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How to use the Scuba Diving metaphor to solve problem
with neutrality ?

Collard Philippe and Verel Sébastien and Clergue Manuel?

Abstract. We proposed a new search heuristic usingsitiga div-

ing metaphor. This approach is based on the concept of evalyabil

and tends to exploit neutrality which exists in many reaka/@rob-
lems. Despite the fact that natural evolution does not tyreelect
for evolvability, the basic idea behind tlseuba searchheuristic is
to explicitly push evolvability to increase. A comparatistidy of
the scuba algorithm and standard local search heuristesh@vn
the advantage and the limitation of the scuba search. I todane

neutrality, we use thé&/ K ¢ fitness landscapes and a family of travel-

ling salesman problems (TSP) where cities are randomlyeflao a
lattice and where travel distance between cities is conapuith the
Manhattan metric. In this last problem the amount of neityraaries
with the city concentration on the grid ; assuming the cotregion
below one, this TSP reasonably remains a NP-hard problem.

™~ .
O 1 Introduction

o In this paper we propose an heuristic cal®duba Searchhat al-
N lows us to exploit the neutrality that is present in many -«eaild
“— problems. This section presents the interplay betweenralgut
) in search space and metaheuristics. Section 2 describeScthz

Searchheuristic in details. In order to illustrate efficiency amait

ﬂ' of this heuristic, we use th& K ¢ fitness landscapes and a travelling
1 salesman problem (TSP) on diluted lattices as a model ofradeut

— search space. These two problems are presented in secEgpe3i-
ment results are given in section 4 where comparisons are miila
C two hill climbing heuristics. In section 5, we point out adtage and
shortcoming of the approach; finally, we summarize our doution
9 pp Y,
(7) and present plans for a future work.

O
S 1.1 Neutrality

~The metaphor of an ‘’adaptative landscape’
<1 S. Wright [L4] has dominated the view of adaptive evolutiam:up-
LO) hill walk of a population on a mountainous fitness landscapetiich
QO it can get stuck on suboptimal peaks. Results from mole@walu-
O tion has changed this picture: Kimura’s mooﬂl [7] assumaes tthe
(O overwhelming majority of mutations are either effectivalyutral or
« lethal and in the latter case purged by negative selectibis ds-
O sumption is called the neutral hypothesis. Under this Hygmis, the
O dynamics of populations evolving on such neutral landssape dif-
_1_ferent from those on adaptive landscapes: they are cheicteby
(O long periods of fitness stasis (population is situated oreathal net-
_C work’) punctuated by shorter periods of innovation withichfitness
increase. In the field of evolutionary computation, neitirgblays
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an important role in real-world problems: in design of digiitircuits
[E], in evolutionary robotics[[S]. In those problems, mallity is im-
plicitly embedded in the genotype to phenotype mapping.

1.2 Evolvability

Evolvability is defined by AItenberdIi.S] as “the ability of random
variations to sometimes produce improvement”. This conoefers
to the efficiency of evolutionary search; it is based upontbek by
Altenberg ﬂl]: “the ability of an operator/representatischeme to
produce offspring that are fitter than their parents”. Asginén by
Turney ] the concept of evolvability is difficult to definds he
puts it: “if s ands’ are equally fits is moreevolvablethans’ if the
fittest offspring ofs is more likely to be fitter than the fittest offspring
of s’". Following this idea we define evolvability as a functioreés

sectio).

2 Scuba Search

The Scuba Search, heuristic introduced in this sectioripégmeu-
trality by combining local search heuristic with navigatiihe neutral
neighborhood of states.

2.1 The Scuba Diving Metaphor

Keeping the landscape as a model, let us imagine this lapeseigh
peaks (local optima) and lakes (neutral networks). Thus,ldhd-
scape is bathed in an uneven sea; areas under water repnesent
viable solutions. So there are paths from one peak to anottesfor

a swimmer. The key, of course, remains to locate an attradtarh
represents the system’s maximum fitness. In this conteatpthb-
lem is to find out how to cross a lake without global informatigve
use the scuba diving metaphor as a guide to present prin@pltbe
so-calledscuba searcliS.S). This heuristic is a way to deal with the
problem of crossing in between peaks. then we avoid to b@édp
in the vicinity of local optima. The problem is to get to knovhat
drives the swimmer from one edge of the lake to the opposie aip
to the classic view a swimmer drifts at the surface of a lake flew
metaphor is a scuba diving seeing therld above the water surface
We propose a new heuristic to cross a neutral net gettingniveiion
above-the-surface (ie. from fitter points in the neighbojo

