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Abstract

Aqueous dispersions of nanometric clay platelets (Laponite®) have been dewatered through

different techniques: centrifugation, mechanical compression, and osmotic stress (dialysis against

a polymer solution). The positional and orientational correlations of the particles have been

determined through Small Angle Neutron Scattering. Uniaxial compression experiments produce

concentrated dispersions (volume fraction > 0.03) in which the platelets have strong orientational

and positional correlations. The orientational correlations cause the platelets to align with their

normal along a common axis, which is the axis of compression. The positional correlations cause

the platelets to be regularly spaced along this direction, with a spacing that matches the average

volume per particle in the dispersion. The swelling law (volume fraction vs. separation) is one-

dimensional, as in a layered system. Changes in the applied osmotic pressure cause the water

content of the dispersion to either rise or decrease, with time scales that are controlled by

interparticle friction forces and by hydrodynamic drag. At long times, the dispersions approach

osmotic equilibrium, which can be defined as the common limit of swelling and deswelling

processes. The variation of the equilibrium water content with the applied osmotic pressure has

been determined over one decade in volume fractions (0.03 < φ < 0.3) and 3 decades in pressures.

This equation of state matches the predictions made from the knowledge of the forces and

thermal agitation for all components in the dispersion (particles, ions and water).
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Introduction

Laponite is a synthetic clay of the hectorite type, consisting of nanometric platelets [1, 2]. When

water is added to a Laponite powder, the clay particles become ionized and the interstitial

solution pushes the platelets away from each other, causing the grains of powder to swell with

water. With appropriate mixing procedures, a clear dispersion of clay in water can be obtained.

Such clay dispersions have applications in coatings, paints, cosmetics, as well as in drilling

fluids, mainly because they have unusual flow properties. They have also been the subject of

numerous studies, because they are well-defined materials, and yet behave in ways that are still

largely controversial and unexplained.

Semi-dilute dispersions

In the range of volume fractions 0.0048 ≤ φ ≤ 0.03, Laponite dispersions have very unusual flow

properties. They have a yield stress, i.e. they behave as soft solids at rest, but the application of

sufficient stress causes them to flow [3-7]. The flow pattern is unusual, since it consists mainly of

shear bands [4]. Moreover, these properties depend on time in a remarkable way: if a constant

stress is maintained, and that stress is below the dynamic yield stress, the dispersion creeps very

slowly, but it becomes more and more stiff as it ages; on the other hand, if the applied stress is

above the yield stress, the dispersion starts flowing, and it becomes more and more fluid as the

stress is maintained (i.e. it rejuvenates) [8-10].

A number of theories have been proposed to explain these remarkable flow behaviors [5-7, 11].

There is a class of theories that explain the resistance to flow by an aggregation process, caused

by edge-face or edge-edge attractions between the particles. For dispersions that have a finite

ionic strength (at least 10–3 mol L–1), these attractions may overcome the face-face repulsions and

produce a macroscopic network that opposes the flow. Other theories are based on interparticle

repulsions only [8-10]. For dispersions that have an extremely low ionic strength (much below

10–3 mol L–1), these repulsions may become so strong that they oppose any relative motions of the

particles, and in this way inhibit the flow.

The aim of the present work is not to get involved in these interesting problems, but rather to

explore the more concentrated dispersions.
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Highly concentrated dispersions

Dispersions with a much higher volume fraction of solids occur in coatings (e.g. film formation

through evaporation), and also in drilling fluids (e.g. cake formation through filtration). In both

applications, it is extremely important to control the processes by which the dispersions will

either release water, swell with water, or simply let water permeate through. However, such high

volume fractions (φ ≥ 0.03) have rarely been studied so far, because highly concentrated Laponite

dispersions cannot be prepared conveniently through mechanical mixing of the powder in water.

