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Abstract

We consider the open spin-s XXZ quantum spin chain with N sites and gen-

eral integrable boundary terms for generic values of the bulk anisotropy parame-

ter, and for values of the boundary parameters which satisfy a certain constraint.

We derive two sets of Bethe Ansatz equations, and find numerical evidence that

together they give the complete set of (2s + 1)N eigenvalues of the transfer ma-

trix. For the case s = 1, we explicitly determine the Hamiltonian, and find an

expression for its eigenvalues in terms of Bethe roots.
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1 Introduction

Much of the impetus for the development of the so-called Quantum Inverse Scattering

Method and Quantum Groups came from the effort to formulate and solve higher-

spin generalizations of the spin-1/2 XXZ (anisotropic Heisenberg) quantum spin chain

with periodic boundary conditions [1]-[5]. (See also [6] and references therein.) For

the open spin-1/2 XXZ chain [7], Sklyanin [8] discovered a commuting transfer matrix

based on solutions of the boundary Yang-Baxter equation (BYBE) [9]. This made it

possible to generalize some of the above works to open spin chains [10]-[16]. Although

general (non-diagonal) solutions of the BYBE were eventually found [17, 18, 15], Bethe

Ansatz solutions were known only for open spin chains with diagonal boundary terms.

Further progress was made in [19, 20], where a solution was found for the open spin-1/2

XXZ chain with general integrable (i.e., including also non-diagonal) boundary terms,

provided the boundary parameters satisfy a certain constraint. It was subsequently

realized [21] that two sets of Bethe Ansatz equations (BAEs) were generally needed in

order to obtain the complete set of eigenvalues. (Recently, the second set of BAEs was

derived within the generalized algebraic Bethe Ansatz approach of [19] by constructing

[22] a suitable second reference state. For other related work, see e.g. [23]-[31], and

references therein.)

We present here a Bethe Ansatz solution of the N -site open spin-s XXZ quantum

spin chain with general integrable boundary terms, following an approach which was

developed for the spin-1/2 XXZ chain in [34], and then generalized to the spin-1/2 XYZ

chain in [35]. Doikou solved a special case of this model (among others) in [32] using

the method in [20], and also computed some of its thermodynamical properties. She

further investigated this model in [33] using the method in [19]. We find a generalization

of Doikou’s constraint on the boundary parameters, as well as a second set of BAEs,

which we argue is necessary to obtain the complete set of (2s + 1)N eigenvalues.

The outline of this paper is as follows. In Sec. 2 we review the construction of the

model’s transfer matrices, and the so-called fusion hierarchy which they satisfy. In Sec.

3, we identify (as in [34]) the Q operator with a transfer matrix whose auxiliary-space

spin tends to infinity, and obtain a T −Q equation for the model’s fundamental (spin-

1/2 auxiliary space) transfer matrix. Using some additional properties of this transfer

matrix, we arrive at a pair of expressions for its eigenvalues in terms of roots of cor-

responding BAEs, as well as a corresponding constraint on the boundary parameters.

We provide numerical evidence of completeness of this solution for small values of s

and N . In Sec. 4 we explicitly determine the Hamiltonian for the case s = 1, and find

an expression for its eigenvalues in terms of Bethe roots. We end in Sec. 5 with a brief

further discussion of our results.
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2 Transfer matrices and fusion hierarchy

Sklyanin [8] showed for an N -site open XXZ spin chain how to construct a commuting

transfer matrix, which here we shall denote by t(
1
2
, 1
2
)(u), whose auxiliary space as well

as each of its N quantum spaces are spin-1/2 (i.e., two-dimensional). In a similar way,

one can construct a transfer matrix t(j,s)(u) whose auxiliary space is spin-j ((2j + 1)-

dimensional) and each of its N quantum spaces are spin-s ((2s + 1)-dimensional),

for any j, s ∈ {1
2
, 1, 3

2
, . . .}. The basic building blocks are so-called fused R and K∓

matrices. The former are given by [36], [2]-[5] 1

R
(j,s)
{a}{b}(u) = P+

{a}P
+
{b}

2j
∏

k=1

2s
∏

l=1

R
( 1
2
, 1
2
)

akbl
(u + (k + l − j − s − 1)η) P+

{a}P
+
{b} , (2.1)

where {a} = {a1, . . . , a2j}, {b} = {b1, . . . , b2s}, and R( 1
2
, 1
2
)(u) is given by

R( 1
2
, 1
2
)(u) =











sh(u + η) 0 0 0

0 sh u sh η 0

0 sh η sh u 0

0 0 0 sh(u + η)











, (2.2)

where η is the bulk anisotropy parameter. The R matrices in the product (2.1) are

ordered in the order of increasing k and l. Moreover, P+
{a} is the symmetric projector

P+
{a} =

1

(2j)!