2.2 Scuba Search Algorithm

Despite the fact that natural evolution does not directlgctefor

evolvability, there is a dynamic pushing evolvability tm;iaase@l].
The basic idea behind th&S heuristic is to explicitly push evolv-
ability to increase. Before presenting this search algorjtwe need



to introduce a new type of local optima, thecal-neutral optima RNA sequence-structure maps. It is a generalization of/Xt€-
Indeed withS'S heuristic, local-neutral optima will allow transition landscapes proposed by Kauffm{h [6] where paramiétaunes the
from neutral to adaptive evolution. So evolvability will lmeally op- ruggedness and parametetunes the degree of neutrality.
timized. Given a search spadeand a fitness functiorf defined on
&, some more precise definitions follow. 3.1.1 Definition and properties
Definition: A neighborhood structurés a functionV : S — 2° _ ] ) )
that assigns to every € S a set of neighbord’(s) such thats ¢~ The fitness function of aNKq_-Iandsca_pel]g]_ is a functiorf :
V(s). {0,1}" — [0, 1] defined on binary strings wittV loci. Each lo-
Definition: The evolvability of a solutions is the functionevol ~ CUSi represents a gene with two possible alletesy 1. An "atom’
that assigns to every € S the maximum fitness from the neighbor- With fixed epistasis level is represented by a fitness compisne
hoodV(s): Vs € S, evol(s) = maz{f(s) | s € V(s)}. fi o {0, 1}EF — [0,q — 1] associated to each locuslt depends
Definition: For every fitness functiop, neighborhood structure on the allele at locusand also on the al!eles &t other epistatic Igm
W and genotype, the predicatés Local is defined as: (K must fall betwee and.V —1). The fitness(«-) of « € {0, 1}
isLocal(s, g, W) — (Vs/ € W(s), g(sl) < g(s)). is the average of the values of théfitness components;:

Definition: For everys € S, theneutral sebf s is the set\/(s) =

N
{s/ eS| f(s/) = f(s)}, and theneutral neighborhoodf s is the fz) = 1 Z filma;ziy,y oo Tige)
_ N(g—1)“

setVn(s) = V(s) NN (s). i=1

Definition: For everys € S, the neutral degreeof s, noted  where{iy,...,ix} C {1,...,i — 1,¢+ 1,..., N}. Many ways
Degn(s), is the number of neutral neighbors ef Degn(s) = have been proposed to choose fkieother loci from N loci in the
#Vn(s) — 1. genotype. Two possibilities are mainly used: adjacent amdiom

Definition: A solution s is alocal maximuniff isLocal(s, f, V). neighborhoods. With an adjacent neighborhood, Achgenes near-

Definition: A solution s is a local-neutral maximumiff est to the locug are chosen (the genotype is taken to have periodic
isLocal(s, evol, Vn). boundaries). With a random neighborhood, figgenes are chosen

Scuba Search use two dynamics one after another (seﬂ algo.Tandomly on the genotype. Each fitness componferis specified
The first one corresponds to a neutral path. At each step tiEasc by extension, ie an integer nuUmbgr(, .z, ..., ) from[0,¢ — 1]
diving remains under the water surface driven by the haotsdit- is associated with each elemént; z;, , ..., z;, ) from {0, 1},
nesses; that is fitter fitness values reachable from oneateigigh-  Those numbers are uniformly distributed in the intefoal;—1]. The
bor. At that time thdlatCountcounter is incremented. When the div- parameters ofV K g-landscape tune ruggedness and neutrality of the
ing reaches a local-neutral optimuire. when all the fitnesses reach- Iandscape[[4]. The number of local optima is linked to thepeeter
able from one neutral neighbor are selectively neutral sadifanta- . The largest number is obtained whkttakes its maximum value
geous, the neutral path stops and the diving starts uptassion-of- N — 1. The neutral degree (see tHb. 1) decreasqwad increases.
the-Land Then thegateCountcounter increases. This process goesThe maximal degree of neutrality appears wheakes value.
along, switching betwee@onquest-of-the-Watersnd Invasion-of-
the-Land until a local optimum is reached. Table 1. Average neutral degree aN K g-landscapes withV = 64 per-
forms on50000 genotypes

