
HAL Id: hal-00160055
https://hal.science/hal-00160055

Submitted on 4 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fitness Clouds and Problem Hardness in Genetic
Programming

Leonardo Vanneschi, Manuel Clergue, Philippe Collard, Marco Tomassini,
Sébastien Verel

To cite this version:
Leonardo Vanneschi, Manuel Clergue, Philippe Collard, Marco Tomassini, Sébastien Verel. Fitness
Clouds and Problem Hardness in Genetic Programming. Genetic and Evolutionary Computation
2004, Jun 2004, Seattle, WA, United States. pp.690–701, �10.1007/b98645�. �hal-00160055�

https://hal.science/hal-00160055
https://hal.archives-ouvertes.fr

Fitness Clouds and Problem Hardness in Genetic
Programming

Leonardo Vanneschi2, Manuel Clergue1, Philippe Collard1, Marco Tomassini2, and
Sébastien Vérel1

1 I3S Laboratory, University of Nice, Sophia Antipolis, France
2 Information Systems Department, University of Lausanne, Lausanne, Switzerland

Abstract. This paper presents an investigation of genetic programming fitness
landscapes. We propose a new indicator of problem hardness for tree-based ge-
netic programming, called negative slope coefficient, based on the concept of
fitness cloud. The negative slope coefficient is a predictive measure, i.e. it can be
calculated without prior knowledge of the global optima. The fitness cloud is gener-
ated via a sampling of individuals obtained with the Metropolis-Hastings method.
The reliability of the negative slope coefficient is tested on a set of well known
and representative genetic programming benchmarks, comprising the binomial-3
problem, the even parity problem and the artificial ant on the Santa Fe trail.

1 Introduction

Genetic Programming (GP) has had an indeniable practical success in its fifteen years
of existence [13,14]. However, it is still difficult to understand why some problems
are easily solved by GP, while others resist solution or require massive amounts of
computational effort. It would thus be of interest if we were able to somehow classify
problems according to some measure of difficulty. To start with, it might be useful to take
a look at what has been done in the older field of genetic algorithms (GAs). Difficulty
studies in GAs have been pioneered by Goldberg and coworkers [4,6,8]. Their approach
is focused on the construction of functions that should a priori be easy or hard for GAs
to solve. These ideas have been followed by many others, for instance [18,5] and have
been at least partly successful in the sense that they have been the source of many ideas
as to what makes a problem easy or difficult for GAs. One concept that underlies many
of these approaches is based on the notion of fitness landscape. The metaphor of a fitness
landscape [22], although not without faults, has been a fruitful one in several fields. In
particular, a statistic called fitness distance correlation (FDC) [10] has been studied in
detail in the past in the context of GAs. Its suitability for GP has been investigated in
[2,24,23]. As far as GP is concerned, but also in the GA field, the general conclusion of
these studies was that the FDC can be considered as a rather reliable indicator of problem
hardness. However, it has some severe drawbacks: sometimes the measure does not give
any indication, and problems can be constructed for which the FDC leads to contradictory
conclusions. The first consideration is not really serious since it manifests itself rarely and
other tools, such as the analysis of the fitness-distance scatterplot can be brought to bear
in these cases. On the other hand, the existence of counterexamples casts a shadow on the

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 690–701, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Fitness Clouds and Problem Hardness in Genetic Programming 691

usefulness of the FDC, although such cases are typically contrived ones and they do not
seem to appear often among “natural” problems. But the really annoying fact about FDC,
and its main weakness in our opinion, is that the optimal solution (or solutions) must
be known beforehand, which is obviously unrealistic in applied search and optimization
problems, and prevents us from applying FDC to many GP benchmarks and real-life
applications. Thus, although the study of FDC is an useful first step, we present another
approach based on quantities that can be measured without any explicit knowledge of the
genotype of optimal solutions, such as different kinds of fitness distributions. A second
consideration concerns the way in which space is sampled: uniform random sampling has
the merit of being simple and algorithm-independent (only random search is implied),
but it would be more useful to have a sample of the landscape as “seen” by a specific
algorithm for it is the latter the one that is really relevant. In this way, more weight can
be given to particular points in the space. Thus, sampling according to a given stationary
probability distribution, like Markov chain Monte Carlo, appears to be more appropriate.

