M A T T H I E U P I C A N T I N 
  
Prof D M Droste 
  
Kuske 
  
  
  
  
Under consideration for publication in Math. Struct. in Comp. Science Garside monoids vs divisibility monoids

come    

Garside monoids vs divisibility monoids

Introduction

The purpose of this paper is to study some possible connections between the classes of Garside monoids and divisibility monoids, which are natural algebraic generalizations of monoids involved in two mathematical areas, namely braid theory and trace theory, respectively.

Garside monoids can be used as a powerful tool in the study of automatic structures for groups arising in topological or geometric contexts. Generalizing Mazurkiewicz trace monoids, divisibility monoids have been introduced as a mathematical model for the sequential behavior of some concurrent systems considered in several areas in computer science and in which two sequential transformations of the form ab and cd-with a, b, c, d viewed as atomic transitions-can give rise to the same effect.

Here we show that Garside monoids and divisibility monoids are both strangely similar (although they come from apparently unrelated mathematical theories) and genuinely different (even if they share some essential algebraic properties). Their similarity will be illustrated by the fact that their quasi-center-roughly speaking, some supmonoid of the center-can be studied with close techniques and described through a same statement. Their particularity will be emphasized by the fact that the intersection between the two classes-that we exhibit by using the result about the quasi-center-is reduced to a somewhat confined subclass.

Main Theorem. (i) A divisibility monoid is a Garside monoid if and only if every pair of its irreducible elements admits common multiples.

(ii) A Garside monoid is a divisibility monoid if and only if the lattice of its simple elements is a hypercube.

The paper is organized as follows. In Section 1, we gather the needed basic properties of Garside monoids and divisibility monoids. In Section 2, we introduce a specific tool that we call local delta and which allows us to compute a minimal generating set for the quasi-center of every divisibility monoid (Propositions 3.12 and 3.14). We compare these results with those obtained for Garside monoids in (Picantin 2001b). In Section 3, we finally prove the main theorem of this paper (Theorem 4.1) and illustrate it.

Background from Garside and divisibility monoids

In this section, we list some basic properties of Garside monoids and divisibility monoids, and summarize results by Dehornoy & Paris about Garside monoids and by Droste & Kuske about divisibility monoids. For all the results quoted here, we refer the reader to [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalizations of Artin groups[END_REF][START_REF] Picantin | Petits groupes gaussiens[END_REF][START_REF] Dehornoy | Groupes de Garside[END_REF]) and to [START_REF] Droste | Recognizable languages in divisibility monoids[END_REF][START_REF] Kuske | Divisibility monoids : presentation, word problem, and rational languages[END_REF].

Divisors and multiples in a monoid

Assume that M is a monoid. We say that M is conical if 1 is the only invertible element in M . 

a ∨ b = a • (a\b) = b • (b\a).
Cancellativity and conicity imply that left and right divisibility are order relations. Now, the additional assumption that any two elements admitting a common multiple admit an lcm-that we will see is satisfied by both Garside monoids and divisibility monoids-allows to obtain the following algebraic properties for the operation \.

Lemma 2.1. Assume that M is a cancellative conical monoid in which any two elements admitting a common right multiple admit a right lcm. Then the following identities hold in M :

(ab) ∨ (ac) = a(b ∨ c), c\(ab) = (c\a)((a\c)\b), (ab)\c = b\(a\c), (a ∨ b)\c = (a\b)\(a\c) = (b\a)\(b\c), c\(a ∨ b) = (c\a) ∨ (c\b).
For each identity, this means that both sides exist and are equal or that neither exists.

Notation 2.2. For some subsets A, B of elements, we denote by A\B the set of elements a\b provided that all of them exist.

The quasi-center of a monoid

The quasi-center of a monoid turns out to be a useful supmonoid of its center.

Definition 2.3. Let M be a monoid. An irreducible element of M is defined to be a non trivial element a such that a = bc implies either b = 1 or c = 1. The set of the irreducible elements in M can be written as

(M \ {1}) \ (M \ {1}) 2 .
Definition 2.4. Assume that M is a monoid with set of irreducible elements Σ. The quasi-center of M is defined to be its submonoid {a ∈ M ; aΣ = Σa}.

