considered in
Section 6.2. If he is pessimistic then he will set λ = 0 and play in such a way as
his “bad” days were not too bad.

With λ between 0 and 1 he carefully weights relative pleasure of the happy
days against the difficulties of more harsh times.

Note also that the payoff u = 2 · u
1

2

m can be seen as a generalization of the
parity payoff. To see this let us take a parity game G with an underlying arena
G. Let us replace in G each odd label c by −c and now consider over this modified
arena the game G′ = (G′, u) with the payoff u defined above. Now it suffices to
note that if the game value of G′(s) is non negative then in the original parity
game G it is the player 0 that wins. On the other hand, if the game value of
G′(s) is negative then in the original parity game G it is the player 1 that wins.
The game G′ can be seen as quantitative version of the parity game. In the
parity game we examine only if the maximal infinitely often visited colour is
even or odd, in the game G′ we measure more precisely the distance between
the greatest even and odd colours visited infinitely often.

Mean payoff game. Again C = R. With any finite sequence x ∈ R
+ of elements

of R we associate their mean value

mean(x) =
1

|x|
S(x),

where like in Section 6.3 S(x) denotes the sum of all elements of x while |x|
stands for the length of x. The mean payoff mapping is defined by

um(c0c1 . . .) = lim sup
n∈N

(mean(c0 . . . cn−1))

Discounted Game. The set of colours is C = [0, 1) × R.
For any finitely generated infinite word (λ0, a0)(λ1, a1) . . . ∈ Cω we set

ud((λ0, a0)(λ1, a1) . . .) = λ0a0 + λ0λ1a1 + λ0λ1λ2a2 + · · ·

Usually in discounted games there is one discount factor λ and then ud(a0a1 . . .) =
∑

i≥0
λiai. Allowing different discout factors is in the spirit of the original paper

of Shapley [9].

Theorem 2 All payoff mappings listed above satisfy conditions (C1)-(C2) and
therefore both players have optimal positional strategies.
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Appendix

5 Special payoff functions

In this section we examine some special useful classes of payoff functions.

5.1 Prefix independent payoffs

Some well-known payoffs functions, such as parity payoff or mean-payoff do not
depend on any finite prefix of the play.

A payoff mapping u is said to be prefix independent if for any x ∈ C+ and
y ∈ Cω, u(y) = u(xy). The trivial proof of the following remark is left to the
reader.

Remark 2. If u is prefix independent then u satisfies conditions (C1) and (C2)
of Definition 1 of fairly mixing payoffs.

Thus to prove that prefix independent u is fairly mixing it suffices to verify (C3).
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5.2 Locally continuous payoffs

We shall assume here the usual metric over Cω: for two words c0c1 . . . and d0d1 . . .

of Cω

d(c0c1 . . . , d0d1 . . .) = 2−min{n∈N|cn 6=dn},

see [8] for further details about the topology on Cω. It turns out that continuous
payoff mappings u : Cω → R allow simpler proofs of fairly mixing property. In
fact what we need to this end is even weaker property of local continuity:

Definition 2. A payoff u : Cω → R is said to be locally continuous if, for any
finite subset D ⊂ C, the restriction u|Dω : Dω → R is continuous.

We can now state precisely our result about locally continuous payoffs.

Lemma 2 If a locally continuous payoff u : Cω → R satisfies conditions (C1)
and (C2) of fairly mixing, then u is a fairly mixing payoff.

Proof. Let u : Cω → R be a payoff satisfying the hypothesis of Lemma 2. We
prove that condition (C3) is satisfied. Let xn ∈ C+, n ∈ N, be a sequence of
finite non empty colour words such that x0x1x2 . . . is finitely generated. Suppose
that

∀i ∈ N, u(x0x1x2 . . .) > u(xω
i ). (14)

We shall prove that
u(x) ≤ u(x0x2x4 . . .) (15)

which immediately yields the second inequality of (C3).
First, we prove by induction the following

Remark 3. The sequence (u(xnxn+1 . . .))n∈N, is non decreasing.

Suppose, by induction hypothesis, that the remark holds for the first n elements
of the sequence, i.e.

u(x0x1 . . .) ≤ u(x1x2 . . .) ≤ . . . ≤ u(xnxn+1 . . .).

This and (14) imply that u(xω
n) < u(xnxn+1 . . .). However condition (C2) of

fairly mixing tells us that u(xnxn+1 . . .) ≤ max{u(xω
n), u(xn+1xn+2 . . .)}. The

last two inequalities imply u(xnxn+1 . . .) ≤ u(xn+1xn+2 . . .), which achieves the
proof of Remark 3.

