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How to use the Scuba Diving metaphor to solve problem
with neutrality ?

Collard Philippe and Verel Sébastien and Clergue Manuel 1

Abstract. We proposed a new search heuristic using thescuba div-
ing metaphor. This approach is based on the concept of evolvability
and tends to exploit neutrality which exists in many real-world prob-
lems. Despite the fact that natural evolution does not directly select
for evolvability, the basic idea behind thescuba searchheuristic is
to explicitly push evolvability to increase. A comparativestudy of
the scuba algorithm and standard local search heuristics has shown
the advantage and the limitation of the scuba search. In order to tune
neutrality, we use theNKq fitness landscapes and a family of travel-
ling salesman problems (TSP) where cities are randomly placed on a
lattice and where travel distance between cities is computed with the
Manhattan metric. In this last problem the amount of neutrality varies
with the city concentration on the grid ; assuming the concentration
below one, this TSP reasonably remains a NP-hard problem.

1 Introduction

In this paper we propose an heuristic calledScuba Searchthat al-
lows us to exploit the neutrality that is present in many real-world
problems. This section presents the interplay between neutrality
in search space and metaheuristics. Section 2 describes theScuba
Searchheuristic in details. In order to illustrate efficiency and limit
of this heuristic, we use theNKq fitness landscapes and a travelling
salesman problem (TSP) on diluted lattices as a model of neutral
search space. These two problems are presented in section 3.Experi-
ment results are given in section 4 where comparisons are made with
two hill climbing heuristics. In section 5, we point out advantage and
shortcoming of the approach; finally, we summarize our contribution
and present plans for a future work.

1.1 Neutrality

The metaphor of an ’adaptative landscape’ introduced by
S. Wright [14] has dominated the view of adaptive evolution:an up-
hill walk of a population on a mountainous fitness landscape in which
it can get stuck on suboptimal peaks. Results from molecularevolu-
tion has changed this picture: Kimura’s model [7] assumes that the
overwhelming majority of mutations are either effectivelyneutral or
lethal and in the latter case purged by negative selection. This as-
sumption is called the neutral hypothesis. Under this hypothesis, the
dynamics of populations evolving on such neutral landscapes are dif-
ferent from those on adaptive landscapes: they are characterized by
long periods of fitness stasis (population is situated on a ’neutral net-
work’) punctuated by shorter periods of innovation with rapid fitness
increase. In the field of evolutionary computation, neutrality plays
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an important role in real-world problems: in design of digital circuits
[12], in evolutionary robotics [5]. In those problems, neutrality is im-
plicitly embedded in the genotype to phenotype mapping.

1.2 Evolvability

Evolvability is defined by Altenberg [13] as “the ability of random
variations to sometimes produce improvement”. This concept refers
to the efficiency of evolutionary search; it is based upon thework by
Altenberg [1]: “the ability of an operator/representationscheme to
produce offspring that are fitter than their parents”. As enlighten by
Turney [11] the concept of evolvability is difficult to define. As he
puts it: “if s ands′ are equally fit,s is moreevolvablethans′ if the
fittest offspring ofs is more likely to be fitter than the fittest offspring
of s′”. Following this idea we define evolvability as a function (see
section 2.2).

2 Scuba Search

The Scuba Search, heuristic introduced in this section, exploits neu-
trality by combining local search heuristic with navigating the neutral
neighborhood of states.

2.1 The Scuba Diving Metaphor

Keeping the landscape as a model, let us imagine this landscape with
peaks (local optima) and lakes (neutral networks). Thus, the land-
scape is bathed in an uneven sea; areas under water representnon-
viable solutions. So there are paths from one peak to anotherone for
a swimmer. The key, of course, remains to locate an attractorwhich
represents the system’s maximum fitness. In this context, the prob-
lem is to find out how to cross a lake without global information. We
use the scuba diving metaphor as a guide to present principles of the
so-calledscuba search(SS). This heuristic is a way to deal with the
problem of crossing in between peaks. then we avoid to be trapped
in the vicinity of local optima. The problem is to get to know what
drives the swimmer from one edge of the lake to the opposite one? Up
to the classic view a swimmer drifts at the surface of a lake. The new
metaphor is a scuba diving seeing theworld above the water surface.
We propose a new heuristic to cross a neutral net getting information
above-the-surface (ie. from fitter points in the neighborhood).