Although straightforward, the two following lemmas capture key properties of quasi-central elements. They will be frequently used in the remaining sections. Proof. By very definition, (ii) (resp. (iii)) implies (i). Now, assume (i). Then there exist elements c, d in M satisfying b = cad. Since b is quasi-central, we have cb = bc ′ for some c ′ in M . We find cb = bc ′ = cadc ′ , hence, by left cancellation, b = adc ′ , which implies (ii). Symmetrically, (i) implies (iii).

Lemma 2.6. Assume that M is a cancellative monoid and a is a quasi-central element in M . Then, for any two elements b, c satisfying a = bc, b is quasi-central if and only if so is c.

Proof. Assume c to be quasi-central. Let x be an irreducible element in M . Since a is quasicentral, there exists an irreducible element

x ′ in M satisfying xa = ax ′ , hence xbc = bcx ′ . Now, since c is quasi-central, there exists an irreducible element x ′′ in M satisfying cx ′ = x ′′ c. We find xbc = bx ′′ c, hence, by right cancellation, xb = bx ′′ , which implies that b is quasi-central. Symmetrically, if b is quasi-central, so is c.

Main definitions and properties for Garside monoids

Definition 2.7. A monoid M is said to be Garside ‡ if M is conical and cancellative, every pair of elements in M admits a left lcm and a right lcm, and M admits a Garside element, defined to be an element whose left and right divisors coincide, are finite in number and generate M . ‡ Garside monoids as defined above are called Garside monoids in [START_REF] Charney | Bestvina's normal form complex and the homology of Garside groups[END_REF][START_REF] Dehornoy | Groupes de Garside[END_REF][START_REF] Picantin | Explicit presentations for the dual braid monoids[END_REF]Picantin 2003a), but they were called either "small Gaussian" or "thin Gaussian" in previous papers [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalizations of Artin groups[END_REF][START_REF] Picantin | Petits groupes gaussiens[END_REF]Picantin 2001a;Picantin 2001b), where a more restricted notion of Garside monoid was also considered. Example 2.8. All spherical Artin monoids are Garside monoids. Braid monoids of complex reflection groups [START_REF] Broué | Complex reflection groups, braid groups, Hecke algebras[END_REF][START_REF] Picantin | Petits groupes gaussiens[END_REF]), Garside's hypercube monoids [START_REF] Garside | The braid group and other groups[END_REF][START_REF] Picantin | Petits groupes gaussiens[END_REF], Birman-Ko-Lee monoids for spherical Artin groups [START_REF] Birman | A new approach to the word and conjugacy problems in the braid groups Advances in Math[END_REF][START_REF] Picantin | Explicit presentations for the dual braid monoids[END_REF] and monoids for torus link groups in (Picantin 2003a) are also Garside monoids.

The monoid M χ with presentation

x, y, z :

xzxy = yzx 2 , yzx 2 z = zxyzx , zxyzx = xzxyz .
is a typical example of a Garside monoid, which has the distinguishing feature to be not antiautomorphic.

The monoid M κ defined by the presentation x, y : xyxyxyx = yy is another example of a Garside monoid, which, as for it, admits no additive norm, i.e., no norm ν satisfying ν(ab) = ν(a) + ν(b) (a norm for a monoid M is a mapping µ from M to N satisfying µ(a) > 0 for every a = 1 in M , and satisfying µ(ab) ≥ µ(a) + µ(b) for every a, b in M ).

Every element in a Garside monoid has finitely many left divisors, only then, for any two elements a, b, the left common divisors of a and b admit a right lcm, which is therefore the left gcd of a and b. This left gcd is denoted by a ∧ b.

Every Garside monoid admits a minimal Garside element, denoted in general by ∆. The set of the divisors of ∆-called the simple elements-endowed with the operations ∨ and ∧ is a finite lattice.

Example 2.9. The lattices of simple elements of monoids M χ and M κ of Example 2.8 are displayed in Figure 1, using Hasse diagrams, where clear (resp. middle, dark) edges represent the irreducible element x (resp. y, z).