This paper is structured as follows: section 2 summarizes some techniques used by
other researchers in the past few years, which inspired this work. Section 3 introduces
the concept of fitness cloud. This concept is used in section 4 to define a new measure,
called negative slope coefficient (NSC), that is proposed as an indicator of problem
hardness. Section 5 briefly introduces the test problems used to verify the reliability of
NSC. Section 6 shows experimental results. Finally, section 7 offers our conclusions and
hints for future work.

2 Fitness-Fitness Correlation: Previous Work

In genetic algorithms, plotting fitness against some features is not a new idea. Manderick
et al. [17] study the correlation coefficient of genetic operators: they compute the corre-
lation between the fitnesses of a number of parents and the fitnesses of their offspring.
Grefenstette [7] uses fitness distribution of genetic operators to predict GA behaviour.
Rosé et al. [20] develop the density of states approach by plotting the number of geno-
types with the same fitness value. Smith et al. [21] focus on notions of evolvability and
neutrality; they plot the average fitness of offspring over fitness according to Hamming
neighbouring. Evolvability refers to the efficiency of evolutionary search. It is defined
by Altenberg as “the ability of an operator/representation scheme to produce offspring
that are fitter than their parents” [1].

Fitness correlation measures are almost absent in GP but there are a few precursors.
The first work we are aware of is the article of Kinnear [12] in which GP difficulty is
analysed through the use of the fitness autocorrelation function, as first proposed by
Weinberger [26]. While fitness autocorrelation analysis has been useful in the study of
NK landscapes [26], Kinnear found his results inconclusive and difficult to interpret:
essentially no simple relationship was found between correlation length values and
GP hardness. The work of Nikolaev and Slavov [19] also makes use of the fitness
autocorrelation function with the main purpose of determining which mutation operator,
among a few that they propose, “sees” a smoother landscape on a particular problem.
Their analysis however, does not lead to a general study of problem difficulty in GP, which
is our aim here. More recently, a much more detailed study of fitness correlation in GP has

692 L.Vanneschi et al.

been presented by Igel and Chellapilla [9]. In this work, several fitness-fitness probability
distributions are analyzed on four typical GP problems as tools for understanding the
effect of variation operators on the search. They favor using a combination of variation
operators rather than a single one, and suggest that fitness distributions measures might
be used at execution time to dynamically set the operator probabilities in order to be
more exploitative or explorative. An off-line analysis of the results is also hinted at,
leading to a possibly better operator choice for similar problems. Although interesting,
this work does not really deal with GP difficulty; it is rather an attempt to automatically
tune the evolutionary search and determine the most efficient variation operators for
a given problem class. Some GP lansdcapes have been systematically investigated by
Langdon and Poli [15]. Their results will be compared with our findings in some cases
(see section 6).

3 Fitness Cloud

In this section we use the fitness cloud metaphor, first introduced in [25] by Vérel and
coworkers for binary landscapes. In order to get a visual rendering of evolvability, for
each string x in the genotype space a point is plotted, the abscissa of which is its fitness
value f , and the ordinate the fitness f̃ of a particular neighbour that can be chosen in
many different ways. The result is a scatterplot, that was called the fitness cloud in [25].

3.1 Evolvability

One feature that is intuitively linked, although not exactly identical, to problem difficulty
is evolvability, i.e. the capacity of genetic operators to improve fitness quality. The most
natural way to study evolvability is to plot the fitness values of individuals against the
fitness values of their neighbors, where a neighbor is obtained by applying one step of
a genetic operator to the individual. The genetic operator used here is standard subtree
mutation [13], i.e. a random subtree of a selected individual is replaced by a randomly
generated tree.