2.2 Scuba Search Algorithm

Despite the fact that natural evolution does not directly select for
evolvability, there is a dynamic pushing evolvability to increase [11].
The basic idea behind theSS heuristic is to explicitly push evolv-
ability to increase. Before presenting this search algorithm, we need



to introduce a new type of local optima, thelocal-neutral optima.
Indeed withSS heuristic, local-neutral optima will allow transition
from neutral to adaptive evolution. So evolvability will belocally op-
timized. Given a search spaceS and a fitness functionf defined on
S , some more precise definitions follow.

Definition: A neighborhood structureis a functionV : S → 2S

that assigns to everys ∈ S a set of neighborsV(s) such thats ∈
V(s).

Definition: The evolvabilityof a solutions is the functionevol

that assigns to everys ∈ S the maximum fitness from the neighbor-
hoodV(s): ∀s ∈ S , evol(s) = max{f(s

′

) | s
′

∈ V(s)}.
Definition: For every fitness functiong, neighborhood structure

W and genotypes, the predicateisLocal is defined as:
isLocal(s, g,W) = (∀s

′

∈ W(s), g(s
′

) ≤ g(s)).
Definition: For everys ∈ S , theneutral setof s is the setN (s) =

{s
′

∈ S | f(s
′

) = f(s)}, and theneutral neighborhoodof s is the
setVn(s) = V(s) ∩N (s).

Definition: For everys ∈ S , the neutral degreeof s, noted
Degn(s), is the number of neutral neighbors ofs, Degn(s) =
#Vn(s)− 1.

Definition: A solutions is a local maximumiff isLocal(s, f,V).
Definition: A solution s is a local-neutral maximum iff

isLocal(s, evol,Vn).
Scuba Search use two dynamics one after another (see algo.1).

The first one corresponds to a neutral path. At each step the scuba
diving remains under the water surface driven by the hands-down fit-
nesses; that is fitter fitness values reachable from one neutral neigh-
bor. At that time theflatCountcounter is incremented. When the div-
ing reaches a local-neutral optimum,i.e.when all the fitnesses reach-
able from one neutral neighbor are selectively neutral or disadvanta-
geous, the neutral path stops and the diving starts up theInvasion-of-
the-Land. Then thegateCountcounter increases. This process goes
along, switching betweenConquest-of-the-Watersand Invasion-of-
the-Land, until a local optimum is reached.

Algorithm 1 Scuba Search
flatCount← 0, gateCount← 0
Choose initial solutions ∈ S
repeat

while not isLocal(s, evol,Vn) do
M = max{evol(s

′

) | s
′

∈ Vn(s)− {s}}
if evol(s) < M then

chooses
′

∈ Vn(s) such thatevol(s
′

) = M

s← s
′

, flatCount← flatCount +1
end if

end while
chooses

′

∈ V(s)− Vn(s) such thatf(s
′

) = evol(s)

s← s
′

, gateCount← gateCount +1
until isLocal(s, f,V)

3 Models of Neutral Seach Space

In order to study the Scuba Search heuristic we have to use land-
scapes with a tunable degree of neutrality.

3.1 The NKq fitness Landscape

TheNKq fitness landscapes family proposed by Newmanet al. [9]
has properties of systems undergoing neutral selection such as

RNA sequence-structure maps. It is a generalization of theNK-
landscapes proposed by Kauffman [6] where parameterK tunes the
ruggedness and parameterq tunes the degree of neutrality.

3.1.1 Definition and properties

The fitness function of aNKq-landscape [9] is a functionf :
{0, 1}N → [0, 1] defined on binary strings withN loci. Each lo-
cusi represents a gene with two possible alleles,0 or 1. An ’atom’
with fixed epistasis level is represented by a fitness components
fi : {0, 1}K+1 → [0, q − 1] associated to each locusi. It depends
on the allele at locusi and also on the alleles atK other epistatic loci
(K must fall between0 andN−1). The fitnessf(x) of x ∈ {0, 1}N

is the average of the values of theN fitness componentsfi:

f(x) =
1

N(q − 1)