They can, however, be obtained by preparing a semi-dilute dispersion that is as homogeneous as

possible, and then extracting water to reach the desired volume fraction [12-20]. In this work, we

have explored the range of volume fractions 0.03 < φ < 0.4

At these concentrations, the volume per particle is reduced so much that neighboring particles can

no longer rotate independently from each other, and therefore the orientations of neighboring

particles must be correlated [18]. The volume fraction threshold for orientational correlations

may be predicted as follows. First, assume that the rotation volume of a particle is a sphere with a

diameter equal to the platelet diameter, i.e. 2R = 30 nm. Then, assume that these spheres are

randomly packed in the dispersion, at the volume fraction of dense random packing (0.64). Then,

the volume fraction that is occupied by the platelets is related to their thickness 2H and diameter

2R by:

φc = 0.64
π R2 2H

4 3( )π R3
= 0.96

H

R
(1)

Taking the accepted dimensions of the platelets (2H = 1 nm, 2R = 30 nm) yields φc = 0.032.

Hence, in all dispersions of higher φc, there must be some correlations between the orientations of

neighboring particles. Of course, these orientational correlations may be short range only.

However, Onsager predicted that systems of anisotropic particles must have a phase transition to

a phase with long-range orientational order when the particles are sufficiently anisotropic and

their volume fraction is high enough [21]. The occurrence of a phase with orientational order

would then have profound consequences for the mechanical properties and also for the

permeability of the paste.
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For clay dispersions with much larger particles (kaolinite, diameters 1-2 µm), Perdigon-Aller et

al. have found that the application of uniaxial osmotic pressure causes the particles to align with

their normal along the axis of compression [22]. The resulting filter cakes have a high volume

fraction, high orientational order parameter and low permeability. However, this orientational

order is static rather than thermodynamic, since the particles are so large that their motions are

essentially blocked. Hence, the equilibrium organization of very small platelets that are able to

sample a wide variety of configurations is a problem of a different nature.

To our knowledge, there are 3 experimental evidences for the existence of an orientational phase

transition in Laponite dispersions. Gabriel et al. and Lemaire et al. made concentrated dispersions

by slow evaporation [18, 19]. In dispersions that had been concentrated to volume fractions

above φ = 0.02, they observed optical textures that were characteristic of a nematic liquid. They

also obtained anisotropic X-ray scattering patterns, which they used to calculate a nematic order

parameter. Mourchid et al used osmotic stress to extract water from dilute Laponite dispersions

[12, 13]. In dispersions that had been equilibrated for one month, they found that the rise of

osmotic pressure with volume fraction was interrupted by a plateau, which they took as a sign of

a 2-phase equilibrium. Remarkably, none of these authors have observed positional correlations,

even though the laponite volume fractions were high enough to cause strong interactions between

neighboring particles.

Questions

The experimental results available so far raise some obvious questions concerning the structures

of Laponite dispersions: Do these dispersions have long-range orientational order, as in a nematic

phase, or do they have only short range orientational correlations, as in tactoids? Do they also

have positional correlations between the centers of the particles, and if so what is the range of

these correlations: long range, as in a smectic phase, or short range as in a nematic? And in which

way do these correlations derive from interparticle forces?

Such questions are usually stated with the implicit assumption that it is possible to determine the

equilibrium structure, i.e. the average organization, at equilibrium, of particles, ions and water in

the dispersion. However, this is not at all obvious. Even in the semi-dilute regime, the state of the

dispersions has been found to evolve through some extremely slow processes [5, 7, 8, 9]. Such
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observations raise serious questions about the possibility of reaching an equilibrium state in

highly concentrated dispersions. These concerns lead to a large number of interesting problems,

which can be grouped as follows.

Compression processes: How difficult is it to reach the highly concentrated range? What are the

forces that oppose compression: are they long range or medium range forces such as ionic

repulsions, or is it rather local friction between particles that are in contact? If a constant force is

applied, does the dispersion reach quasi-static equilibrium in a finite time, and is this equilibrium

the same with different compression techniques? Alternatively, does the dispersion evolve

forever?

Expansion processes: How reversible are the extraction of water and the structural ordering that

follows: if water is added to a highly concentrated dispersion, will it be absorbed and distributed

within the dispersion? If so, what are the forces that cause this reswelling? And again, does the

dispersion ever reach osmotic equilibrium, or does it take an infinitely long time to swell?

Equation of state: When osmotic equilibrium is reached, what is the equilibrium water content,

and how does it vary with the applied osmotic pressure? Can the relation of osmotic pressure to

water content be predicted from the knowledge of the forces and thermal agitation that act on all

species in the dispersion (particles, ions, and water)?