It is easy to check that every Garside element is a quasi-central element. Now, this is far from being sufficient to describe what the quasi-center of every Garside monoid looks like. The latter was done in (Picantin 2001b), where the following structural result was established.

Theorem 2.10. Every Garside monoid is an iterated crossed product of Garside monoids with an infinite cyclic quasi-center.

Main definitions and properties for divisibility monoids

Definition 2.11. A monoid M is called a left divisibility monoid or simply a divisibility monoid if M is cancellative and finitely generated by its irreducible elements, if any two elements admit a left gcd and if every element a dominates a finite ¶ distributive lattice ↓(a).

Note that cancellativity and the lattice condition imply conicity. Like in the Garside case, the left gcd of two elements a, b will be denote by a ∧ b. The length |a| of an element a is defined to be the height of the lattice ↓(a).

Example 2.12. Every finitely generated trace monoid is a divisibility monoid. The monoids x, y, z : xy = yz , x, y, z : x 2 = yz and x, y, z : x 2 = yz, yx = z 2 are not trace but divisibility monoids. The monoid x, y, z : x 2 = yz, xy = z 2 is not a divisibility monoid (but a Garside monoid!) ; indeed, the lattice ↓(x 3 ) is not distributive.

An easy but crucial fact about divisibility monoids is the following. Lemma 2.13. Assume that M is a divisibility monoid. Then finitely many elements in M admitting at least a right common multiple admit a unique right lcm.

The following result states that there exists a decidable class of presentations that gives rise precisely to all divisibility monoids. Theorem 2.14. Assume that M is a monoid finitely generated by the set Σ of its irreducible elements. Then M is a left divisibility monoid if and only if

(i) ↓(xyz) is a distributive lattice, (ii) xyz = xy ′ z ′ or yzx = y ′ z ′ x implies yz = y ′ z ′ , (iii) xy = x ′ y ′ , xz = x ′ z ′ and y = z imply x = x ′ ,
for any x, y, z, x ′ , y ′ , z ′ in Σ, and if (iv) we have M ∼ = Σ * / ∼, where ∼ is the congruence on Σ * generated by the pairs (xy, zt) with x, y, z, t in Σ satisfying xy = zt.

The quasi-center of a divisibility monoid

This section deals only with divisibility monoids, and no knowledge of Garside monoids is needed-except possibly for the final remark. After defining the local delta, we use it as a fundamental tool in order to give a generating set for the quasi-center of every divisibility monoid and show that it is minimal. We establish then that the quasi-center of every divisibility monoid is a free Abelian submonoid.

A generating set for the quasi-center

We first introduce a partial version of what the author called local delta in (Picantin 2001b). Definition 3.1. Assume that M is a divisibility monoid. Let a be an element in M . If the set {b\a ; b ∈ M } is well-defined † and admits a right lcm, the latter is called the right local delta of a or simply the local delta of a and is denoted by

∆ a = {b\a ; b ∈ M }.
Otherwise, we say that a does not admit a right local delta. Note that the equality 1\a = a implies a to be a left divisor of ∆ a , whenever it exists, and that, having b\1 = 1 for every b in M , we obtain ∆ 1 = 1. Lemma 3.2. Assume that M is a divisibility monoid. Then an element a in M admits a local delta if and only if a ∨ b exists for every element b in M .

Proof. Assume that M is a divisibility monoid with Σ the set of its irreducible elements and Σ 1 = Σ ∪ {1}. For every a in M , we define Υ i (a) by Υ 0 (a) = {a} and Υ i (a) = Σ 1 \Υ i-1 (a) for i > 0 whenever both Υ i-1 (a) exists and c\b exists for every c in Σ 1 and every b in Υ i-1 (a).

Assume that a is an element such that a Indeed, by Lemma 2.1, we have M \a = Σ ia 1 \a = Σ 1 \(Σ ia-1 1 \a). Now, assume c, d belonging to M \a and h satisfying d = h\a. By hypothesis, the element (hc)\a exists, hence, by Lemma 2.1, the element c\d-which is c\(h\a)-exists, so does c ∨ d. Therefore, the finite set {b\a ; b ∈ M } admits a right lcm, namely ∆ a .

The converse implication is straightforward.