Formally, let Γ be the whole search space of a GP problem and V (γ) the set of all
the neighbors of individual γ ∈ Γ , obtained by applying one step of standard subtree
mutation to it. The subtree mutation operator is not allowed to choose the root node as
its insertion point, thus V (γ) is different from the entire search space.

Now let f be the fitness function of the problem at hand.We define the following set of
points on a bidimensional plane: S = {(f(γ),f(ν)), ∀γ ∈ Γ, ∀ν ∈ V (γ)}.The graphical
representation of S is the scatterplot of the fitness of all the individuals belonging to the
search space vs. the fitness of all their neighbors. We hypothesize that the shape of this
scatterplot can give an indication of the evolvability of the genetic operators used and
thus some hints about the difficulty of the problem at hand.

The fitness cloud implicitly gives some insight on the genotype to phenotype map.
The set of genotypes that all have equal fitness is a neutral set [11]. Such a set corresponds
to one abscissa in the fitness/fitness plan; according to this abscissa, a vertical slice from
the cloud represents the set of fitnesses that could be reached from this set of neutrality.
For a given offspring fitness value f̃ , an horizontal slice represents all the fitness values
from which one can reach f̃ .

Fitness Clouds and Problem Hardness in Genetic Programming 693

3.2 Sampling Methodology

In general, the size of the search space doesn’t allow to consider all the possible individ-
uals. Thus, we need to use samples. Sampling the program space according to a uniform
probability distribution gives the same weight to all the sampled points. However, as it
happens, many of those points are not really significant from the problem space point
of view. For example, we might be repeatedly sampling points belonging to the same
plateau of fitness, which may be wasted effort. For this reason, we prefer to sample
the space according to a distribution that gives more weight to “important” values in
the space, for instance those at a higher fitness level. This is also the case of any biased
searcher such as an evolutionary algorithm, simulated annealing and other heuristics, and
thus the sampling process more closely simulates the way in which the program space
would be traversed by a searcher. This is a standard problem and it is well known that
the sampling can be done by using Metropolis method [16] or any other equivalent im-
portance sampling technique employed in simulation. Here we use Metropolis-Hastings
sampling, that is an extension of Metropolis to non-symmetric stationary probability
distributions. This technique can be defined as follows. Let α be the function defined as:

α(x,y) = min{1,
y

x
},

and f(γk) be the fitness of individual γk. A sample of GP individuals {γ1,γ2, . . . ,γn}
is built with the following algorithm:

begin
γ1 is generated uniformly at random;

for k := 2 to n do
1. an individual δ is generated uniformly at random;

2. a random number u is generated from a

uniform (0,1) distribution;

3. if (u ≤ α(f(γk−1),f(δ)))
then γk := δ

else goto 1.

endif
4. k := k +1;

endfor
end

For each sampled point, the neighbors of that point must be generated. The number of
all the possible neighbors of a tree depends on the particular genetic operator used. For
standard subtree mutation, as used here, this number is huge. On the other hand, studying
all possible neighbors of each sampled individual is worthless since most of them will
be discarded by selection as soon as they are created. Thus, instead of studying the set
V (γ) of all the neighbors of each sampled individual γ, we only consider a subset of
size q � |V (γ)|, obtained by applying tournament selection to its elements: to obtain
each one of these q neighbors, a set of r random neighbors is generated (where r is the
tournament size), by applying one step of subtree mutation to γ, and the best one is then
chosen.

694 L.Vanneschi et al.

The terminology of section 3.1 is thus updated as follows: we refer to Γ as a sample of
individuals obtained with the Metropolis-Hastings technique and, for each γ belonging
to Γ , we refer to V (γ) as a subset of size q of its neighbors, obtained by the application
of the tournament selection mechanism.