2j
∏

k=1

(

k
∑

l=1

Pal,ak

)

, (2.3)

where P is the permutation operator, with Pak ,ak
≡ 1; and similarly for P+

{b}. For

example, for the simple case (j, s) = (1, 1
2
),

R
(1, 1

2
)

{a1,a2},b
(u) = P+

a1,a2
R

( 1
2
, 1
2
)

a1,b (u −
1

2
η) R

( 1
2
, 1
2
)

a2,b (u +
1

2
η) P+

a1,a2
. (2.4)

The fused R matrices satisfy the Yang-Baxter equations

R
(j,k)
{a}{b}(u − v) R

(j,s)
{a}{c}(u) R

(k,s)
{b}{c}(v) = R

(k,s)
{b}{c}(v) R

(j,s)
{a}{c}(u) R

(j,k)
{a}{b}(u − v) . (2.5)

We note here for later convenience that the fundamental R matrix satisfies the unitarity

relation

R( 1
2
, 1
2
)(u)R( 1

2
, 1
2
)(−u) = −ξ(u)1 , ξ(u) = sh(u + η) sh(u − η) . (2.6)

1Our definitions of fused R and K matrices differ from those in [34] by certain shifts of the

arguments.
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The fused K− matrices are given by [10, 11, 14]

K
−(j)
{a} (u) = P+

{a}

2j
∏

k=1

{[

k−1
∏

l=1

R
( 1
2
, 1
2
)

alak
(2u + (k + l − 2j − 1)η)

]

× K
−( 1

2
)

ak
(u + (k − j −

1

2
)η)

}

P+
{a} , (2.7)

where K−( 1
2
)(u) is the matrix [17, 18]

(

2 (sh α− ch β− ch u + ch α− sh β− sh u) eθ− sh 2u

e−θ− sh 2u 2 (sh α− ch β− ch u − ch α− sh β− sh u)

)

,(2.8)

where α−, β− and θ− are arbitrary boundary parameters. The products of braces {. . .}

in (2.7) are ordered in the order of increasing k. For example, for the case j = 1,

K−(1)
a1,a2

(u) = P+
a1,a2

K
−( 1

2
)

a1 (u −
1

2
η) R

( 1
2
, 1
2
)

a1,a2 (2u) K
−( 1

2
)

a2 (u +
1

2
η) P+

a1,a2
. (2.9)

The fused K− matrices satisfy the boundary Yang-Baxter equations [9]

R
(j,s)
{a}{b}(u − v) K

−(j)
{a} (u) R

(j,s)
{a}{b}(u + v) K

−(j)
{b} (u)

= K
−(j)
{b} (u) R

(j,s)
{a}{b}(u + v) K

−(j)
{a} (u) R

(j,s)
{a}{b}(u − v) . (2.10)

The fused K+ matrices are given by

K
+(j)
{a} (u) =

1

f (j)(u)
K

−(j)
{a} (−u − η)

∣

∣

∣

(α−,β−,θ−)→(−α+,−β+,θ+)
, (2.11)

where the normalization factor

f (j)(u) =

2j−1
∏

l=1

l
∏

k=1

[−ξ(2u + (l + k + 1 − 2j)η)] (2.12)

is chosen to simplify the form of the fusion hierarchy, see below (2.17).

The transfer matrix t(j,s)(u) is given by

t(j,s)(u) = tr{a} K
+(j)
{a} (u) T

(j,s)
{a} (u) K

−(j)
{a} (u) T̂

(j,s)
{a} (u) , (2.13)

where the monodromy matrices are given by products of N fused R matrices,

T
(j,s)
{a} (u) = R

(j,s)

{a},{b[N]}
(u) . . .R

(j,s)

{a},{b[1]}
(u) ,

T̂
(j,s)
{a} (u) = R

(j,s)

{a},{b[1]}
(u) . . .R

(j,s)

{a},{b[N]}
(u) . (2.14)

These transfer matrices commute for different values of spectral parameter for any

j, j′ ∈ {1
2
, 1, 3

2
, . . .} and any s ∈ {1

2
, 1, 3

2
, . . .},

[

t(j,s)(u) , t(j
′,s)(u′)

]

= 0 . (2.15)
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These transfer matrices also obey the fusion hierarchy [10, 11, 14] 2

t(j−
1
2
,s)(u − jη) t(

1
2
,s)(u) = t(j,s)(u − (j −

1

2
)η) + δ(s)(u) t(j−1,s)(u − (j +

1

2
)η) , (2.16)

j = 1, 3
2
, . . ., where t(0,s) = 1, and δ(s)(u) is a product of various quantum determinants,

and is given by

δ(s)(u) = 24

[

2s−1
∏

k=0

ξ(u + (s − k −
1

2
)η)

]2N

sh(2u − 2η) sh(2u + 2η)

sh(2u − η) sh(2u + η)

× sh(u + α−) sh(u − α−) ch(u + β−) ch(u − β−)

× sh(u + α+) sh(u − α+) ch(u + β+) ch(u − β+) . (2.17)

We remark that the normalization factor f (j)(u) (2.12) has been chosen so that the

LHS of (2.16) has coefficient 1.

In the remainder of this section we list some important further properties of the

“fundamental” transfer matrix t(
1
2
,s)(u), which we shall subsequently use to help deter-

mine its eigenvalues. However, it is more convenient to work with a rescaled transfer

matrix t̃(
1
2
,s)(u) defined by

t̃(
1
2
,s)(u) =

1

g( 1
2
,s)(u)2N

t(
1
2
,s)(u) , (2.18)

where

g( 1
2
,s)(u) =

2s−1
∏

k=1

sh(u + (s − k +
1

2
)η) (2.19)

(which has the crossing symmetry g( 1
2
,s)(−u−η) = ±g( 1

2
,s)(u)) is an overall scalar factor

of the fused R matrix R( 1
2
,s)(u). In particular, the rescaled transfer matrix does not

vanish at u = 0 when s is a half-odd integer.