Algorithm 1 Scuba Search

flatCount«— 0, gateCount— 0 K
Choose initial solutions € S q 0 2 4 8 12 16
repeat 2 | 3500 2133 1656 1239 10.09 8.86
pea , 3 | 2100 1329 1043 7.65 621 5.43
while notis Local(s, evol, Vn) do 4 | 1200 671 430 245 166 124
M = maz{evol(s) | s € Vn(s) — {s}} 100 1.00 032 008 000 0.00 0.0

if evol(s) < M then
chooses € Vn(s) such thatevol(s/) =M
s — s , flatCount— flatCount +1

end if 3.1.2 Parameters setting
end while ) All the heuristics used in our experiments are applied to raesa
chooses € V(s) —Vn(s) such thatf(s ) = evol(s) instance of N K¢ fitness landscapgsvith N = 64. The neigh-
s «— s , gateCount— gateCount +1 borhood is the classical one-bit mutation neighborhodfs) =
until isLocal(s, f,V) {s' | Hamming(s ,s) < 1}. For each triplet of parameter¥,

K andg, 10® runs were performed.

3 Models of Neutral Seach Space 3.2 The Travelling Salesman Problem on randomly
diluted lattices
In order to study the Scuba Search heuristic we have to usk lan

scapes with a tunable degree of neutrality. The family of TSP proposed by Chakrabarﬂ [3] is an academic

benchmark that allows to test our ideas. These problemstdefhect
] the true reality but is a first step towards more real-lifedhenarks.
3.1 The NKq fithess Landscape We use these problems to incorporate a tunable level of aliytr

The N K q fitness landscapes family proposed by Newratal. [E] into TSP search spaces.

has properties of systems undergoing neutral selectioh sisc 2 With random neighborhood




3.2.1 Definition and properties

The travelling salesman problem is a well-known combiriatap-
timization problem: given a finite numbé¥ of cities along with the
cost of travel between each pair of them, find the cheapesbivayg-
iting all the cities and returning to your starting pointtthis paper we
use a TSP defined on randomly dilute lattices. Theities randomly
occupy lattice sites of a two-dimentional square lattite<( L). We

4 Experiment Results
4.1 Algorithm of Comparison

Two Hill Climbing algorithms are used for comparison.

4.1.1 Hill Climbing

use theManhattanmetric to determine the distance between two The simplest type of local search is knownti#l Climbing (HC)

cities. The latticeoccupation concentratiofi.e. the fraction of sites
occupied) isL%. As the concentration is related to theutral degree
we noteT S Pn such a problem with concentratien Forn = 1, the
problem is trivial as it can be reduced to tbee-dimensional SP.

when trying to maximize a solutiond C' is very good at exploit-
ing the neighborhood; it always takes what looks best attthe.
But this approach has some problems. The solution foundrdispe
on the initial solution. Most of the time, the found solutisonly a

As n decreases from unity the problem becomes nontrivial: the di '0cal optima. We start off with a probably suboptimal sauti We

creteness of the distance of the path connecting two citidstlze
angle which the path makes with the Cartesian axes, tendsépdi

then look in the neighborhood of that solution to see if thesome-
thing better. If so, we adopt this improved solution as ourent best

pear. Finally, as. — 0, the problem can be reduced to the standardchoice and repeat. If not, we stop assuming that the curcéuticn
two-dimensionall SP. As Chakrabart[]3] stated: “it is clear that the S good enough (local optimum).

problem crosses from triviality (for. = 1) to NP-hard problem at a
certain value of.. We did not find any irregularity...| at anyn. The
crossover from triviality to NP-hard problem presumablyus at
n=1"