4 Negative Slope Coefficient

The fitness cloud can be of help in determining some characteristics of the fitness land-
scape related to evolvability and problem difficulty. But the mere observation of the
scatterplot is not sufficient to quantify these features. In this section, we present an
algebraic measure, called negative slope coefficient (NSC), that we propose as a new
indicator of problem difficulty for GP.

The abscissas of a scatterplot can be partitioned into m segments {I1, I2, . . . , Im}
of the same length. Analogously, a partition of the ordinates {J1,J2, . . . ,Jm} can be
done, where each segment Ji contains all the ordinates corresponding to the abscissas
contained in Ii.

Let M1,M2, . . . ,Mm be the averages of the abscissa values contained inside the
segments I1, I2, . . . , Im and let N1,N2, . . . ,Nm be the averages of the ordinate values
in J1,J2, . . . ,Jm. Then we can define the set of segments {S1,S2, . . . ,Sm−1}, where
each Si connects the point (Mi,Ni) to the point (Mi+1,Ni+1). For each one of these
segments Si, the slope Pi can be calculated as follows:

Pi =
Ni+1 −Ni

Mi+1 −Mi

Finally, we can define the negative slope coefficient as:

NSC =
m−1∑

i=1

min (Pi, 0)

We hypothesize that NSC is an indicator of problem difficulty in the following sense: if
NSC= 0, the problem is easy, if NSC< 0 the problem is difficult and the magnitude of
NSC quantifies this difficulty: the more negative its value, the more difficult the problem.
In other words, according to our hypothesis, a problem is difficult if at least one of the
segments S1,S2, . . . ,Sm−1 has a negative slope and the sum of all the negative slopes
gives a measure of problem hardness. The idea is that the presence of a segment with
negative slope indicates a bad evolvability for individuals having fitness values contained
in that segment. Note that, for the time being, we didn’t try to normalize NSC values to
a given range. This means that NSC results for different problems are not comparable
among them.

In the following sections, NSC is tested as a measure of problem hardness on a set
of well known GP benchmarks. To be able to validate difficulty predictions, we define a
performance measure, as being the proportion of GP runs for which the global optimum
has been found in less than 500 generations over 100 independent executions. Good
or bad performance values correspond to our intuition of what “easy” or “hard” means
in practice. All GP runs executed to calculate performance values have used the same

Fitness Clouds and Problem Hardness in Genetic Programming 695

set of GP parameters: generational GP, population size of 200 individuals, standard GP
mutation used as the sole genetic operator with a rate of 95%, tournament selection of
size 10, ramped half and half initialization, maximum depth of individuals specified in
the following case by case, elitism (i.e. survival of the best individual into the newly
generated population).

For the sake of comparison we also measure the fitness-fitness correlation (FFC)
[17]. Given the set X = {x1,x2, ...,xn} of all the abscissas of a scatterplot and the set
Y = {y1,y2, ...,yn} of all the ordinates of the same scatterplot, the FFC is defined as:
CXY /σXσY , where CXY = 1

n

∑n
i=1(xi −x)(yi −y) is the covariance of X and Y , and

σX , σY , x, y are the standard deviations and means of X and Y .

5 Test Problems

Problems used in this work are briefly described below. For a more detailed description,
see [3,13]. Except for the ant problem, which is included because of the large body
of knowledge accumulated on it, the other problems have been chosen because they
are representative of important problem classes (respectively symbolic regression and
boolean), and their difficulty can be tuned.

The binomial-3 problem. This benchmark (first introduced by Daida et al. in [3]) is
an instance of the well known symbolic regression problem. The function to be approx-
imated is f(x) = 1 + 3x + 3x2 + x3. Fitness cases are 50 equidistant points over the
range [−1,0). Fitness is the sum of absolute errors over all fitness cases. A hit is defined
as being within 0.01 in ordinate for each one of the 50 fitness cases. The function set is
F = {+,−,∗,//}, where // is the protected division, i.e. it returns 1 if the denominator
is 0. The terminal set is T = {x,R}, where x is the symbolic variable and R is the set of
ephemeral random constants (ERCs). ERCs are uniformly distributed over a specified
interval of the form [−aR,aR], they are generated once at population initialization and
they are not changed in value during the course of a GP run. According to Daida and
coworkers [3], difficulty tuning is achieved by varying the value of aR.