This transfer matrix has the following properties:

t̃(
1
2
,s)(u + iπ) = t̃(

1
2
,s)(u) (iπ - periodicity) (2.20)

t̃(
1
2
,s)(−u − η) = t̃(

1
2
,s)(u) (crossing) (2.21)

t̃(
1
2
,s)(0) = −23 sh2N((s +

1

2
)η) ch η sh α− ch β− sh α+ ch β+1 (initial condition)(2.22)

2The derivation of this hierarchy relies on some relations which, to our knowledge, have not been

proved. See the Appendix for further details.
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t̃(
1
2
,s)(u)

∣

∣

∣

η=0
= 23 sh2N u

[

− sh α− ch β− sh α+ ch β+ ch2 u

+ ch α− sh β− ch α+ sh β+ sh2 u

− ch(θ− − θ+) sh2 u ch2 u
]

1 (semi-classical limit) (2.23)

t̃(
1
2
,s)(u) ∼ −

1

22N+1
e(2N+4)u+(N+2)η ch(θ− − θ+)1 for u → +∞

(asymptotic behavior) (2.24)

As is well known, due to the commutativity property (2.15), the corresponding si-

multaneous eigenvectors are independent of the spectral parameter. Hence, the above

properties (2.20) - (2.24) hold also for the corresponding eigenvalues Λ̃( 1
2
,s)(u).

3 Eigenvalues and Bethe Ansatz equations

We now proceed to determine the eigenvalues of the fundamental transfer matrix.

Following [34], we assume that the limit

Q̄(u) = lim
j→∞

t(j−
1
2
,s)(u − jη) (3.1)

exists. 3 We then immediately obtain from the fusion hierarchy (2.16) an equation of

the T − Q form for the fundamental transfer matrix t(
1
2
,s)(u),

Q̄(u) t(
1
2
,s)(u) = Q̄(u + η) + δ(s)(u) Q̄(u − η) . (3.2)

We further assume that the eigenvalues of Q̄(u) (which we denote by the same symbol)

have the decomposition Q̄(u) = f(u) Q(u) with

Q(u) =

M
∏

j=1

sh(u − vj) sh(u + vj + η) , (3.3)

which has the crossing symmetry Q(−u − η) = Q(u). Here M is some nonnegative

integer. It follows that the eigenvalues Λ( 1
2
,s)(u) of t(

1
2
,s)(u) are given by

Λ( 1
2
,s)(u) = H1(u)

Q(u + η)

Q(u)
+ H2(u)

Q(u − η)

Q(u)
, (3.4)

where H1(u) = f(u + η)/f(u) and H2(u) = δ(s)(u)f(u − η)/f(u); and therefore,

H1(u − η) H2(u) = δ(s)(u) . (3.5)

3For a more rigorous and extensive discussion of Q operators for the six- and eight-vertex models

with periodic boundary conditions, as well numerous earlier references, see [37].
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The crossing symmetry (2.21) together with (3.4) imply that

H2(u) = H1(−u − η) . (3.6)

We conclude that H1(u) must satisfy

H1(u − η) H1(−u − η) = δ(s)(u) , (3.7)

where δ(s)(u) is given by (2.17).

A set of solutions of (3.7) for H1(u) is given by

H
(±)
1 (u|ǫ1, ǫ2, ǫ3) = −22ǫ2

[

2s−1
∏

k=0

sh(u + (s − k −
1

2
)η)

]2N
sh(2u)

sh(2u + η)

× sh(u ± α− + η) ch(u ± ǫ1β− + η) sh(u ± ǫ2α+ + η) ch(u ± ǫ3β+ + η) , (3.8)

where ǫ1, ǫ2, ǫ3 can independently take the values ±1. It follows from (3.6) that the

corresponding H2(u) functions are given by

H
(±)
2 (u|ǫ1, ǫ2, ǫ3) = −22ǫ2

[

2s−1
∏

k=0

sh(u + (s − k +
1

2
)η)

]2N
sh(2u + 2η)

sh(2u + η)

× sh(u ∓ α−) ch(u ∓ ǫ1β−) sh(u ∓ ǫ2α+) ch(u ∓ ǫ3β+) . (3.9)

An argument from [34] (which makes use of the periodicity (2.20)) can again be used

to conclude that the eigenvalues can be uniquely expressed as

Λ( 1
2
,s)(u) = aH

(±)
1 (u|ǫ1, ǫ2, ǫ3)

Q(u + η)

Q(u)
+ aH

(±)
2 (u|ǫ1, ǫ2, ǫ3)

Q(u − η)

Q(u)
, (3.10)

up to an overall sign a = ±1. Noting that the functions H1 (3.8) and H2 (3.9) have

the factor g( 1
2
,s)(u)2N (2.19) in common, we conclude that the eigenvalues of t̃(

1
2
,s)(u)

(2.18) are given by

Λ̃( 1
2
,s)(u) = H̃

(±)
1 (u|ǫ1, ǫ2, ǫ3)

Q(u + η)

Q(u)
+ H̃

(±)
2 (u|ǫ1, ǫ2, ǫ3)

Q(u − η)

Q(u)
, (3.11)

where

H̃
(±)
1 (u|ǫ1, ǫ2, ǫ3) = −22ǫ2 sh2N(u − (s −

1

2
)η)

sh(2u)

sh(2u + η)
sh(u ± α− + η)