Remark 3.3. Following the previous proof, we can compute the right local delta of any element a by recursively computing the sets Υ i (a) whenever they exist and then by computing the right lcm of Υ ia (a), which must exist by Lemma 3.2. See Examples 3.10 and 4.2 below.

We are going to prove that the quasi-center of any divisibility monoid is generated by the (possibly empty) set of the local delta of its irreducible elements (Proposition 3.9). The proof of this result relies on several preliminary statements. A weaker but convenient version of Lemma 3.4 is the following : Lemma 3.5. Assume that M is a divisibility monoid. Then every quasi-central element a in M satisfies ∆ a = a.

The converse assertion is as follows :

Lemma 3.6. Assume that M is a divisibility monoid. Then every element a in M satisfying ∆ a = a is quasi-central.

Proof. Let x be an irreducible element of M . From (M \a) = a, we deduce that x\a is a left divisor of a. Therefore, x(x\a) is a left divisor of xa. Now, by definition, x(x\a) is a(a\x), so there exists d in M satisfying xa = ad. We obtain |xa| = |ad|, hence |x| + |a| = |a| + |d|. We deduce |d| = |x| = 1, thus d is an irreducible element of M . So, there exists a mapping f a from the irreducible elements of M into themselves such that xa = af a (x) holds for every irreducible element x. By cancellativity, f a is injective, hence surjective : a is quasi-central by definition.

Proposition 3.7. Assume that M is a divisibility monoid. Then, for every a in M , the element ∆ a is quasi-central, whenever it exists.

Proof. Let a be an element in M such that ∆ a exists. We claim that ∆ ∆a exists and is ∆ a . By hypothesis, the set {b\a ; b ∈ M } is well-defined and admits a right lcm, namely ∆ a . As ↓(∆ a ) is finite (by definition of a divisibility monoid), so is the set {b\a ; b ∈ M }. Therefore, M admits a finite subset T satisfying M \a = T \a. Let T = {c 1 , . . . , c r }. For every element b in M , the element ((c 1 b)\a) ∨ • • • ∨ ((c r b)\a) exists and divides ∆ a on the left. By using Lemma 2.1, we find

((c 1 b)\a) ∨ • • • ∨ ((c r b)\a) = b\((c 1 \a) ∨ • • • ∨ (c r \a)) = b\∆ a ,
which implies that b\∆ a exists and divides ∆ a (on the left) for every b in M . We deduce that ∆ ∆a exists (by Lemma 3.2) and divides ∆ a . Now, ∆ a dividing ∆ ∆a , cancellativity and conicity imply ∆ ∆a = ∆ a . Therefore, by Lemma 3.6, ∆ a is quasi-central.

Corollary 3.8. Assume that M is a divisibility monoid. Then the partial application a → ∆ a is a surjection from M onto the quasi-center of M . Proposition 3.9. Assume that M is a divisibility monoid with Σ the set of its irreducible elements. Then {∆ x ; x ∈ Σ} is a generating set of the quasi-center of M . 

′′ = ∆ y1 • • • ∆ ym . We obtain b = ∆ x ∆ y1 • • • ∆ ym .
Example 3.10. Let us consider the following divisibility monoids M 1 = x, y, z : xy = yz, yx = zy and M 2 = x, y, z : xz = yx, yz = zx . In both monoids, by Lemma 3.2, the irreducible elements x and z clearly do not admit right local delta. On the one hand, the quasi-center of M 1 is thus generated by the single element ∆ y = {y} = y. On the other hand, let us try to compute the local delta of y. According to Remark 3.3, we compute Υ 0 (y) = {y}, Υ 1 (y) = {1, x, y, z}\{y} = {1, x, y, z}. Now, since x ∨ z does not exist, Υ 2 (y) cannot exist either. Therefore, no irreducible element admits local delta : {∆ s ; s ∈ {x, y, z}} is empty and the quasi-center of M 2 is then trivial.

Minimality of the generating set

We now prove that the generating set given in Proposition 3.9 is minimal.

Lemma 3.11. Assume that M is a divisibility monoid. Then any two irreducible elements x, y in M admitting local delta satisfy either ∆ x = ∆ y or ∆ x ∧ ∆ y = 1.