Materials

We used Laponite XLG, a synthetic hectorite produced by Rockwood Additives [1]. It consists of

particles that are shaped as platelets with thickness 2H = 1 nm, diameter 2R = 30 nm [1, 2], and

mass per unit volume 2530 Kg/m3 [23] (for the precise determination of H, see “Results”). The

composition of this material is:

Si8 Mg5.45Li0.4H4O24[ ]Na0.7

In aqueous media, the Na+ cations are hydrated and released in the water layers surrounding each

particle. They can also be exchanged by other cations; the cationic exchange capacity (CEC) is

650 mM/Kg [24] (note that for Laponite RD, Levitz et al. have found 750 mM/Kg [10]). The

surface charge created by the release of these cations amounts to 0.7 e per nm2 of surface, or 1.4

nm2 per elementary charge. For a platelet with the dimensions given above, this yields 500
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exchangeable cations on each face. These cations produce a repulsion between neighboring

platelets, which is at the origin of the spontaneous dispersion of Laponite in water.

The Laponite particles were dispersed by stirring in aqueous phases that were either distilled

water containing sodium chloride at a concentration of 10–3 mol L–1, or sodium chloride at 10–3

mol L–1 and tetrasodium diphosphate at a concentration of 5.77 x 10–3 mol L–1. The diphosphate

anion binds to the edges of the platelets, and in this way reduces the strength of edge-face and

edge-edge attractions. This has a dramatic effect on the flow properties of semi-dilute

dispersions: for instance, dispersions of volume fraction φ =0.012 behave as soft solids (yield

stress = 40 Pa) in absence of phosphates, but if phosphates are added they flow as shear-thinning

fluids (no measurable yield stress) [7].

All dispersions were prepared at the same initial volume fraction φ =0.012, and then aged in

closed vessels for 75 days. During this aging, the dispersions, initially turbid, became more

transparent. In closed vessels, the pH rose from 9 to 10 over the first 25 days, and then remained

stable. The concentration of Na+ ions also remained stable at 6.5 x 10–3 mol L–1 (for the

dispersions without phosphates) or 2 x 10–2 mol L–1 (with phosphates). Finally, the concentration

of Mg++ ions decayed from 5 x 10–4 to 1 x 10–4 mol L–1 (without phosphates), or from 1 x 10–2 to 1

x 10–3 mol L–1 (with phosphates), due to the precipitation of Mg(OH)2 at high pH. From these

measurements, we concluded that the dissolution processes were effectively blocked by the initial

rise in pH [7].

In semi-dilute dispersions made at φ =0.01, the background salt (NaCl and tetrasodium

diphosphate) controlled the ionic strength and the ionic repulsions between neighboring particles.

Indeed, the screening length that characterizes the decay of electrical potentials is κ–1 = 4 nm in

dispersions without phosphates and κ–1 = 2 nm in dispersions with phosphates. On the other hand,

in concentrated dispersions (φ = 0.1 and above), the Na+ counterions of the Laponite particles

were much more numerous than those originating from the background salt. Consider for

instance two Laponite platelets that are parallel and separated by a distance of 10 nm. The

interstitial solution that separates these platelets contains 1000 counterions. The average

concentration of counterions in this solution is 0.25 mol L-1. This is much higher than the

concentration of ions originating from the added salt (6.5 x 10-3 mol L-1) or from the added

diphosphates (2 x 10–2 mol L–1). Therefore ionic repulsions between neighboring particles can be
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expected to become similar in all dispersions regardless of added salt when the particle

concentration is sufficiently high (φ  = 0.1).

Methods

Three different methods were used in order to extract water from the semi-dilute Laponite

dispersions and produce dispersions with a higher volume fraction: ultracentrifugation,

mechanical compression and osmotic stress.

Ultracentrifugation

Ultracentrifugation produces a buoyancy force that tends to lift water towards the top of the tubes

and push particles to the bottom (Figure 1). If the dispersions have an osmotic pressure,

equilibrium is reached when this buoyancy force is balanced, at each height in the sample, by the

gradient of osmotic pressure [25]. Similarly, if they have a compressive yield stress (i.e. osmotic

resistance), mechanical equilibrium is reached when the applied force is balanced by the gradient

of the osmotic resistance [26]. The equilibrium condition can be written for a slice of thickness

ds, located at a distance s from the top of the sediment, and submitted to an acceleration γ(s). In

this slice, the lift force that pulls water towards the top of the sample is Δρ γ(s) φ(s) ds, where Δρ

is the difference in mass per unit volume between the particles and water. This force is balanced

by the difference in osmotic resistance dΠ between the slices located above and below:

dΠ = Δρ γ s( ) φ s( ) ds (2)