× ch(u ± ǫ1β− + η) sh(u ± ǫ2α+ + η) ch(u ± ǫ3β+ + η) , (3.12)

H̃
(±)
2 (u|ǫ1, ǫ2, ǫ3) = −22ǫ2 sh2N(u + (s +

1

2
)η)

sh(2u + 2η)

sh(2u + η)
sh(u ∓ α−)

× ch(u ∓ ǫ1β−) sh(u ∓ ǫ2α+) ch(u ∓ ǫ3β+) . (3.13)

We have fixed the overall sign a = +1 in (3.11) using the initial condition (2.22).
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The expression (3.11) for Λ̃( 1
2
,s)(u) is also consistent with the asymptotic behavior

(2.24) if the boundary parameters satisfy the constraint

α− + ǫ1β− + ǫ2α+ + ǫ3β+ = ǫ0(θ− − θ+) + η k +
1

2
(1 − ǫ2)iπ mod(2iπ) , (3.14)

where also ǫ0 = ±1; and if M (appearing in the expression (3.3) for Q(u)) is given by

M = sN −
1

2
∓

k

2
. (3.15)

The requirement that M be an integer evidently implies that

sN −
1

2
∓

k

2
= integer . (3.16)

In particular, for s an integer, k is an odd integer; and for s a half-odd integer, k is

odd (even) if N is even (odd), respectively.

Finally, the expression (3.11) for Λ̃( 1
2
,s)(u) is also consistent with the semi-classical

limit (2.23) if the {ǫi} satisfy the constraint

ǫ1 ǫ2 ǫ3 = +1 . (3.17)

To summarize: if the boundary parameters (α±, β±, θ±) satisfy the constraints

(3.14), (3.16) and (3.17) for some choice (±1) of {ǫi} and for some appropriate value

of k, then the eigenvalues of t̃(
1
2
,s)(u) (2.18) are given by

Λ̃( 1
2
,s)(±)(u) = H̃

(±)
1 (u|ǫ1, ǫ2, ǫ3)

Q(±)(u + η)

Q(±)(u)
+ H̃

(±)
2 (u|ǫ1, ǫ2, ǫ3)

Q(±)(u − η)

Q(±)(u)
, (3.18)

where H̃
(±)
1 (u|ǫ1, ǫ2, ǫ3) and H̃

(±)
2 (u|ǫ1, ǫ2, ǫ3) are given by (3.12), (3.13), and

Q(±)(u) =
M (±)
∏

j=1

sh(u − v
(±)
j ) sh(u + v

(±)
j + η) , M (±) = sN −

1

2
∓

k

2
. (3.19)

The parameters {v
(±)
j } are roots of the corresponding Bethe Ansatz equations,

H̃
(±)
2 (v

(±)
j |ǫ1, ǫ2, ǫ3)

H̃
(±)
2 (−v

(±)
j − η|ǫ1, ǫ2, ǫ3)

= −
Q(±)(v

(±)
j + η)

Q(±)(v
(±)
j − η)

, j = 1, . . . , M (±) ; (3.20)

or, more explicitly,

(

sh(ṽ
(±)
j + sη)

sh(ṽ
(±)
j − sη)

)2N
sh(2ṽ

(±)
j + η)

sh(2ṽ
(±)
j − η)

sh(ṽ
(±)
j ∓ α− − η

2
)

sh(ṽ
(±)
j ± α− + η

2
)

ch(ṽ
(±)
j ∓ ǫ1β− − η

2
)

ch(ṽ
(±)
j ± ǫ1β− + η

2
)

×
sh(ṽ

(±)
j ∓ ǫ2α+ − η

2
)

sh(ṽ
(±)
j ± ǫ2α+ + η

2
)

ch(ṽ
(±)
j ∓ ǫ3β+ − η

2
)

ch(ṽ
(±)
j ± ǫ3β+ + η

2
)

= −

M (±)
∏

k=1

sh(ṽ
(±)
j − ṽ

(±)
k + η)

sh(ṽ
(±)
j − ṽ

(±)
k − η)

sh(ṽ
(±)
j + ṽ

(±)
k + η)

sh(ṽ
(±)
j + ṽ

(±)
k − η)

, j = 1 , · · · , M (±) , (3.21)
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where ṽ
(±)
j ≡ v

(±)
j + η/2.

We have investigated the completeness of this solution for small values of s and N

numerically using a method developed by McCoy and his collaborators (see, e.g., [38]),

and further explained in [21]. We find that, for k ≥ 2sN+1 (and therefore M (+) ≤ −1),

all the eigenvalues of t̃(
1
2
,s)(u) are given by Λ̃( 1

2
,s)(−)(u). Similarly, for k ≤ −(2sN + 1)

(and therefore M (−) ≤ −1), all the eigenvalues are given by Λ̃( 1
2
,s)(+)(u). Moreover, for

|k| ≤ 2sN − 1 (and therefore both M (+) and M (−) are nonnegative), both Λ̃( 1
2
,s)(−)(u)

and Λ̃( 1
2
,s)(+)(u) are needed to obtain all the eigenvalues. 4

Some sample results are summarized in Tables 1-4. For example, let us consider

Table 1, which is for the case N = 2, s = 1. According to (3.16), k must be odd for

this case. For such values of k, the number of eigenvalues of t̃(
1
2
,s)(u) which we found

that are given by Λ̃( 1
2
,s)(−)(u) and Λ̃( 1

2
,s)(+)(u) in (3.18) are listed in the second and

third columns, respectively. Notice that, for each row of the table, the sum of these

two entries is 9, which coincides with the total number of eigenvalues (32). A similar

result can be readily seen in the other tables. 5 These results strongly support the

conjecture that Λ̃( 1
2
,s)(−)(u) and Λ̃( 1

2
,s)(+)(u) in (3.18) together give the complete set of

(2s + 1)N eigenvalues of the transfer matrix t̃(
1
2
,s)(u) for |k| ≤ 2sN − 1.