Proof. We first prove that, for any two irreducible elements x, y admitting local delta and every b in M , ∆ x = b∆ y implies b = 1. According to Proposition 3.7, ∆ x and ∆ y are quasicentral, and, by Lemma 2.6, b is also quasi-central. Now, as 1\x = x holds, x divides ∆ x , and, by Lemma 2.5, we have ∆ x = dx for some d in M . We find

∆ x = dx = b∆ y ,
and, by left cancellation, the element d\b-which exists by Lemma 2.13-divides x : since x is irreducible, d\b is either x or 1. Assume d\b = x. Then, b being quasi-central, Lemma 3.5 implies ∆ b = b = (M \b), and, therefore, x divides b. By Lemma 3.4, ∆ x divides b, which, by cancellativity and conicity, implies ∆ y = 1, a contradiction. We deduce d\b = 1. We find then ∆ y = (b\d)x, and, by Lemmas 2.5 and 3.4, ∆ x divides ∆ y , which, by cancellativity and conicity, implies b = 1.

Finally, let x, y be irreducible elements in M admitting local delta. Assume ∆ x ∧ ∆ y = 1. Then there exists an irreducible element z in M dividing both ∆ x and ∆ y . By Lemma 3.4, ∆ z divides both ∆ x and ∆ y , which, by the result above, implies ∆ x = ∆ z = ∆ y . Proposition 3.12. Assume that M is a divisibility monoid with Σ the set of its irreducible elements. Then {∆ x ; x ∈ Σ} is a minimal generating set of the quasi-center of M .

Proof. By Proposition 3.9, the set {∆ x ; x ∈ Σ} generates the quasi-center of M . Let x be an irreducible element such that ∆ x exists, and a, b be quasi-central elements in M . It suffices to show that ∆ x = ab implies either a = 1 or b = 1. Assume a = 1. Then we have a = ya ′ for some irreducible element y and some a ′ in M . As a is quasi-central, by Lemma 3.4, ∆ y exists and is a left divisor of a, and, therefore, ∆ y is a left divisor of ∆ x . We have ∆ y = 1, hence, by Lemma 3.11, ∆ y = ∆ x . Cancellativity and conicity imply then b = 1.

A free Abelian submonoid

We conclude with the observation that the quasi-center of every divisibility monoid is a free Abelian submonoid (that is, a monoid isomorphic to a direct product of copies of the monoid N). minimal Garside element. Assume first that M is divisibility monoid. Then the finite lattice of its simple elements ↓(∆) is distributive. By Proposition 3.14, we have ∆ = x∈Σ ∆ x . Now, by Theorem 2.14 (iv), for every x in Σ, M \x is a subset of Σ 1 = Σ ∪ {1} including x, say M \x = Σ x ∪ {x}, so we have ∆ x = y∈Σx∪{x}⊂Σ1 y, hence ∆ = x∈Σ ∆ x = x∈Σ x. Therefore, the lattice ↓(∆) is a finite distributive lattice, whose upper bound is the join of its atoms, so ↓(∆) is a hypercube (see [START_REF] Birkhoff | Lattice theory. Third Edition[END_REF] or for instance (Stanley 1998, page 107)).

Conversely, assume that the lattice ↓(∆) is a hypercube, that is, ↓(∆) is isomorphic to 1 |Σ| with 1 the rank 1 chain. According to (Picantin 2001a, Proposition 3.12), for every positive integer k, every element a dividing ∆ k admits a unique decomposition as a

= b 1 ∨ . . . ∨ b k with b i ∨-indecomposable for 1 ≤ i ≤ k, that is, b i = b ′ i ∨ b ′′ i implying either b i = b ′ i or b i = b ′′ i .
Then, for every positive integer k, ↓(∆ k ) is isomorphic to k |Σ| with k the rank k chain, which is a distributive lattice. Now, for every element a in M , the lattice ↓(a) is a sublattice of a lattice ↓(∆ k ) for some positive integer k. Every sublattice of a distributive lattice being distributive, the lattice ↓(a) is thus distributive for every element a in M . Therefore, all the requirements in the definition of a divisibility monoid are gathered.