This equation can be integrated to give the osmotic resistance at each height:

Π s( ) = Δρ γ s( ) φ s( ) ds
0

s

∫ (3)

Accordingly, there is a gradient of osmotic resistance, with zero pressure at the top (s = 0) and

maximum pressure at the bottom (s  = s max). At equilibrium, the osmotic resistance of the

dispersion is related to its volume fraction by a constitutive equation (or an equation of state).

Thus, the constitutive equation of the dispersion may be determined in a single experiment by

measuring the volume fraction profile within the centrifugation tube at equilibrium, and

calculating the corresponding pressure through equation (3). Experimentally, the relation of
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osmotic resistance to volume fraction approaches the true equation of state as the dispersion

approaches equilibrium during centrifugation.

Figure 1. Geometry of the centrifugation experiment. The slice located between heights s and

s+ds is submitted to a centrifugal force, which tends to push the particles towards the bottom of

the tube and water to the top. At equilibrium, this is equilibrated by the gradient of osmotic

pressure exerted by the slices located immediately above and below this slice.

A Kontron Instruments Centrikon T-1080 centrifuge with swinging bucket rotor was used. With

this instrument, the acceleration γ varied with the distance s from the top of the sediment (given

in mm) and with the rotation speed ω (given in rpm) according to:

γ =1.12 R
max

−h
0

+ s( )
ω

10
3

 

 
 

 

 
 
2

(4)

where Rmax is the distance between the center of the rotor and the bottom of the centrifuge tube in

the horizontal position, and h0 is the height of the sediment at the end of the centrifuge cycle.

With a rotation speed ω =12000 rpm, the acceleration γ was 12150 ga (with ga acceleration of

gravity) at the top of the tube and 26000 ga at the bottom; with ω =23000 rpm, it was 44615 ga at

the top of the tube and 95510 ga at the bottom. In samples obtained with this swinging bucket

rotor centrifuge, the deposits were collected by removing the supernatant and then cutting the

tubes into slices 1-2 mm thick [25, 26]. The volume fractions of these slices were then measured

by thermogravimetry (drying at 120 °C). The experimental volume fraction profile was then

fitted by a polynomial expression:
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φ s( ) = a
i
s
i

i=0

i=n

∑ (5)

This profile was then inserted into equation (3), giving the following expression for the osmotic

resistance:

Π s( ) = Δρ ω 2
R
max

−h
0( )a0 s +

R
max

−h
0( )ai + a

i−1

i +1
s
i+1 +

a
n

n + 2
s
n+2

i=1

i=n

∑
 

 
 




 (6)

Concentrated dispersions were produced through a protocol that consisted of several

centrifugation cycles. In each cycle, the supernatant was removed and additional dispersion was

introduced into the centrifugation tube. Each cycle lasted at least 10 hours for centrifugation at

23000 rpm and 2 days at 12000 rpm; in some experiments, centrifugation was continued for 15

days. These unusually long cycles were chosen in order to give as much time as possible to

equilibration processes that determine the relation of osmotic resistance to volume fraction.

Mechanical compression

In mechanical compression, a compressive stress is applied to the boundaries of the sample,

while water is allowed to permeate out through filtration membranes [27]. The compressive stress

is transmitted through interparticle forces; since no other force is applied to the particles, the

stress is uniform throughout the sample. At equilibrium, the volume fraction is determined by the

value of the compressive stress through a constitutive equation. Therefore the constitutive

equation may be determined through a set of compression experiments in which the dispersions

are equilibrated at different pressures.

A bilateral filtration cell was used for mechanical compression experiments. The cell body was a

stainless steel tube (inner diameter 72 mm). It was closed with 2 pistons made of sintered

stainless steel (pore diameter 100 µm) covered by ultrafiltration membranes (average pore

diameter 0.05 µm). A constant uniaxial force was applied to one piston, and the resulting

displacement was measured with an accuracy of 0.01 mm. The compressive force was maintained

until there was no measurable change in position, which took about 7 days. At the end of
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compression, the sample was recovered and its volume fraction was measured through

thermogravimetry.