N∑

i=1

fi(xi; xi1 , . . . , xiK
)

where{i1, . . . , iK} ⊂ {1, . . . , i − 1, i + 1, . . . , N}. Many ways
have been proposed to choose theK other loci fromN loci in the
genotype. Two possibilities are mainly used: adjacent and random
neighborhoods. With an adjacent neighborhood, theK genes near-
est to the locusi are chosen (the genotype is taken to have periodic
boundaries). With a random neighborhood, theK genes are chosen
randomly on the genotype. Each fitness componentfi is specified
by extension, ie an integer numberyi,(xi;xi1

,...,xiK
) from [0, q − 1]

is associated with each element(xi; xi1 , . . . , xiK
) from {0, 1}K+1.

Those numbers are uniformly distributed in the interval[0, q−1]. The
parameters ofNKq-landscape tune ruggedness and neutrality of the
landscape [4]. The number of local optima is linked to the parameter
K. The largest number is obtained whenK takes its maximum value
N − 1. The neutral degree (see tab. 1) decreases asq or K increases.
The maximal degree of neutrality appears whenq takes value2.

Table 1. Average neutral degree onNKq-landscapes withN = 64 per-
forms on50000 genotypes

K
q 0 2 4 8 12 16
2 35.00 21.33 16.56 12.39 10.09 8.86
3 21.00 13.29 10.43 7.65 6.21 5.43
4 12.00 6.71 4.30 2.45 1.66 1.24

100 1.00 0.32 0.08 0.00 0.00 0.00

3.1.2 Parameters setting

All the heuristics used in our experiments are applied to a same
instance ofNKq fitness landscapes2 with N = 64. The neigh-
borhood is the classical one-bit mutation neighborhood:V(s) =

{s
′

| Hamming(s
′

, s) ≤ 1}. For each triplet of parametersN ,
K andq, 103 runs were performed.

3.2 The Travelling Salesman Problem on randomly
diluted lattices

The family of TSP proposed by Chakrabarti [3] is an academic
benchmark that allows to test our ideas. These problems do not reflect
the true reality but is a first step towards more real-life benchmarks.
We use these problems to incorporate a tunable level of neutrality
into TSP search spaces.
2 With random neighborhood



3.2.1 Definition and properties

The travelling salesman problem is a well-known combinatorial op-
timization problem: given a finite numberN of cities along with the
cost of travel between each pair of them, find the cheapest wayof vis-
iting all the cities and returning to your starting point. Inthis paper we
use a TSP defined on randomly dilute lattices. TheN cities randomly
occupy lattice sites of a two-dimentional square lattice (L× L). We
use theManhattanmetric to determine the distance between two
cities. The latticeoccupation concentration(i.e. the fraction of sites
occupied) isN

L
2 . As the concentration is related to theneutral degree,

we noteTSPn such a problem with concentrationn. Forn = 1, the
problem is trivial as it can be reduced to theone-dimensionalTSP.
As n decreases from unity the problem becomes nontrivial: the dis-
creteness of the distance of the path connecting two cities and the
angle which the path makes with the Cartesian axes, tend to disap-
pear. Finally, asn → 0, the problem can be reduced to the standard
two-dimensionalTSP. As Chakrabarti [3] stated: “it is clear that the
problem crosses from triviality (forn = 1) to NP-hard problem at a
certain value ofn. We did not find any irregularity|...| at anyn. The
crossover from triviality to NP-hard problem presumably occurs at
n = 1.”

The idea is to discretize the possible distances, through only al-
lowing each distance to take one ofD distances. Varying this terrace
parameterD from an infinite value (corresponding to the standard
TSP), down to the minimal value of1 thus decreases the number
of possible distances, so increasing the fraction of equal fitness neu-
tral solutions. So, parametern = N

L2 of theTSPn tunes both the
concentration and the neutral degree (see fig. 1). In the remaining of
this paper we considerTSPn problems wheren stands in the range
[0, 1].
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Figure 1. Average proportion of neutral neighbors onTSPn as function of
L, for N = 64 (values are computing from50000 random solutions)

3.2.2 Parameters setting

All the heuristics used in our experiments are applied to a same in-
stance ofTSPn. The search spaceS is the set of permutations of
{1, . . . , N}. The neighborhood is induced by the classical 2-opt mu-
tation operator:V(s) = {s

′

| s
′

= 2-opt(s)}. The size of neighbor-
hood is thenN(N−3)

2
. For each value ofL, 500 runs were performed.