It may be worth noting that for |k| = 2sN − 1 (and, therefore, either M (+) or

M (−) vanishes), the Bethe Ansatz with vanishing M still gives 1 eigenvalue. (See again

Tables 1-4.) In the algebraic Bethe Ansatz approach, the corresponding eigenvector

would presumably be a “bare” reference state.

We observe that for s = 1/2, our solution coincides with the one in [34]. Our solution

is similar to the one given by Doikou [32, 33], but with a more general constraint

on the boundary parameters, and with a second set of BAEs which is necessary for

completeness.

4 Hamiltonian for s = 1

In this section we give an explicit expression for the spin-1 Hamiltonian, its relation to

the transfer matrix, and its eigenvalues in terms of Bethe roots. In order to construct

the integrable Hamiltonian for the case s = 1, we need the transfer matrix with spin-1

in both auxiliary and quantum spaces, i.e., t(1,1)(u). Since we seek an explicit expression

for the Hamiltonian in terms of spin-1 generators of su(2) (which are 3 × 3 matrices),

4For the conventional situation that the boundary parameters (α±, β±, θ±) are finite and indepen-

dent of N , the constraint (3.14) requires that also k be finite and independent of N , in which case

|k| ≤ 2sN − 1 for N → ∞.
5It would be interesting to find a formula that would generate the entries in these tables for general

values of N, s and k.
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we now perform similarity transformations on the fused R and K matrices which bring

them to row-reduced form, and then remove all null rows and columns. That is,

R
(1,1)
reduced(u) = Aa1,a2Ab1,b2 R

(1,1)
{a1,a2},{b1,b2}

(u) A−1
a1,a2

A−1
b1,b2

,

K
∓(1)
reduced(u) = Aa1,a2 K∓(1)

a1,a2
(u) A−1

a1,a2
, (4.1)

where

A =











1 0 0 0

0 1
2

1
2

0

0 1
2

−1
2

0

0 0 0 1











. (4.2)

The reduced R and K matrices are 9 × 9 (instead of 16 × 16) and 3 × 3 (instead of

4 × 4) matrices, respectively. It is convenient to make a further similarity (“gauge”)

transformation which brings these matrices to a more symmetric form,

R
(1,1) gt
reduced(u) = (B ⊗ B) R

(1,1)
reduced(u) (B−1 ⊗ B−1)

K
∓(1) gt
reduced(u) = B K

∓(1)
reduced(u) B−1 , (4.3)

where B is the 3 × 3 diagonal matrix

B = diag(1 ,−
√

2 ch η , 1) . (4.4)

We define t(1,1) gt(u) to be the transfer matrix constructed with these R and K matrices,

i.e.,

t(1,1) gt(u) = tr0 K
+(1) gt
reduced 0(u) T

(1,1) gt
reduced 0(u) K

−(1) gt
reduced 0(u) T̂

(1,1) gt
reduced 0(u) , (4.5)

where the monodromy matrices are constructed as usual from the R
(1,1) gt
reduced(u)’s, and

the auxiliary space is now denoted by “0”. Since t(1,1)(u) and t(1,1) gt(u) are related by

a similarity transformation, they have the same eigenvalues. Finally, it is again more

convenient to work with a rescaled transfer matrix,

t̃(1,1) gt(u) =
sh(2u) sh(2u + 2η)

[sh u sh(u + η)]2N
t(1,1) gt(u) , (4.6)

which, in particular, does not vanish at u = 0.

As noted by Sklyanin [8], the Hamiltonian H is proportional to the first derivative

of the transfer matrix

H = c1
d

du
t̃(1,1) gt(u)

∣

∣

∣

u=0
+ c01 , (4.7)
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where

c1 = − ch η
{

16[sh 2η sh η]2N sh 3η sh(α− −
η

2
) sh(α− +

η

2
) ch(β− −

η

2
) ch(β− +

η

2
)

× sh(α+ −
η

2
) sh(α+ +

η

2
) ch(β+ −

η

2
) ch(β+ +

η

2
)
}−1

. (4.8)

We choose c1 so that the bulk terms of the Hamiltonian have a conventional normal-

ization (see (4.10)), and we choose c0 so that there is no additive constant term in the

expression (4.9) for the Hamiltonian,

H =
N−1
∑

n=1

Hn,n+1 + Hb . (4.9)

The bulk terms Hn,n+1 are given by [1]

Hn,n+1 = σn − (σn)2 + 2 sh2 η
[

σz
n + (Sz

n)2 + (Sz
n+1)

2 − (σz
n)2
]

− 4 sh2(
η

2
)
(

σ⊥
n σz

n + σz
nσ⊥

n

)

, (4.10)

where

σn = ~Sn · ~Sn+1 , σ⊥
n = Sx

nSx
n+1 + Sy

nSy
n+1 , σz

n = Sz
nS

z
n+1 , (4.11)

and ~S are the standard spin-1 generators of su(2). The boundary terms Hb have the

form [15]