Example 4.2. Up to isomorphism, there are 2 (resp. 5, 23) Garside divisibility monoids with rank 2 (resp. 3, 4). Those with rank 2 are N 2 = x, y : xy = yx and K = x, y : x 2 = y 2 ‡ ‡ . Figure 2 (to be compared with Figure 1) shows the lattice of simple elements of each of the 5 Garside divisibility monoids with rank 3. Note that, by using Theorem 2.10, we can recognize (from the left to the right) the monoids N 3 , N ⊲⊳ N 2 , N × K, N ⊲⊳ K and some indecomposable (as a crossed product) monoid. By using Proposition 3.14, we compute that their quasi-center is isomorphic to N 3 , N 2 , N 2 , N 2 and N, respectively. In Remark 3.3 and Example 3.10, we have seen how local delta in a divisibility monoid are effectively computable. For instance, let us compute the quasi-center of the fifth rank 3 Garside divisibility monoid, namely M 3,5 = x, y, z : x 2 = yz, y 2 = zx, z 2 = xy . We have Υ 1 (x) = {1, x, y, z}\{x} = {1, x, z}, Υ 2 (x) = {1, x, y, z}\{1, x, z} = {1, x, y, z} = Σ ∪ {1} = Υ 3 (x) = M \x. Then x admits a local delta, namely ∆ x = {1, x, y, z} = x 3 . Symmetrically, we have ∆ y = ∆ z = x 3 . Therefore, the quasi-center of M 3,5 is quite isomorphic to N. ‡ ‡ K is for Klein Bottle.

  For a, b in M , we say that b is a left divisor of a-or that a is a right multiple of b-if a = bd holds for some d in M . The set of the left divisors of b is denoted by ↓(b). An element c is a right lower common multiple-or a right lcm-of a and b if it is a right multiple of both a and b, and every right common multiple of a and b is a right multiple of c. Right divisor, left multiple, and left lcm are defined symmetrically. For a, b in M , we say that b divides a-or that b is a divisor of a-if a = cbd holds for some c, d in M . If c, c ′ are two right lcm's of a and b, necessarily c is a left divisor of c ′ , and c ′ is a left divisor of c. If we assume M to be conical and cancellative, we have c = c ′ : the unique right lcm of a and b is then denoted by a ∨ b. If a ∨ b exists, and M is left cancellative, there exists a unique element c satisfying a ∨ b = ac : this element is denoted by a\b. In particular, we obtain the identities :

Lemma 2. 5 .

 5 Assume that M is a cancellative monoid. Then, for every element a in M and every quasi-central element b in M , the following are equivalent : (i) a divides b; (ii) a divides b on the left; (iii) a divides b on the right.

Fig. 1 .

 1 Fig. 1. The lattice of simple elements of the Garside monoids M χ (left) and M κ (right).

  ∨ b exists for every b in M . From the distributivity of ↓(a ∨ b), we can deduce |b\a| ≤ |a|. The set {b\a ; b ∈ M } is then finite, and there exists a positive integer i a satisfying {a} = Υ 0 (a) Υ 1 (a) . . . Υ ia (a) = Υ ia+1 (a) = . . . = {b\a ; b ∈ M }.

Lemma 3. 4 .

 4 Assume that M is a divisibility monoid. Then, for every element a and every quasicentral element b in M , a dividing b implies ∆ a existing and dividing b. Proof. By hypothesis and Lemma 2.5, there exists an element d in M satisfying b = ad. As b is quasi-central, for every c in M , there exists an element c ′ in M satisfying cb = adc ′ . By Lemma 2.13, for every c in M , c ∨ a-which exists and is c(c\a)-divides cb on the left, and, by left cancellation, c\a exists and divides b on the left. Therefore, ∆ a exists (by Lemma 3.2) and divides b on the left.

Proof.