The even parity k problem. The boolean even parity k function [13] of k boolean
arguments returns true if an even number of its boolean arguments evaluates to true,
otherwise it returns false. The number of fitness cases to be checked is 2k. Fitness is
computed as 2k minus the number of hits over the 2k cases. Thus a perfect individual has
fitness 0, while the worst individual has fitness 2k. The set of functions we employed is
F = {NAND,NOR}. The terminal set is composed of k different boolean variables.
Difficulty tuning is achieved by varying the value of k.

Artificial ant on the Santa Fe trail. In this problem, an artificial ant is placed on a
32×32 toroidal grid. Some of the cells from the grid contain food pellets. The goal is to
find a navigation strategy for the ant that maximizes its food intake. We use the same set
of functions and terminals as in [13] and the same trail definition. As fitness function,
we use the total number of food pellets lying on the trail (89) minus the amount of food
eaten by the ant during his path. This turns the problem into a minimization one, like
the previous ones.

696 L.Vanneschi et al.

6 Experimental Results

6.1 The Binomial-3 Problem

Figure 1 shows the scatterplots and the set of segments {S1,S2, . . . ,Sm} as defined in
section 4 (with m = 10) for the binomial-3 problem with aR = 1 (figure 1(a)), aR = 10
(figure 1(b)), aR = 100 (figure 1(c)) and aR = 1000 (figure 1(d)). Parameters used are
as follows: maximum tree depth = 26, |Γ | = 40000, i.e. a sample of 40000 individuals
has been used, obtained with the Metropolis-Hastings sampling, ∀γ ∈ Γ |V (γ)| = 1,
i.e. for each sampled individual, only one neighbor has been considered. It has been
obtained by one step of tournament selection and standard subtree mutation has been
used as the operator to generate the neighborhood.

Fig. 1. Binomial-3 results. (a): aR = 1. (b): aR = 10. (c): aR = 100. (d): aR = 1000. Fitness
clouds have been obtained by a sample of 40000 individuals.

Table 1 shows some data about these experiments. Column one of table 1 represents
the corresponding scatterplot in figure 1. Column two contains the aR value. Column
three contains performance. Columns four and five contain values of NSC and FFC
respectively.

Fitness Clouds and Problem Hardness in Genetic Programming 697

Table 1. Binomial-3 problem. Some data related to scatterplots of figure 1.

scatterplot aR p NSC FFC
fig. 1(a) 1 0.89 0 0.70
fig. 1(b) 10 0.42 -0.53 0.74
fig. 1(c) 100 0.35 -1.01 0.75
fig. 1(d) 1000 0.29 -3.39 0.75

Table 2. Even parity. Indicators related to scatterplots of figure 2.

scatterplot problem p NSC FFC
fig. 2(a) even parity 3 0.98 0 0.56
fig. 2(b) even parity 5 0.01 -0.11 0.39
fig. 2(c) even parity 7 0 -0.49 0.25
fig. 2(d) even parity 9 0 -0.55 0.23

These results show that NSC values get smaller as the problem becomes harder, and it is
zero when the problem is easy (aR = 1). On the other hand, FFC doesn’t seem to give
any indication about problem difficulty, which confirms Kinnear’s observations [12].
Moreover, the points in the scatterplots seem to cluster around good (i.e. small) fitness
values as the problem gets easier (remark: points having a fitness value above 100 have
not been visualized in the scatterplots of figure 1 for the sake of clarity, even though,
of course, they have been used to calculate the NSC). In conclusion, the presence or
absence of segments with negative slope (quantified by the NSC), in conjunction with
the graphical representation of the scatterplot, seems to be useful to estimate problem
hardness.