The idea is to discretize the possible distances, through ain

lowing each distance to take onebfdistances. Varying this terrace
parameterD from an infinite value (corresponding to the standard
TSP), down to the minimal value df thus decreases the number

of possible distances, so increasing the fraction of eqtra<s neu-
tral solutions. So, parameter = % of the T'S Pn tunes both the
concentration and the neutral degree (seeﬂfig. 1). In theinémgeof
this paper we considér.S Pn problems where: stands in the range
[0,1].
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Figure 1. Average proportion of neutral neighbors 6t$ Pn as function of
L, for N = 64 (values are computing fro0000 random solutions)

3.2.2 Parameters setting

All the heuristics used in our experiments are applied tonaesa-
stance ofl'SPn. The search spacg is the set of permutations of
{1,..., N}. The neighborhood is induced by the classicap2mu-
tation operatorV(s) = {s | s = 2-opt(s)}. The size of neighbor-
hood is then™ =2} For each value of,, 500 runs were performed.

Algorithm 2 Hill Climbing
step— 0
Choose initial solutios € S
repeat
chooses € V(s) such thatf(s/) = ewvol(s)
§ — sl, step«— step + 1
until ésLocal(s, f,V)

4.1.2 Hill Climbing Two Steps

Hill Climber can be extended in many waydill Climber two Step
(HC?2) exploits a larger neighborhood of stage 2. The algorithm is
nearly the same a§ C. HC2 looks in the extended neighborhood of
stage two of the current solution to see if there is sometheiter. If
50, HC2 adopts the solution in the neighborhood of stage one which
can reach a best solution in the extended neighborhoodt, |62
stop assuming the current solution is good enough.Fs02 can
avoid more local optimum thaH C'. Before presenting the algorithm
A we must introduce the following definitions:

Definition: The extended neighborhood structtifeom V is the
functionV?(s) = Us, ey(s) V(s1)

Definition: evol? is the function that assigns to evetyc S the
maximum fitness from the extended neighborhadds). Vs € S,
evol®(s) = mam{f(s/)|sl €V3(s)}

Algorithm 3 Hill Climbing (Two Steps)
step— 0
Choose initial solutios € S
repeat
if evol(s) = evol?(s) then
chooses’ € V(s) such thatf(s') = evol?(s)
else
chooses’ € V(s) such thatvol(s ) = evol?(s)
end if
§ — sl, step«— step + 1
until isLocal(s, f, V?)

3 Let's note thal(s) C V2(s)



4.2 Performances

In this section we present the average fitness found usirgreagis-

tic on bothN K andT'S P problems.

4.2.1 NKg Landscapes

Figure@ shows the average fitness found respectively by efch
the three heuristics as a function of the epistatic paramistéor

Table 3. Average number of evaluations MK g-landscape withlV = 64

different values of the neutral parameterin the presence of neu-
trality, according to the average fitne€guba Searcloutperforms
Hill Climbing and Hill Climbing two steps Let us note that with
high neutrality ¢ = 2 and ¢ = 3), the difference is still more

K
q 0 2 4 8 12 16

HC 991 961 807 613 491 424
SS 2 35769 23565 15013 8394 5416 3962
HC?2 29161 35427 28038 19192 15140 12374
HC 1443 1159 932 694 546 453
SS 3 31689 17129 10662 6099 3973 2799
HC?2 42962 37957 29943 20486 15343 12797
HC 1711 1317 1079 761 614 500
SS 4 22293 9342 5153 2601 1581 1095
HC?2 52416 44218 34001 22381 18404 14986
HC 2102 1493 1178 832 635 517
SS 100 | 4175 1804 1352 874 653 526
HC?2 63558 52194 37054 24327 18260 15271

significant. Without neutralityg = 100) all the heuristics are nearly 4.3.2 TSPn Problems

equivalent. The Scuba Search have on average better fitakss v
for ¢ = 2 andg = 3 than hill climbing heuristics. This heuris-

tic benefits inV K ¢ from the neutral paths to reach the highest peaks.

4.2.2 TSPn Problems

Table[p shows the fitness performances of heuristicE$#n land-
scapes. The average and the best fithess found$yre always
above the ones foF/ C. As for N K¢ landscapes, the difference is
more important when neutrality is more significaiit & 10 and
L = 20). Performances ob'S are a little better for,. = 10 and

L = 20 and a little less fot, = 30 andL = 100. Let us also note
that standart deviation is still smaller f8iS.