4 Experiment Results

4.1 Algorithm of Comparison

Two Hill Climbing algorithms are used for comparison.

4.1.1 Hill Climbing

The simplest type of local search is known asHill Climbing (HC)
when trying to maximize a solution.HC is very good at exploit-
ing the neighborhood; it always takes what looks best at thattime.
But this approach has some problems. The solution found depends
on the initial solution. Most of the time, the found solutionis only a
local optima. We start off with a probably suboptimal solution. We
then look in the neighborhood of that solution to see if thereis some-
thing better. If so, we adopt this improved solution as our current best
choice and repeat. If not, we stop assuming that the current solution
is good enough (local optimum).

Algorithm 2 Hill Climbing
step← 0
Choose initial solutions ∈ S
repeat

chooses
′

∈ V(s) such thatf(s
′

) = evol(s)

s← s
′

, step← step + 1
until isLocal(s, f,V)

4.1.2 Hill Climbing Two Steps

Hill Climber can be extended in many ways.Hill Climber two Step
(HC2) exploits a larger neighborhood of stage 2. The algorithm is
nearly the same asHC. HC2 looks in the extended neighborhood of
stage two of the current solution to see if there is somethingbetter. If
so,HC2 adopts the solution in the neighborhood of stage one which
can reach a best solution in the extended neighborhood. If not, HC2
stop assuming the current solution is good enough. So,HC2 can
avoid more local optimum thanHC. Before presenting the algorithm
3 we must introduce the following definitions:

Definition: The extended neighborhood structure3 from V is the
functionV2(s) = ∪s1∈V(s)V(s1)

Definition: evol2 is the function that assigns to everys ∈ S the
maximum fitness from the extended neighborhoodV2(s). ∀s ∈ S ,
evol2(s) = max{f(s

′

)|s
′

∈ V2(s)}

Algorithm 3 Hill Climbing (Two Steps)
step← 0
Choose initial solutions ∈ S
repeat

if evol(s) = evol2(s) then
chooses

′

∈ V(s) such thatf(s
′

) = evol2(s)
else

chooses
′

∈ V(s) such thatevol(s
′

) = evol2(s)
end if
s← s

′

, step← step + 1
until isLocal(s, f,V2)

3 Let’s note thatV(s) ⊂ V2(s)



4.2 Performances

In this section we present the average fitness found using each heuris-
tic on bothNK andTSP problems.

4.2.1 NKq Landscapes

Figure 2 shows the average fitness found respectively by eachof
the three heuristics as a function of the epistatic parameter K for
different values of the neutral parameterq. In the presence of neu-
trality, according to the average fitness,Scuba Searchoutperforms
Hill Climbing and Hill Climbing two steps. Let us note that with
high neutrality (q = 2 and q = 3), the difference is still more
significant. Without neutrality (q = 100) all the heuristics are nearly
equivalent. The Scuba Search have on average better fitness value
for q = 2 and q = 3 than hill climbing heuristics. This heuris-
tic benefits inNKq from the neutral paths to reach the highest peaks.

4.2.2 TSPn Problems

Table 2 shows the fitness performances of heuristics onTSPn land-
scapes. The average and the best fitness found bySS are always
above the ones forHC. As for NKq landscapes, the difference is
more important when neutrality is more significant (L = 10 and
L = 20). Performances ofSS are a little better forL = 10 and
L = 20 and a little less forL = 30 andL = 100. Let us also note
that standart deviation is still smaller forSS.

Table 2. Average and standart deviation of fitness found onTSPn (N =

64) performed on500 independants runs. Best fitness found is putted in
brackets

heurist L
10 20 30 100

HC 1015(90) 19310(164) 29313(256) 87244(770)
SS 934(84) 1808(162) 28112(254) 85741(764)

HC2 958(86) 18415(162) 28218(252) 85461(764)

4.3 Evaluation cost

4.3.1 NKq Landscapes

Table 3 shows the number of evaluations for the different heuristics.
For all the heuristics, the number of evaluations decreaseswith K.
The evaluation cost decreases as ruggedness increases. ForHC and
HC2, the evaluation cost increases withq. ForHC andHC2, more
neutral the landscape is, smaller the evaluation cost. Conversely, for
SS the cost decreases withq. At each step the number of evalua-
tions isN for HC and N(N−1)