6.2 The Even Parity k Problem

Figure 2 shows the scatterplots and the set of segments {S1,S2, . . . ,Sm} (where m has
been set to 6) for the even parity 3, even parity 5, even parity 7 and even parity 9 problems.
Parameters used are as follows: maximum tree depth = 10, |Γ | = 40000 obtained with
the Metropolis-Hastings sampling, ∀γ ∈ Γ |V (γ)| = 1. Tournament has been used as
a selection mechanism and standard subtree mutation as the operator for generating the
neighborhood.

Table 2 shows some data about these experiments with the same notation and meaning
as in table 1, except that column two now refers to the problem rank.Analogously to what
happens for the binomial-3 problem, NSC values get smaller as the problem becomes
harder, they are always negative for hard problems, and zero for easy ones. Once again the
points in the scatterplots seem to cluster around good fitness values as the problem gets
easier. These results are in qualitative agreement with intuition and with those found
by other researchers (e.g. [13]). Thus, the utility of NSC as an indicator of problem
hardness, together with the graphic representation of the fitness cloud, is confirmed.

698 L.Vanneschi et al.

Fig. 2. Results for the even parity k problem. (a): Even parity 3. (b): Even parity 5. (c): Even parity
7. (d): Even parity 9. Fitness clouds have been obtained by a sample of 40000 individuals. Note
that many sampled individuals may have the same fitness value.

6.3 The Artificial Ant on the Santa Fe Trail

This problem, among others, has been studied in depth by Langdon and Poli. In [15]
they did a detailed analysis of the problem’s fitness landscape by enumeration for small
programs, and by sampling for bigger program sizes. They also studied the problem from
the point of view of the schema theory and found it to be deceptive. Figure 3 shows the
scatterplots and the set of segments {S1,S2, . . . ,Sm} (where m has been set to 10) for
the artificial ant problem with maximum tree depths equal to 10 and 6 respectively. The
other parameters used are: |Γ | = 40000 obtained with the Metropolis-Hastings sampling,
∀γ ∈ Γ |V (γ)| = 1. Tournament has been used as a selection mechanism and standard
subtree mutation as the operator to generate the neighborhood.
Table 3 shows the results of the experiments, where column two indicates the maximum
program depth allowed, and the other values have the usual meaning. Both problems
turn out to be difficult and NSC is negative for both problem instances. Indeed, there
are many local optima in the ant space and the search can become easily trapped in
one of them. Larger programs appear to be slightly easier to search for a solution than
smaller ones. This is in agreement with Langdon’s and Poli’s findings which say that the
number of solutions increases exponentially with program size. The unusual shape of the
scatterplot and the fact that some mean segments are horizontal can also be accounted
for in terms of Langdon’s and Poli’s analysis. They found that, for a given program, most

Fitness Clouds and Problem Hardness in Genetic Programming 699

Fig. 3. (a): Artificial Ant problem with maximum tree depth equal to 10. (b): Artificial Ant problem
with maximum tree depth equal to 6. Fitness clouds have been obtained by a sample of 40000
individuals. Note that many sampled individuals may have the same fitness value.

neighbors have the same fitness or are worse; a fact that is confirmed here. Moreover,
the phenomenon is more marked for longer programs, again confirmed by figure 3. We
also see that the fitter the individual, the more difficult becomes to improve it, a fact that
is represented by the large negative slope segment at low fitness (remember that we have
defined fitness so that low values are better). This too is in agreement with the analysis
in [15].