  Let b be a quasi-central element in M . We show using induction on the length |b| of b that there exist an integer n and irreducible elements x 1 , . . . , x n satisfying b = ∆ x1 • • • ∆ xn . For |b| = 0, n is 0. Assume now |b| > 0. Then there exist an irreducible element x and an element b ′ in M satisfying b = xb ′ . By Lemma 3.4, ∆ x exists and we have b = ∆ x b ′′ for some b ′′ in M with |b ′′ | < |b|. By Proposition 3.7, the element ∆ x is quasi-central, hence, by Lemma 2.6, so is b ′′ . By induction hypothesis, there exist an integer m and irreducible elements y 1 , . . . , y m admitting local delta and satisfying b

Fig. 2 .

 2 Fig. 2. The lattices of simple elements of the rank 3 Garside divisibility monoids.

¶ This finiteness requirement is in fact not necessary since it follows from the other stipulations (see e.g.[START_REF] Kuske | Divisibility monoids : presentation, word problem, and rational languages[END_REF]).

† that is, the element b\a exists-or equivalently, the element a ∨ b exists-for every b in M .

Lemma 3.13. Assume that M is a divisibility monoid. Let a, b be elements in M admitting local delta. Then a ∨ b exists and admits a local delta, namely ∆ a ∨ ∆ b .

Proof. Let a, b be elements in M admitting local delta. First, by Lemma 3.2, a ∨ b exists. Next, by Lemma 3.2 again, the element b ∨ c exists for every element c in M , so does a ∨ (b ∨ c). Associativity of the operation ∨ implies that (a∨b)∨c exists for every element c in M . Therefore, by Lemma 3.2, ∆ a∨b exists. Now, by Lemma 2.1, (c\a) ∨ (c\b) = c\(a ∨ b) holds for every c in M . We obtain then ∆ a ∨ ∆ b = ∆ a∨b .

Proposition 3.14. Assume that M is a divisibility monoid. Let QZ be its quasi-center. Then QZ is a free Abelian submonoid of M , and the partial function a → ∆ a is a partial surjective semilattice homomorphism from (M, ∨) onto (QZ, ∨).

Proof. Let Σ be the set of the irreducible elements in M . By Proposition 3.12, {∆ x ; x ∈ Σ} is the minimal generating set of QZ. So, in order to prove that QZ is free Abelian, it suffices to show that, for any two x, y in Σ admitting local delta with ∆ x = ∆ y , the element ∆ x \∆ y -which exists by Lemma 3.13-is ∆ y . Let x, y be irreducible elements admitting local delta with ∆ x = ∆ y . Then, by Lemma 3.11, we have ∆ x \∆ y = 1. Now, ∆ x \∆ y divides ∆ y , and, by Lemma 3.13, the element ∆ x \∆ y is quasi-central, which implies ∆ x \∆ y = ∆ y by Proposition 3.12. The second part of the assertion follows then from Lemma 3.13. Both Propositions 3.12 and 3.14 hold for every Garside monoid. The corresponding proofs however are different, even though the current approach closely follows (Picantin 2001b). The point is that, in the Garside case, the function a → ∆ a is total and coincide with its left counterpart a → ∆ a , but there need not exist an additive length (see for instance the monoid M κ in Example 2.8), while, in the divisibility case, there exists an additive length but the function a → ∆ a is only partial and does not admit a left counterpart in general.

The intersection

We can finally state : Theorem 4.1. (i) A divisibility monoid is a Garside monoid if and only if every pair of its irreducible elements admits common multiples. (ii) A Garside monoid is a divisibility monoid if and only if the lattice of its simple elements is a hypercube.

Proof. (i) The condition is necessary by very definition of a Garside monoid. We have to show that it is also sufficient. Let M be a divisibility monoid with Σ the finite set of its irreducible elements. Assume that every pair of irreducible elements in M admits right multiples. Then, by Lemma 2.13, every pair of irreducible elements in M admits a unique right lcm, and, by Theorem 2.14 (iv) or simply by distributivity, such an lcm is of length 2. From this, a straightforward induction shows that any two elements a, b in M admit a unique right lcm. Therefore, by Lemma 3.2, ∆ a exists for every a in M . In particular, ∆ x exists for every irreducible element x of M . Finally, by Proposition 3.14, x∈Σ ∆ x is a minimal Garside element for M , thus M is a Garside monoid.

(ii) Let M be a Garside monoid with Σ the finite set of its irreducible elements and ∆ its