From this remark u(x2n+1x2n+2 . . .) ≤ u(x2n+2x2n+3 . . .) and by condition
(C1) of fairly mixing we can append to the words in this inequality the prefix
x0x2x4 . . . x2n. This yields

u(x0x2x4 . . . x2nx2n+1x2n+2x2n+3 . . .) ≤ u(x0x2x4 . . . x2nx2n+2x2n+3 . . .)

i.e. the sequence u(x0x2x4 . . . x2nx2n+1x2n+2 . . .), n ∈ N, is also non decreasing.
As the first element of this sequence is u(x0x1x2 . . .), we get

u(x0x1x2 . . .) ≤ u(x0x2x4 . . . x2nx2n+1x2n+2x2n+3 . . .), for all n ∈ N. (16)
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Since x0x1x2 . . . is finitely generated, there exists a finite subset D ⊂ C

such that every letter of x0x1x2 . . . is an element of D. Note that the sequence
(x0x2x4 . . . x2nx2n+1x2n+2 . . .)n∈N converges to x0x2x4 . . . in Dω when n goes
to ∞. Since u is locally continuous, (u(x0x2x4 . . . x2nx2n+1x2n+2 . . .))n∈N con-
verges to u(x0x2x4 . . .). Together with (16), it proves by continuity of u that
u(x0x1x2 . . .) ≤ u(x0x2x4 . . .). The proof of second inequality of (C3) is accom-
plished.

For proving the first inequality of (C3), it suffices to consider the payoff
−u and note that the first inequality of (C3) for u is the same as the second
inequality for −u. ut

6 Applications.

If not stated explicitly otherwise, in the examples examined below we suppose
that C = R, i.e. the edges are labeled by real numbers. In particular, R

+ will
stand always for the set of non empty finite sequences of real numbers and R

ω

is the set of finitely generated infinite sequences of reals.

6.1 Sup game.

Max wins the highest value seen during the play, i.e. the payoff is

us(c0c1 . . .) = sup{c0, c1, . . .}, where ci ∈ C.

Since us(xy) = max{us(xω), us(y)}, for x ∈ R
+ and y ∈ R

ω, conditions (C1)
and (C2) of fairly mixing payoff are satisfied immediately. On the other hand,
the equality us(x0x1 . . .) = sup{us(xω

0 ), us(xω
1 ), . . .}, for any xi ∈ R

+, i ∈ N,
implies condition (C3).

It is obvious that the payoff remains fairly mixing if Max wins rather the
minimal value seen during the game : ui(c0c1 . . .) = inf{c0, c1, . . .}.

6.2 Limsup game.

Now we suppose that Max wins the highest value seen infinitely often during
the play, i.e. the payoff is given by

ul(c0c1 . . .) = lim sup
i

ci.

Since this payoff mapping is prefix independent, by Remark 2, it suffices to
verify condition (C3) of fairly mixing payoffs. However, this is immediate since

ul(x0x1 . . .) = lim sup
i

ul(x
ω
i )

for any sequence (xi), where xi ∈ C+.
Again in the definition of the payoff we can replace lim sup by lim inf and

the proof remains similar.
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6.3 Total reward game.

In the total reward game player Max accumulates the payoffs :

ut(c0c1 . . .) = lim sup
n

n
∑

i=0

ci.

Note that in this case the payoff can take infinite values ±∞.
We shall verify that ut is fairly mixing.
For x ∈ R

+ we shall note by S(x) the sum of elements of the real sequence
x. With this notation we note the following equality :

∀x ∈ R
+, ∀y ∈ R

ω, ut(xy) = S(x) + ut(y) (17)

where we adopted the natural convention that a + ∞ = ∞ and a − ∞ = −∞
for a ∈ R. By trivial case inspection this yield condition (C1) of fairly mixing
payoffs.

The following implications hold for any x ∈ R
+:

if S(x) < 0 then ut(x
ω) = −∞,

if S(x) = 0 then ut(x
ω) ∈ R,

if S(x) > 0 then ut(x
ω) = +∞.

(18)

Indeed, let x′ v x be the prefix of x such that S(x′) is maximal (we can
take the shortest such prefix if there are several such prefixes). Then ut(x

ω) =
lim supi S(xix′) = lim supi(i ·S(x) + S(x′)) = limi→∞ supj≥i(j ·S(x) + S(x′)).
However

sup
j≥i

(j · S(x) + S(x′)) =











−∞ if S(x) < 0

S(x′) if S(x) = 0

∞ if S(x) > 0

and we get (18).
Now note that condition (C2) of fairly mixing payoffs reads for ut as

min{ut(x
ω), ut(y)} ≤ S(x) + ut(y) ≤ max{ut(x

ω), ut(y)}

which can be verified readily by elementary case analysis with the help of (18).
It remains to verify condition (C3) of fairly mixing payoffs. We give first a

proof for the second inequality in (C3):

u(x0x1x2x3 . . .) ≤ max{u(x0x2x4 . . .), u(x1x3x5 . . .), inf
i∈N

u(xω
i )} (19)

where xi ∈ R
+, i = 0, 1, 2, . . ..