Table 3. Ant problem results. Some data related to scatterplots of figure 3.

scatterplot max. tree depth p NSC FFC
fig. 3(a) 10 0.05 -6.06 -0.88
fig. 3(b) 6 0 -11.42 -0.82

7 Conclusions and Future Work

A new indicator of problem hardness for GP, called negative slope coefficient, is proposed
in this work. This measure is based on the concept of fitness cloud, that visualizes on
a plane the relationship between the fitness values of a sample of individuals and the
fitness of some of their neighbors. Sampling has been done with the Metropolis-Hastings
technique, so as to give more weight to individuals with good fitness and to preserve the
original distribution of the fitness function over all the search space. Contrary to fitness
distance correlation, NSC is predictive, i.e. it can be used without prior knowledge
of the global optima. Thus, NSC can be used to quantify difficulty of standard GP
benchmarks, where the cardinality and shape of global optima is not known a priori.
Studies over three well-known GP benchmarks (binomial-3, even parity and artificial
ant) have been presented here, confirming the suitability of NSC as measure of problem

700 L.Vanneschi et al.

hardness, at least for the cases studied. Such a systematic study of GP problem hardness,
performed using a well defined algebraic measure, had, to our knowledge, never been
applied to these benchmarks before. Other experiments on these benchmarks using
a different sampling technique (standard Metropolis) and on other classes of tunably
difficult problems (like trap functions and royal trees) have been done. Fitness clouds
using more than one neighbor for each sampled individual have been analysed. Moreover,
fitness clouds obtained by applying more than once the mutation operator at each sampled
individual have been studied. Finally, a less disruptive mutation operator (structural
mutation introduced in [24]) has been used. All these results (not shown here for lack of
space) confirm the suitability of NSC as an indicator of problem hardness.

Future work includes a more exhaustive study of NSC and other measures based on
fitness clouds over a wider set of GP benchmarks, the use of more sophisticated sampling
techniques and the study of techniques to automatically define some quantities that in
this paper have been chosen somehow arbitrarily, such as the number of segments in
which the fitness cloud is partitioned and their size. Furthermore, we will study NSC
from a statistical point of view, on order to understand the significance of the results
obtained and how they change from one sampling to the other. Since we don’t believe
NSC to be infallible, as is true for any statistic based on samples, these studies should
also lead to the discovery of some drawbacks of this measure that should inspire future
extensions.

Acknowledgments. L. Vanneschi and M. Tomassini gratefully acknowledge financial
support by the Fonds National Suisse pour la recherche scientifique under contract
200021-100112/1.

References

1. L. Altenberg. The evolution of evolvability in genetic programming. In K. Kinnear, editor,
Advances in Genetic Programming, pages 47–74, Cambridge, MA, 1994. The MIT Press.

2. M. Clergue, P. Collard, M. Tomassini, and L. Vanneschi. Fitness distance correlation and
problem difficulty for genetic programming. In W. B. Langdon et. al., editor, Proceedings of
the genetic and evolutionary computation conference GECCO’02, pages 724–732. Morgan
Kaufmann, San Francisco, CA, 2002.

3. J. M. Daida, R. Bertram, S. Stanhope, J. Khoo, S. Chaudhary, and O. Chaudhary. What makes
a problem GP-hard? analysis of a tunably difficult problem in genetic programming. Genetic
Programming and Evolvable Machines, 2:165–191, 2001.

4. K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In D. Whitley, editor,
Foundations of Genetic Algorithms, 2, pages 93–108. Morgan Kaufmann, 1993.

5. S. Forrest and M. Mitchell. What makes a problem hard for a genetic algorithm? some
anomalous results and their explanation. Machine Learning, 13:285–319, 1993.

6. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Boston, MA, 1989.

7. J. Grefenstette. Predictive models using fitness distributions of genetic operators. In D. Whit-
ley and M. Vose, editors, Foundations of Genetic Algorithms, 3, pages 139–161. Morgan
Kaufmann, 1995.

Fitness Clouds and Problem Hardness in Genetic Programming 701

8. J. Horn and D. E. Goldberg. Genetic algorithm difficulty and the modality of the fitness
landscapes. In D. Whitley and M. Vose, editors, Foundations of Genetic Algorithms, 3, pages
243–269. Morgan Kaufmann, 1995.