Table 2. Average and standart deviation of fitness foundlas\Pn (N =

Tableﬂl shows the number of evaluations B8 Pn. Scuba Search

uses a larger number of evaluations tHdn' (nearly 200 times on
average) and smaller thahC2 (nearly12 times on average). As ex-

pected, forS\S the evaluation cost decreases witland so the neu-
trality of landscapes; whereas it increase f6€ and HC2. Land-

scape seems more rugged wheis larger.

Table 4. Average number of evaluations 0°) on the family of7'S Pn

problems withV = 64

L
10 20 100
HC | 0.0871 0.101 0.105 0.117
SS 25.3 20.2 16.6 13.0
HC?2 183.7 204.0 211.4 230.5

64) performed on500 independants runs. Best fitness found is putted in5  Discussion and conclusion

brackets
heurist L
10 20 30 100
HC | 1015(90) 19310(164) 29313(256) 87244(770)
SS 934(84) 1805(162) 28112(2564)  85741(764)
HC2 | 955(86)  18415(162) 28215(252) 85441 (764)

4.3 Evaluation cost
4.3.1 NKg Landscapes

Tablel]; shows the number of evaluations for the differentibgcs.
For all the heuristics, the number of evaluations decreambsK .
The evaluation cost decreases as ruggedness increasésCFand
HC(C2, the evaluation cost increases wijthFor HC and HC2, more
neutral the landscape is, smaller the evaluation cost. &saly, for

tions isN for HC andw for HC2. So, the cost depends on kind of problem, scuba search fails in all likehood.

the length of adaptive walk off C' and HC?2 only. The evaluation

ber of evaluations depends both on the number of stegsSimnd
on the neutral degree. The evaluation cost6fis high in neutral
landscape.

According to the average fitness found, Scuba Search oatpesf
the others local search heuristics on bdti ¢ andT'S Pn as soon as
neutrality is sufficient. However, it should be wondered thiee effi-
ciency of Scuba Search does have with the greatest numbealef e
uations. The number of evaluations for Scuba Search isrltisar
the one forHC2. This last heuristic realizes a larger exploration of
the neighborhood thafS: it pays attention to neighbors with same
fitness and all the neighbors of the neighborhood too. Homéhee
average fitness found is worse than the one foun8 $ySo, consid-
ering the number of evaluations is not sufficient to explaindyper-

formance ofSS. Whereas there is premature convergence towards

local optima withH(C'2, SS realizes a better compromise between

exploration and exploitation by examining neutral neigisbo

The main idea behind Scuba Search heuristic is to try to @xpli
itly optimize evolvability on a neutral network before parhing a
gualitative step using a local search heuristic. If evalitghs almost
constant on each neutral network, for instance as in the kmekvn
Royal-Road IandscapE [8F,S cannot perform neutral moves to in-
SS the cost decreases with At each step the number of evalua- crease evolvability and then have the same dynamic #h@nln this

In order to reduce the evaluation cost$f, one solution would
cost of HC and HC?2 is low when local optima are nearby (i.e. in be to choose a “cheaper” definition for evolvability: for exale, the
rugged landscapes). FS1S, at each step, the number of evaluations best fithess of: neighbors randomly chosen or the first fitness of
is (1 + Degn(s))N which decreases with neutrality. So, the num- neighbor which improves the fitness of the current genotype.
toher solution would be to change either the local searchigtawu
which evolvability or the one which allows to jump to a fitters-
tion. For instance, we could use Simulated Annealing or Tdmrch
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Figure 2. Average fitness found olV K g-landscapes as function &f, for N = 64 andg = 2 (a),q = 3 (b), ¢ = 4 (¢), ¢ = 100 (d)

to optimize neutral network then jump to the first improvemaet [7]
in the neighborhood. .
This paper represents a first step demonstrating the paitérigr- (8]
est in using the scuba search heuristic to optimize neatnaldcape.
Obviously we have to compare performances of this metastauri
with other metaheuristics adapted to neutral landscapetsdwler
[B] or extrema selectior] [L0]. All these strategies use tetrality [l
in different ways to find good solution and may not have theesam
performances on all problemS.S certainly works well when evolv-  [10]
ability on neutral networks can be optimized.
[11]
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