Hb = a1(S
z
1)

2 + a2S
z
1 + a3(S

+
1 )2 + a4(S

−
1 )2 + a5S

+
1 Sz

1 + a6S
z
1 S−

1

+ a7S
z
1 S+

1 + a8S
−
1 Sz

1 + (aj ↔ bj and 1 ↔ N) , (4.12)

where S± = Sx ± iSy. The coefficients {ai} of the boundary terms at site 1 are given

in terms of the boundary parameters (α−, β−, θ−) by

a1 =
1

4
a0 (ch 2α− − ch 2β− + ch η) sh 2η sh η ,

a2 =
1

4
a0 sh 2α− sh 2β− sh 2η ,

a3 = −
1

8
a0e

2θ− sh 2η sh η ,

a4 = −
1

8
a0e

−2θ− sh 2η sh η ,

a5 = a0e
θ−
(

ch β− sh α− ch
η

2
+ ch α− sh β− sh

η

2

)

sh η ch
3
2 η ,

a6 = a0e
−θ−

(

ch β− sh α− ch
η

2
+ ch α− sh β− sh

η

2

)

sh η ch
3
2 η ,

a7 = −a0e
θ−
(

ch β− sh α− ch
η

2
− ch α− sh β− sh

η

2

)

sh η ch
3
2 η ,

a8 = −a0e
−θ−

(

ch β− sh α− ch
η

2
− ch α− sh β− sh

η

2

)

sh η ch
3
2 η , (4.13)
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where

a0 =
[

sh(α− −
η

2
) sh(α− +

η

2
) ch(β− −

η

2
) ch(β− +

η

2
)
]−1

. (4.14)

Moreover, the coefficients {bi} of the boundary terms at site N are given in terms of

the boundary parameters (α+, β+, θ+) by

bi = ai

∣

∣

∣

α−→α+,β−→−β+,θ−→θ+

. (4.15)

We now proceed to find an expression for the energies in terms of the Bethe roots.

It follows from (4.7) that the eigenvalues of the Hamiltonian are given by

E = c1
d

du
Λ̃(1,1) gt(u)

∣

∣

∣

u=0
+ c0 . (4.16)

Furthermore,

Λ̃(1,1) gt(u) =
sh(2u) sh(2u + 2η)

[sh u sh(u + η)]2N
Λ(1,1)(u) , (4.17)

where we have used (4.6) and the fact that Λ(1,1) gt(u) = Λ(1,1)(u). ¿From the fusion

hierarchy (2.16) with j = s = 1, we obtain (after performing the shift u → u + η/2)

the following relation between Λ(1,1)(u) and Λ( 1
2
,1)(u):

Λ(1,1)(u) = Λ( 1
2
,1)(u −

η

2
) Λ( 1

2
,1)(u +

η

2
) − δ(1)(u +

η

2
) . (4.18)

Recalling (2.18)

Λ( 1
2
,1)(u) = g( 1

2
,1)(u)2N Λ̃( 1

2
,1)(u) , (4.19)

and also our result (3.18) for Λ̃( 1
2
,1)(u), we finally arrive at an expression for the energies

in terms of the Bethe roots

E = sh2(2η)

M (±)
∑

j=1

1

sh(ṽ
(±)
j − η) sh(ṽ

(±)
j + η)

+ N

(

sh 3η

sh η
− 3

)

+ c(±) , (4.20)

where ṽ
(±)
j ≡ v

(±)
j + η/2 as in (3.21), and c(±) are constants whose cumbersome expres-

sions we refrain from presenting here. (These constants are independent of N , but do

depend on the bulk and boundary parameters and on {ǫi}.)

We have verified that the energies given by the Bethe Ansatz (4.20) coincide with

those obtained by direct diagonalization of the Hamiltonian (4.9) for values of N up to

4. For the case N = 3, some sample results are presented in Tables 5, 6, for boundary

parameter values corresponding to k = 1. Hence, as already noted in Table 2, 17 levels

are obtained with Λ̃( 1
2
,1)(−)(u) and are listed in Table 5; and 10 levels are obtained with

Λ̃( 1
2
,1)(+)(u) and are listed in Table 6. Together, they give all 27 energies obtained by

direct diagonalization of the Hamiltonian.

For s > 1, it is in principle possible to proceed in a similar way. However, the

computations become significantly more cumbersome, and we shall not pursue them

further.
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5 Discussion

We have found a Bethe Ansatz solution of the open spin-s XXZ chain with general

integrable boundary terms (3.18) - (3.21), which is valid for generic values of the bulk

anisotropy parameter η, provided that the boundary parameters satisfy the constraints

(3.14), (3.16) and (3.17). We have presented numerical evidence that this solution is

complete, and we have explicitly exhibited the Hamiltonian and its relation to the

transfer matrix for the case s = 1. The apparent correctness of this solution provides

further support for the validity of the identification (3.1) of the Q operator as a transfer

matrix whose auxiliary-space spin tends to infinity.

A drawback of this solution is that for |k| ≤ 2sN − 1, one does not know a priori

in which of the two “sectors” (i.e., Λ̃( 1
2
,s)(−)(u) or Λ̃( 1

2
,s)(+)(u)) a given level – such

as the ground state – will be. For the case s = 1/2, alternative Bethe Ansatz-type

solutions have been found [31] which do not suffer from this difficulty, and for which

the boundary parameters do not need to obey the constraints (3.14), (3.16) and (3.17).