Osmotic stress

In osmotic stress, the driving force (for the extraction of water) is the difference in chemical

potential between water in a “stressing solution” and water in the dispersion [28]. At equilibrium,

the chemical potentials of water in the solution and in the dispersion are equal; therefore the

osmotic resistance of the dispersion matches the osmotic pressure of the stressing solution. At

this point the dispersion is recovered and its volume fraction is measured. If the osmotic pressure

of the stressing solution is known, the measurement yields one point of the constitutive equation

of the dispersion. In practice, a large number of osmotic stress experiments are performed in

parallel, yielding a corresponding set of data points for the constitutive equation.

For osmotic stress experiments, semi-dilute dispersions of Laponite were placed in Visking

dialysis bags that had a pore size corresponding to a 12K molecular weight cutoff (Spectrapor,

Spectrum, USA). These bags were immersed into Dextran solutions for a succession of water

extraction cycles. At the end of each cycle, the deswelled bag was refilled with additional

dispersion and the Dextran solution was replaced. The final cycle lasted 3 weeks. At this point,

the dispersion was recovered and its volume fraction was measured through thermogravimetry.

Small angle neutron scattering (SANS)

In neutron scattering, incident neutrons are scattered by the nuclei located in the irradiated

volume; a nuclear scattering length characterizes the strength of the interaction between a neutron

and each nucleus. In small angle scattering, the distances between neighboring atoms are not

resolved. Instead, the interferences of scattered rays depend on the distances between small

volume elements, each containing large numbers of nuclei; the contribution of each volume

element is weighted by its density of scattering length ρ(r) [29]. For Laponite dispersions, the

density of scattering length takes only two values, one in water and one in the particles. A

homogeneous sample, containing water only, would give no scattering in directions outside the

beam, hence the scattering is due to fluctuations in the density of scattering length, caused by the

distribution of particles in water.
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The phase differences that control the interferences of scattered rays are determined by the scalar

product Q.r, where r is the vector joining 2 nuclei, and Q is the scattering vector. The magnitude

of the scattering vector depends on the neutron wavelength λ and scattering angle θ according to:

Q =
4π

λ
sin

θ

2
(7)

In the present work, we used Q values ranging from 0.1 to 3 nm–1, corresponding to real space

distances between 60 and 2 nm respectively.

The measured interference pattern is a Fourier Transform of the pair correlation function P(r) of

the spatial variation of Δρ:

I(Q) / Iincident = ∫ P(r) exp (i Q.r) dr (8)

P(r) = ∫ Δρ(r’) Δρ(r+r’) dr’ (9)

If the relative positions of the particles are strongly correlated, then P(r) is an oscillating function,

and I(Q) has a set of peaks located at Q.d = 2nπ, where d is lattice vector of ρ(r). These peaks

are infinitely sharp in the case of long-range order, and broader in the case of short-range order.

For instance, a lamellar structure produces a diffraction pattern that consists of sharp spots that

are regularly spaced on a line that is oriented along the direction of repetition; a nematic phase

gives a pattern that consists of two crescents located in the direction of the nearest neighbors [30,

31].

For dispersions that were submitted to uniaxial stress (e.g. centrifugation), slices of the sample

were cut with a specific orientation with respect to the axis of compression. In this way, the

interference patterns measured correlations in the relative positions of particles, in directions that

were either along the axis of compression or away from this axis.

Longitudinal slices were cut along the length of the centrifugation tube, so that the axis of

compression was within the plane of the slice (Figure 2a). These slices were placed in the neutron

beam so that their axis of compression was perpendicular to the beam. In this case, the detector

selected some scattering vectors that were parallel to the axis of compression, and some that were

not. These experiments made it possible to measure distances in the direction of compression.

Transverse slices were cut across the centrifugation tube, so that the axis of compression was

perpendicular to the plane of the slice (Figure 2b). These slices were placed in the neutron beam
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so that their axis of compression was along the beam. In this case, the detector selected scattering

vectors that were exclusively perpendicular to this axis. These experiments measured distances in

directions that were perpendicular to the axis of compression.

Neutron scattering patterns were obtained on the instrument D11 at ILL, with a sample-detector

distances of 1.09 m, 2m and 3,5 m and a collimation distance of 5 m, using neutrons of

wavelength 6 Å.