9. C. Igel and K. Chellapilla. Fitness distributions: Tools for designing efficient evolutionary
computations. In L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. Angeline, editors,
Advances in Genetic Programming 3, pages 191–216, Cambridge, MA, 1999. The MIT Press.

10. T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University
of New Mexico, Albuquerque, 1995.

11. M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge University Press,
Cambridge, UK, 1983.

12. K. E. Kinnear. Fitness landscapes and difficulty in genetic programming. In Proceedings of the
First IEEEConference on Evolutionary Computing, pages 142–147. IEEE Press, Piscataway,
NY, 1994.

13. J. R. Koza. Genetic Programming. The MIT Press, Cambridge, Massachusetts, 1992.
14. J. R. Koza, M. J. Streeter, and M. A. Keane. Genetic Programming IV: Routine Human-

Competitive Machine Intelligence. Kluwer Academic Publishers, Boston, MA, 2003.
15. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer, Berlin, 2002.
16. N. Madras. Lectures on Monte Carlo Methods. American Mathematical Society, Providence,

Rhode Island, 2002.
17. B. Manderick, M. de Weger, and P. Spiessens. The genetic algorithm and the structure of

the fitness landscape. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 143–150. Morgan Kaufmann, 1991.

18. M. Mitchell, S. Forrest, and J. Holland. The royal road for genetic algorithms: fitness land-
scapes and ga performance. In F. J. Varela and P. Bourgine, editors, Toward a Practice of
Autonomous Systems, Proceedings of the First European Conference on Artificial Life, pages
245–254. The MIT Press, 1992.

19. N. I. Nikolaev and V. Slavov. Concepts of inductive genetic programming. In W. Banzhaf
et. al., editor, Genetic Programming, Proceedings of EuroGP’1998, volume 1391 of LNCS,
pages 49–59. Springer-Verlag, 1998.

20. H. Rosé, W. Ebeling, and T. Asselmeyer. The density of states - a measure of the difficulty of
optimisation problems. In H.-M. Voigt et al., editor, Parallel Problem Solving from Nature
- PPSN IV, volume 1141 of Lecture Notes in Computer Science, pages 208–217. Springer-
Verlag, Heidelberg, 1996.

21. Smith, Husbands, Layzell, and O’Shea. Fitness landscapes and evolvability. Evolutionary
Computation, 1(10):1–34, 2001.

22. P. F. Stadler. Fitness landscapes. In M. Lässig and Valleriani, editors, Biological Evolution
and Statistical Physics, volume 585 of Lecture Notes Physics, pages 187–207, Heidelberg,
2002. Springer-Verlag.

23. L. Vanneschi, M. Tomassini, M. Clergue, and P. Collard. Difficulty of unimodal and multi-
modal landscapes in genetic programming. In E. Cantú-Paz et. al., editor, Genetic and Evo-
lutionary Computation – GECCO-2003, volume 2724 of LNCS, pages 1788–1799. Springer-
Verlag, Berlin, 2003.

24. L. Vanneschi, M. Tomassini, P. Collard, and M. Clergue. Fitness distance correlation in
structural mutation genetic programming. In C. Ryan et al., editor, Genetic Programming,
6th European Conference, EuroGP2003, volume 455–464 of Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, 2003.

25. S. Vérel, P. Collard, and M. Clergue. Where are bottleneck in nk-fitness landscapes ? In
CEC 2003: IEEE International Congress on Evolutionary Computation. Canberra, Australia,
pages 273–280. IEEE Press, Piscataway, NJ, 2003.

26. E. D.Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the difference.
Biol. Cybern., 63:325–336, 1990.

	Introduction
	Fitness-Fitness Correlation: Previous Work
	Fitness Cloud
	Evolvability
	Sampling Methodology

	Negative Slope Coefficient
	Test Problems
	Experimental Results
	The Binomial-3 Problem
	The Even Parity k Problem
	The Artificial Ant on the Santa Fe Trail

	Conclusions and Future Work