If there exists n ∈ N such that S(xn) > 0 then ut(x
ω
n) = +∞ and (19) holds.

In the opposite case, ∀n ∈ N, S(xn) ≤ 0. Then

∀n ∈ N,
∑

0≤i≤n

S(xi) ≤
∑

0≤i≤n
i even

S(xi).
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By taking the lim supn∈N of this inequality, we obtain ut(x0x1 . . .) ≤ ut(x0x2 . . .)
and (19) holds again.

The proof of the first inequality in (C3) can be carried in exactly the same
way, except that we should consider first the case where there exists n ∈ N such
that S(xn) < 0 and next the opposite case.

In this way we have shown that ut defines fairly mixing payoff.

6.4 Parity game.

C = N is the set of non negative integers. The payoff is defined as

up(c0c1 . . .) = (lim sup
i∈N

ci) mod 2

In other words, player Max wins 1 if the highest colour visited infinitely often is
odd, otherwise his payoff is 0. This payoff mapping is prefix independent thus it
suffices to check if condition (C3) of fairly mixing payoffs holds. However this is
rather trivial.

Let (xn)n∈N be a sequence of elements of N
+ such that x0x1x2 . . . is finitely

generated. Clearly,
up(x0x1x2 . . .) = lim sup

n∈N

up(xω
n)

Since x0x1x2 . . . is finitely generated, the set {up(xω
n) : n ∈ N} is finite and there

exists n ∈ N such that up(x0x1x2 . . .) = up(xn). This immediately implies (C3).

6.5 Weighted reward game.

C = R is again the set of real numbers. The payoff is given by

uλ
m(c0c1...) = λ · lim inf

i∈N

ci + (1 − λ) · lim sup
i∈N

ci,

where λ ∈ [0, 1] is any fixed constant from the closed interval [0, 1].
It is a prefix independent payoff. It suffices to check (C3). For the sake of

simplicity let us suppose that (xi)i∈N is a finitely generated sequence of elements
of R (the property can be proved without assuming that (xi) is finitely generated
but the proof is a bit more complicated).

Let ci be the i-th real number in the sequence x = x0x1x2 . . .. Since x is
finitely generated there exists n such that for all k ≥ n lim inf i ci ≤ ck ≤
lim supi ci and for infinitely many k ≥ n, lim inf i ci = ck as well as for infinitely
many l ≥ n, cl = lim supi ci. This shows that there exists elements xk and xl in
the sequence of words (xi) such that

lim inf
i

ci = min(xk) ≤ max(xk) ≤ lim sup
i

ci

and
lim inf

i
ci ≤ min(xl) ≤ max(xl) = lim sup

i

ci.
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However, this implies respectively that

uλ
m(xω

k ) ≤ uλ
m(x) and uλ

m(xω
l ) ≥ uλ

m(x)

which implies in turn (3).

6.6 Mean payoff game.

Again C = R. With any finite sequence x ∈ R
+ of elements of R we associate

their mean value

mean(x) =
1

|x|
S(x),

where like in Section 6.3 S(x) denotes the sum of all elements of x while |x|
stands for the length of x. The mean payoff mapping is defined by

um(c0c1 . . .) = lim sup
n∈N

(mean(c0 . . . cn−1))

Again, since this payoff is prefix independent we have just to prove (C3).
Let xi ∈ R

+, i = 0, 1, 2 . . . and let us set

z = x0x1x2 . . .

zeven = x0x2x4 . . .

zodd = x1x3x5 . . .

(20)

We shall write z[i], zeven[i], zodd[i], i = 0, 1, . . . to denote the i-th real number in
each of the three infinite real sequences.

We begin with proving the first inequality of (C3). Since (x0 . . . xn)n∈N is a
subsequence of (z[0] . . . z[n])n∈N,

um(x0x1x2 . . .) = lim sup
n∈N

(mean(z[0] . . . z[n]))

≥ lim sup
n∈N

((mean(x0 . . . xn))),
(21)

Since

mean(x0 . . . xn) =
1

|x0 . . . xn|

∑

0≤i≤n

|xi|mean(xi),

mean(x0 . . . xn) is a convex combination of {mean(x0), . . . , mean(xn)}. Therefore

mean(x0 . . . xn) ≥ min{mean(xi) | 0 ≤ i ≤ n} ≥ inf{mean(xi) | i ∈ N}.