However, those solutions hold only for values of bulk anisotropy corresponding to roots

of unity. (For yet another approach to this problem, see [28].) Perhaps such solutions

can also be generalized to higher values of s.

Part of our motivation for considering this problem comes from the relation of

the s = 1 case to the supersymmetric sine-Gordon (SSG) model [39], in particular,

its boundary version [40]. Indeed, Bethe Ansatz solutions of the spin-1 XXZ chain

have been used to derive nonlinear integral equations (NLIEs) for the SSG model on

a circle [41] and on an interval with Dirichlet boundary conditions [42]. With our

solution in hand, one can now try to derive an NLIE for the SSG model on an interval

with general integrable boundary conditions, and try to make contact with previously

proposed boundary actions and boundary S matrices [40].
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A Conjectured relations for the fusion hierarchy

One way to derive the fusion hierarchy (2.16) relies on the existence of the relations

P+
12...2j−1 P−

12...2j P+
12...2j−1 = P+

12...2j−2P
−
2j−1,2j +

2j−1
∑

k=1

P+
k,k+1 X(k) P−

k,k+1 , j =
3

2
, 2, . . .(A.1)

where P−
12...n ≡ 1− P+

12...n, for some set of matrices {X(1) , . . . , X(2j−1)}. To our knowl-

edge, these relations have not been proved for general values of j. However, we have

verified them up to j = 3. In particular, for j = 3/2,

X(1) =
1

3

(

P23 − P13

)

, X(2) =
1

3

(

P12 −P13

)

. (A.2)

This result is equivalent to an identity found by Kulish and Sklyanin, see Eq. (4.15)

in the second reference of [2]. For j = 2, we find

X(1) =
1

12

(

P23 −P13 + P24 −P14 + 2P13P24 − 2P14P23

)

,

X(2) =
1

6

(

P13 −P12 + P34 −P24 + 2P12P34 − 2P13P24

)

,

X(3) =
1

4

(

P13 −P14 + P23 −P24

)

. (A.3)

Moreover, for j = 5/2,

X(1) =
3

5
P15P14 + P15P24 −

2

5
P15P34 +

1

2
P35P14

−
1

10
P35P13 −

9

10
P45P14 −

1

6
P45P13 +

4

15
P14P13 ,

X(2) =
1

5
P15P24 +

1

15
P15P13 −

2

5
P25P14 +

2

5
P25P24 +

4

15
P25P34

−
2

15
P25P13 −

7

15
P45P24 −

1

15
P45P13 +

2

15
P14P13 , (A.4)

X(3) =
3

10
P15P14 −

3

10
P15P24 +

1

10
P25P14 +

3

10
P25P24

−
2

5
P35P14 −

1

5
P35P34 −

2

5
P35P12 ,

X(4) = −
4

5
P15P14 +

2

5
P15P24 +

2

5
P15P34 −

2

5
P15P23 .

We omit our lengthy results for j = 3. We emphasize that the matrices {X(k)} are by

no means unique: for instance, only the antisymmetric part X
(k)
1...k,k+1...2j −X

(k)
1...k+1,k...2j

matters in the expression of X(k). In fact, for the purpose of deriving the fusion

hierarchy, the explicit matrices are not important, as the terms
∑

k P+
k,k+1 X(k) P−

k,k+1

in (A.1) do not contribute. What is important is only the fact that such matrices exist.
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We also observe that the symmetrizer P+
1...n (2.3) can be expressed as a sum of

products of commuting permutations:

P+
1...n = a

(n)
0 +

[n/2]
∑

ℓ=1

a
(n)
ℓ

∑

σ∈Sn

Pσ(1) σ(2) Pσ(3) σ(4) · · · Pσ(2ℓ−1) σ(2ℓ) (A.5)

where Sn is the permutation group of n indices. The coefficients a
(n)
ℓ are given by the

recursion relations

a
(n+1)
0 =

1

n + 1

(

a
(n)
0 − n! a

(n)
1

)

(A.6)

a
(n+1)
1 =

1

(n + 1)2

(

1

(n − 1)!
a

(n)
0 + 4 a

(n)
1 − 2 a

(n)
2

)

(A.7)

a
(n+1)
ℓ =

3ℓ + 1

(n + 1)2
a

(n)
ℓ −

ℓ + 1

(n + 1)2
a

(n)
ℓ+1 +

n + 2 − 2ℓ

(n + 1)2
a

(n)
ℓ−1 , 2 ≤ ℓ ≤

[n

2

]

(A.8)

a
(n+1)
[n/2]+1 =

n − 2[n/2]

(n + 1)2
a

(n)
[n/2] (A.9)

with a
(1)
0 = 1 and the convention a

(n)
ℓ = 0 when ℓ > [n/2]. Above, [ ] denotes the

integer part. Note that a
(1)
0 = 1 is consistent with our previous convention P11 = 1,

which implies P+
1 = 1 and P−

1 = 0. From the recursion, one then finds e.g. a
(2)
0 = 1

2
and

a
(2)
1 = 1

4
, which reproduces the result P+

12 = 1
2
(1 + P12). Let us stress that, because of

the sum on all permutations in Sn, a term containing ℓ permutations has a multiplicity

ℓ! (n − 2ℓ)! 2ℓ with respect to a ‘reduced’ expression, where all the terms appear just

once. Identity (A.5) may help in the proof of the conjecture (A.1).