Figure 2. Recovery of slices cut from the sediment. (a) Slices that are cut along the axis of

compression. (b) Slices that are perpendicular to the axis of compression.

Results

In this section, we first report the neutron scattering patterns of the compressed dispersions,

because these patterns immediately show how the platelets organize during the compression.

Then we present measurements of the volume fractions that are reached in each compression

experiment, and their relation to the applied osmotic pressure. The relation of pressure to volume

fraction is the compression law of the dispersion in the given conditions; if the system were at

equilibrium, this would be its equation of state. The dispersions, however, have been found to

evolve very slowly towards an equilibrium that is never reached. For this reason, the location of

the true equilibrium state will be determined through the comparison of osmotic processes that

start from higher and from lower water contents, and converge towards the equilibrium swelling.
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Structures of compressed dispersions

When the dispersions were centrifuged at high accelerations (95500 ga at the bottom of the tube)

for a long time (15 days), their neutron scattering patterns revealed a remarkable structural

organization. This was obvious in slices of the sediment that were cut and oriented in such a way

that the plane of scattering vectors contained the axis of compression (Figure 2a). In all sections

where the volume fraction of Laponite was at least φ ≥ 0.09, the interference pattern consisted of

2 bright spots located on either side of the beam, in the direction of the axis of compression

(Figure 3).

Figure 3. Interference patterns obtained from a slice that was cut along the axis of compression,

and oriented normal to the neutron beam, so that the plane of scattering vectors (i.e. the plane of

the Figure) contained the axis of compression (approximately horizontal in the Figure). Each

pattern was obtained by aiming the beam at a particular height s within the slice (see Figure 1).

The corresponding volume fraction φ was read from the height vs. volume fraction profile of the

sediment, which was centrifuged for 15 days at a maximum acceleration of 95500 ga. The

patterns show two bright spots that move away from the beam (taking into account the sample-

detector distances indicated in the labels) as the volume fraction is increased.
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Such spots must originate from Bragg diffraction by planes that are oriented normal to the axis of

compression. However, the spots are rather broad, and they are not accompanied by higher

diffraction orders. Hence they result from diffraction by a pseudo-periodic variation of the

density of scattering length in the direction of compression. In dispersions where the volume

fraction of platelets is φ = 0.1, the period is 10 nm, which is about 10 times the platelet thickness.

Thus, the locations of the spots match the diffraction pattern of a system of platelets that are

oriented parallel to each other, with their normal along the axis of compression, and that are

regularly spaced along this direction. The width of the spots indicates that there is short range

order only (correlation length 30 nm) rather than long range order; however, there is no evidence

of significant disorientations in the structure, that would cause the diffraction spots to take the

shape of “crescents”.

Slices that were cut and oriented in the other direction (Figure 2b), so that the plane of scattering

vectors was perpendicular to the axis of compression, did not show any such features (Figure 4).

These interference patterns show a monotonic decay of the intensity in all directions that are

normal to the axis of compression. Therefore, there are no periodic correlations in these

directions. The decay rate of the intensity matches approximately the particle diameter; therefore,

any correlations in these directions are lost at larger distances. Identical observations were made

on Laponite dispersions where phosphates had been added.
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Figure 4. Interference patterns obtained from a slice that was cut perpendicular to the axis of

compression, and oriented normal to the neutron beam, so that the plane of scattering vectors was

normal to the axis of compression (i.e. the plane of the Figure is normal to the axis of

compression). The slice was cut from a sediment that was centrifuged for 15 days at a maximum

acceleration of 95500 ga.

The structures that produce such scattering patterns can be described in two ways [30, 31]. One

description is based on a nematic structure, with long-range orientational order and short-range

positional order. The platelets are parallel to each other, with their normal aligned along the

common axis. In the direction of this axis, they have short-range order, i.e. face-to-face

separations that fluctuate around an average distance. In directions perpendicular to this axis, they

have no order at all, i.e. they are not organized in columns, as would have been the case for

“stacks of plates”. The other description is based on a lamellar structure, with short-range order

for the repetition of the layers, but no order within each layer. From a structural point of view,
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both descriptions are completely equivalent; their main feature is the strong positional

correlations that were absent in interference patterns of dispersions made at lower volume

fractions.