2
for HC2. So, the cost depends on

the length of adaptive walk ofHC andHC2 only. The evaluation
cost ofHC andHC2 is low when local optima are nearby (i.e. in
rugged landscapes). ForSS, at each step, the number of evaluations
is (1 + Degn(s))N which decreases with neutrality. So, the num-
ber of evaluations depends both on the number of steps inSS and
on the neutral degree. The evaluation cost ofSS is high in neutral
landscape.

Table 3. Average number of evaluations onNKq-landscape withN = 64

K
q 0 2 4 8 12 16

HC 991 961 807 613 491 424
SS 2 35769 23565 15013 8394 5416 3962
HC2 29161 35427 28038 19192 15140 12374
HC 1443 1159 932 694 546 453
SS 3 31689 17129 10662 6099 3973 2799
HC2 42962 37957 29943 20486 15343 12797
HC 1711 1317 1079 761 614 500
SS 4 22293 9342 5153 2601 1581 1095
HC2 52416 44218 34001 22381 18404 14986
HC 2102 1493 1178 832 635 517
SS 100 4175 1804 1352 874 653 526
HC2 63558 52194 37054 24327 18260 15271

4.3.2 TSPn Problems

Table 4 shows the number of evaluations onTSPn. Scuba Search
uses a larger number of evaluations thanHC (nearly200 times on
average) and smaller thanHC2 (nearly12 times on average). As ex-
pected, forSS the evaluation cost decreases withL and so the neu-
trality of landscapes; whereas it increase forHC andHC2. Land-
scape seems more rugged whenL is larger.

Table 4. Average number of evaluations (x106) on the family ofTSPn

problems withN = 64

L
10 20 30 100

HC 0.0871 0.101 0.105 0.117
SS 25.3 20.2 16.6 13.0

HC2 183.7 204.0 211.4 230.5

5 Discussion and conclusion

According to the average fitness found, Scuba Search outperforms
the others local search heuristics on bothNKq andTSPn as soon as
neutrality is sufficient. However, it should be wondered whether effi-
ciency of Scuba Search does have with the greatest number of eval-
uations. The number of evaluations for Scuba Search is lesser than
the one forHC2. This last heuristic realizes a larger exploration of
the neighborhood thanSS: it pays attention to neighbors with same
fitness and all the neighbors of the neighborhood too. However the
average fitness found is worse than the one found bySS. So, consid-
ering the number of evaluations is not sufficient to explain good per-
formance ofSS. Whereas there is premature convergence towards
local optima withHC2, SS realizes a better compromise between
exploration and exploitation by examining neutral neighbors.

The main idea behind Scuba Search heuristic is to try to explic-
itly optimize evolvability on a neutral network before performing a
qualitative step using a local search heuristic. If evolvability is almost
constant on each neutral network, for instance as in the well-known
Royal-Road landscape [8],SS cannot perform neutral moves to in-
crease evolvability and then have the same dynamic thanHC. In this
kind of problem, scuba search fails in all likehood.

In order to reduce the evaluation cost ofSS, one solution would
be to choose a “cheaper” definition for evolvability: for example, the
best fitness ofn neighbors randomly chosen or the first fitness of
neighbor which improves the fitness of the current genotype.An-
toher solution would be to change either the local search heuristic
which evolvability or the one which allows to jump to a fitter solu-
tion. For instance, we could use Simulated Annealing or TabuSearch
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Figure 2. Average fitness found onNKq-landscapes as function ofK, for N = 64 andq = 2 (a),q = 3 (b), q = 4 (c), q = 100 (d)

to optimize neutral network then jump to the first improvement met
in the neighborhood.

This paper represents a first step demonstrating the potential inter-
est in using the scuba search heuristic to optimize neutral landscape.
Obviously we have to compare performances of this metaheuristic
with other metaheuristics adapted to neutral landscape as Netcrawler
[2] or extrema selection [10]. All these strategies use the neutrality
in different ways to find good solution and may not have the same
performances on all problems.SS certainly works well when evolv-
ability on neutral networks can be optimized.
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