One can prove relation (A.5) by recursion. Starting from the relation at level n,

the recursion relation

(n + 1) P+
1...n+1 =

(

1 +

n
∑

ℓ=1

Pℓ,n+1

)

P+
1...n = P+

1...n

(

1 +

n
∑

ℓ=1

Pℓ,n+1

)

and the identity (valid for any spaces a, b, c)

Pab

(

Pab + Pac + Pbc

)

= Pab + Pac + Pbc

show that the relation is also obeyed at level n + 1. A careful analysis of the different

terms leads to the relations (A.6-A.9).
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k no. given by Λ̃( 1
2
,1)(−)(u) no. given by Λ̃( 1

2
,1)(+)(u)

5 9 0

3 8 1

1 6 3

-1 3 6

-3 1 8

-5 0 9

Table 1: Number of eigenvalues of t̃(
1
2
,s)(u) given by Λ̃( 1

2
,s)(±)(u) for N = 2,

s = 1. The total number of eigenvalues is (2s + 1)N = 32 = 9.

k no. given by Λ̃( 1
2
,1)(−)(u) no. given by Λ̃( 1

2
,1)(+)(u)

7 27 0

5 26 1

3 23 4

1 17 10

-1 10 17

-3 4 23

-5 1 26

-7 0 27

Table 2: Number of eigenvalues of t̃(
1
2
,s)(u) given by Λ̃( 1

2
,s)(±)(u) for N = 3,

s = 1. The total number of eigenvalues is (2s + 1)N = 33 = 27.
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k no. given by Λ̃( 1
2
, 3
2
)(−)(u) no. given by Λ̃( 1

2
, 3
2
)(+)(u)

7 16 0

5 15 1

3 13 3

1 10 6

-1 6 10

-3 3 13

-5 1 15

-7 0 16

Table 3: Number of eigenvalues of t̃(
1
2
,s)(u) given by Λ̃( 1

2
,s)(±)(u) for N = 2,

s = 3/2. The total number of eigenvalues is (2s + 1)N = 42 = 16.

k no. given by Λ̃( 1
2
, 3
2
)(−)(u) no. given by Λ̃( 1

2
, 3
2
)(+)(u)

10 64 0

8 63 1

6 60 4

4 54 10

2 44 20

0 32 32

-2 20 44

-4 10 54

-6 4 60

-8 1 63

-10 0 64

Table 4: Number of eigenvalues of t̃(
1
2
,s)(u) given by Λ̃( 1

2
,s)(±)(u) for N = 3,

s = 3/2. The total number of eigenvalues is (2s + 1)N = 43 = 64.
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E Bethe roots ṽ
(−)
j

-8.78796 0.0781924 ± 0.150582 i , 0.573709

-7.99601 0.377364+1.5708 i , 0.0718753 ± 0.150316 i

-5.5443 0.191917 ± 0.145165 i , 0.529223

-5.07143 0.375505+1.5708 i , 0.164075 ± 0.148506 i

-4.31229 0.158193 ± 0.299905 i , 0.158448

-3.36195 0.166008 , 0.717455 ± 0.259354 i

-2.87198 0.358903+1.5708 i , 0.156172 , 0.784233

-2.86245 0.33466 ± 0.286332 i , 0.337633

-2.69332 0.371101+1.5708 i , 0.292713 ± 0.157296 i

-2.31742 0.290731+1.5708 i , 0.617492+1.5708 i , 0.146609

-1.52379 0.484424 , 0.621449 ± 0.318594 i

-1.18428 0.356639+1.5708i , 0.464322 , 0.659312

-0.780678 0.288176+1.5708 i , 0.610874+1.5708 i , 0.368261

-0.379026 0.879352 ± 0.483137 i , 0.944398

-0.0249248 0.337585+1.5708 i , 0.934391 ± 0.266345 i

0.389221 0.277491+1.5708i , 0.580415+1.5708 i ,0.97389

0.838091 0.245314+1.5708 i , 0.477481+1.5708 i , 0.814847+1.5708 i

Table 5: The 17 energies and corresponding Bethe roots given by Λ̃( 1
2
,1)(−)(u)

for N = 3 , s = 1 , k = 1 , η = 0.3i , α− = 0.7i , β− = 0.2 , θ− =

0.5i , α+ = 1.2i , β+ = −0.2 , θ+ = −1.1i , {ǫi} = +1.

E Bethe roots ṽ
(+)
j

-9.55066 0.0900396 ± 0.151265 i

-5.71507 0.244797 ± 0.132886 i

-4.09573 1.50013 i , 0.182899

-3.74447 0.786256 i , 0.174481

-3.02558 0.514399 ± 0.220939 i

-2.07231 1.48515 i , 0.620007

-1.79241 0.80571 i , 0.568604

-1.1462 0.350408 +1.5708 i , 1.38463 i

-0.791024 0.093628+1.5708 i , 0.842728 i

-0.634944 0.979155 i , 0.863041 i

Table 6: The 10 energies and corresponding Bethe roots given by Λ̃( 1
2
,1)(+)(u)

for N = 3 , s = 1 , k = 1 , η = 0.3i , α− = 0.7i , β− = 0.2 , θ− =

0.5i , α+ = 1.2i , β+ = −0.2 , θ+ = −1.1i , {ǫi} = +1.
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