As the volume fraction of Laponite was increased, the spots moved away from the beam,

indicating that the repeat distance of particles in the dispersion became shorter. Remarkably, this

distance was found to vary linearly with the inverse volume fraction 1/φ, in agreement with the

swelling law expected for one-dimensional swelling of a stack of layers with thickness 2H and

separation 2h:

d = 2 h + H( ) =
2H

φ
(10)

The slope of the variation of d as a function of 1/φ yields the average thickness of the platelets,

which is found to be 2H = 1.35 nm. The same variation was found for dispersions with added

phosphates, which was expected since they are made of the same platelets (Figure 5).

Figure 5. Variation of the repeat distance d of the layers with the inverse of the volume fraction φ.

Symbols: () dispersions without phosphates; (O) with phosphates. A linear variation is
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expected for systems that swell in one dimension only. In this case, the slope of this variation

yields the thickness H of the dry layers. The straight line corresponds to H = 1.35 nm.

At lower volume fractions, the spots merged with the beam, but the diffraction patterns remained

anisotropic (similar observations were made previously through X-ray scattering [19]). Therefore

the organization of Laponite dispersions evolves in two stages during compression: in a first

stage (0.02 < φ  < 0.05), the platelets have strong orientational correlations but only weak

positional correlations, and the swelling law must be a 3-d swelling law, as in a nematic; in a

second stage, the positional correlations also become quite strong, and the swelling law becomes

the one-dimensional swelling law of a layered system.

Compression processes

The Laponite dispersions were compressed through centrifugation at 95500 ga (at the bottom of

the tube) over periods of 1-15 days. According to the sediment heights, sedimentation was

practically complete within 1 day. Still, the volume fraction profiles within the sediment evolved

over longer times. The volume fractions profiles were measured in sediments that were

centrifuged either 7 days or 15 days, and the corresponding osmotic resistances were calculated

as explained in “Methods”. Figure 6 presents the variation of osmotic resistance with volume

fraction for each sediment. All experiments show a steep increase of the osmotic resistance Π

with volume fraction φ. However, for a given pressure, the volume fraction that the dispersion

reaches at longer times (15 days) is slightly higher than that obtained at shorter times (7 days);

the ratio is highest at the lowest pressures (4 x 105 Pa), and it reaches unity at the highest

pressures (8 x 106 Pa). These observations show the relevance of a question raised in the

introduction: how do we know that the dispersion has reached quasi-static equilibrium?
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Figure 6. Effect of compression time on the osmotic resistance of Laponite dispersions.

Horizontal scale: volume fractions of slices recovered from each centrifugation experiment.

Vertical scale: osmotic pressures calculated from the location of the slice in the centrifugation

tube, the volume fraction profile, and the acceleration. Open symbols: slices recovered after 7

days of centrifugation. Filled symbols: slices recovered after 15 days of centrifugation. Δ, : No

phosphates (N); O, : with phosphates (P).

A similar problem was encountered when dispersions were centrifuged at different accelerations.

Dispersions that were centrifuged at a lower acceleration (26000 ga at the bottom of the tube), and

therefore submitted to a lower osmotic pressure gradient, gave volume fractions that were slightly

lower (Figure 7). This small difference indicates that the compression processes are slower at the

lower acceleration, presumably because the sediment is thicker, and the times required for the

diffusion of water are slower. In those conditions, the measured volume fractions are below the

true equilibrium volume fractions at the set osmotic pressure.
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Figure 7. Effect of the set acceleration on the osmotic resistance measured through centrifugation.

Open symbols: centrifugation at 12000 rpm, maximum acceleration = 26000 ga; filled symbols:

23000 rpm, maximum acceleration = 95500 ga; Δ, : no added phosphates (N); O, : with added

phosphates (P).

Similar experiments were conducted with Laponite dispersions that contained phosphates. With

these fluid dispersions, the kinetics of sedimentation was different [7], but the final profiles of

volume fraction and osmotic pressure were exactly the same as in the dispersions that contained

no phosphates. As shown in Figures 6 and 7, the curves for both dispersions are indeed identical,

excepted for the lowest pressures, where the dispersions that contained phosphates reached

slightly higher volume fractions.