Together with (21), it implies

um(x0x1x2 . . .) ≥ inf{mean(xi) | i ∈ N}.

Since mean(xi) = um(xω
i ), we obtain the first inequality of (C3).
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Now we prove the second inequality of (C3). Let A0 be the set of all integers
i such that z[i] belongs to a factor x2k of an even index in the factorization (20)
and let A1 be the set of all integers i such that z[i] belongs to a factor x2k+1 of
an odd index in the factorization (20).

Obviously N = A0 ∪ A1 is a factorization of N and we have

mean(z[0] . . . z[n]) =
1

n
(

∑

0≤i<n

i∈A0

z[i] +
∑

0≤i<n

i∈A1

z[i])

=
n0

n
· (

1

n0

·
∑

0≤i<n

i∈A0

zi) +
n1

n
· (

1

n1

·
∑

0≤i<n

i∈A1

z[i])

=
n0

n
· mean(zeven[0] . . . zeven[n0 − 1]) +

n1

n
· mean(zodd[0] . . . zodd[n1 − 1])

(22)

where n0 = |A0∩ [0..n−1]| and n1 = |A1∩ [0..n−1]| are respectively the number
of terms in the first and the second sum above. Since n = n0 + n1 the mean
value of n first elements of z is a convex combination of means of some prefixes
of zeven and zodd.

This implies for each n,

mean(z[0] . . . z[n − 1]) ≤

max{mean(zeven[0] . . . zeven[n0 − 1]), mean(zodd[0] . . . zeven[n1 − 1])} (23)

However if n → ∞ then n0 → ∞ and n1 → ∞, therefore from (23) we can
deduce that

um(z) = lim sup
n

mean(z[0] . . . z[n − 1]) ≤

max{lim sup
n0

mean(zeven[0] . . . zeven[n0−1]), lim sup
n1

mean(zodd[0] . . . zodd[n1−1])} ≤

max{um(zeven), um(zodd)}

which shows that the second inequality of (C3) holds.

6.7 Discounted Game.

The set of colours is C = [0, 1) × R.
For any finitely generated infinite word (λ0, a0)(λ1, a1) . . . ∈ Cω we set

ud((λ0, a0)(λ1, a1) . . .) = λ0a0 + λ0λ1a1 + λ0λ1λ2a2 + · · ·

The value of ud is well-defined and finite. Indeed, let D ⊂ C be a finite alphabet
that contains all letters (λ0, a0), (λ1, a1), . . .. Set

λmax = max{λ ∈ [0, 1) | ∃a ∈ R such that (λ, a) ∈ D}

amax = max{|a| ∈ R | ∃λ ∈ [0, 1) such that (λ, a) ∈ D}.
(24)
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Then

|

∞
∑

i=0

λ0 . . . λiai| ≤

∞
∑

i=0

|λ0 . . . λiai| ≤

∞
∑

i=0

λi+1
maxamax =

amaxλmax

1 − λmax

.

We shall prove that ud is fairly mixing. Let x ∈ C+ and y ∈ Cω and let
(λi, ai) be the ith letter of x, for 0 ≤ i < |x|. The condition (C1) is immediately
implied by the following equality:

ud(xy) = (
∑

0≤i<|x|

λ0 . . . λiai) + λ0 . . . λ|x|−1u(y). (25)

Moreover, a simple computation yields

ud(xω) =
∑

n∈N

(λ0 . . . λ|x|−1)n(
∑

0≤i<|x|

λ0 . . . λiai)

=
1

1 − λ0 . . . λ|x|−1

∑

0≤i<|x|

λ0 . . . λiai

which, together with (25), shows that uλ(xy) is a convex combination of
uλ(xω) and uλ(y). It yields immediately (C2).

Now, we prove that ud : Cω → R is locally continuous, which, according to
Lemma 2, proves that ud is fairly mixing. Let D ⊂ C be a finite alphabet and
λmax and amax be as in (24). Let n ∈ N and z0, z1 ∈ Dω such that d(z0, z1) ≤
2−n. Then z0 and z1 share the same prefix x ∈ D∗ of length n and they can be
rewritten z0 = xy0 and z1 = xy1.

Then

|ud(z0) − ud(z1)| = |λ0 . . . λ|x|−1| · |ud(y0) − ud(y1)|

≤ λn
max · (|ud(y0)| + |ud(y1)|)

≤ λn+1
max ·

2amax

1 − λmax

Since 0 ≤ λmax < 1, this last term converges to 0 when n tends to +∞, which
proves that ud is continuous.
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