At this point it is useful to compare the values of the osmotic resistance that have been obtained

through different compression methods. The same Laponite dispersions have been compressed

through the application of a mechanical force or through osmotic stress [27]; similar types of

Laponite have also been submitted to mechanical compression at very high pressures [14, 15], or
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to osmotic stress at lower pressures [12, 13]. All these data are compiled in Figure 8. Here again

the experiments performed over longer periods of time reach higher volume fractions for a given

applied volume fraction. These comparisons demonstrate that there is a very slow creep process

by which dispersions submitted to a constant osmotic pressure evolve towards higher volume

fractions. It is therefore important to find out whether there exists, at each applied force, a volume

fraction at which thermodynamic equilibrium is reached. For this purpose, we have performed

experiments in the other direction, i.e. through reswelling instead of deswelling.

Figure 8. Osmotic resistances measured through different compression techniques. Symbols: o,

centrifugation (this work); , mechanical compression (this work); , mechanical compression

[14, 15]; x, osmotic stress (this work); +, osmotic stress [12, 13]. Note that the data extend over 3

decades in volume fractions and 5 decades in osmotic pressures.

Expansion processes

Two Laponite dispersions were compressed for 15 days at the highest acceleration (95500 ga at

the bottom of the tube), and then kept in the centrifuge at a lower acceleration (26000 ga,) for

another 15 days. Visual observation of the tubes indicated that the sediment did reswell during
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the second period. This reswelling indicated that the dispersion had a true osmotic pressure, and

not only a mechanical resistance to compression.

At the end of this second period, the sediments were recovered, the volume fraction profiles were

measured, and the osmotic pressures corresponding to the final acceleration at each location in

the tube were calculated. The relation of pressure to volume fraction obtained at the end of this

combined cycle (deswelling at 95500 ga followed by reswelling at 26000 ga) was compared with

that obtained through direct deswelling at the same final acceleration (Figure 9). The volume

fractions obtained at the end of the combined cycle were systematically higher than those that

were reached through direct deswelling at 26000 ga. This difference can result from incomplete

reswelling in the combined cycle, or incomplete deswelling in the direct experiment, or from a

mixture of both. In any case, the equilibrium volume fraction must be lower than that obtained at

the end of reswelling, and higher than that reached through direct deswelling, so that it must lie

between both curves.

Figure 9. Osmotic pressures measured through a swelling experiment, and comparison with a

compression experiment, both using centrifugation, for a dispersion without phosphates.

Symbols: Δ, data from a dispersion that was compressed through centrifugation at 26000 ga for
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15 days.  , data from a dispersion that was first compressed through centrifugation at 95500 ga

for 15 days, and then allowed to reswell during centrifugation at 26000 ga for 15 days.

At this point it is useful to compare the volume fractions obtained through this reswelling

experiment with those that were reached through osmotic stress in 30 days. Figure 10 presents

this comparison in the case of dispersions that contained no phosphates. Reswelling after

centrifugation and osmotic stress yield nearly the same relation of pressure to volume fraction.

Again, the equilibrium volume fraction must be lower than that obtained at the end of reswelling,

and higher than that reached through direct deswelling, so that it must lie between both curves.

Since both experiments give the same relation, within experimental uncertainties, they both

provide a determination of the equilibrium volume fraction in this range of pressures, i.e.

pressures ranging from 2 x 104 to 2 x 106 Pa, and volume fractions between 0.05 and 0.25.

Figure 10. Osmotic pressures measured through a swelling experiment, and comparison with the

osmotic stress experiment. Symbols: (o), data from a dispersion that was first compressed

through centrifugation at 95500 ga, and then allowed to reswell during centrifugation at 26000 ga;

(x), data from a set of dispersions that were submitted to osmotic stress for 3 weeks. Full line:
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theoretical pressures due to the resistance to compression of the layers of counterions, calculated

for a platelet thickness 2H = 1 nm. Dashed line: same with 2H = 1.35 nm (see the text).

At lower pressures or volume fractions, the approach to equilibrium was found to become

exceedingly slow. This was observed when the centrifugation tubes (containing the sediment and

surpernatant) were left at rest, and the sediment height was recorded as a function of time. Figure

11 presents the variation of sediment height as a function of time, for both types of dispersions

(with or without phosphates). In all cases, there is a first stage of swelling where the increment in

sediment height grows as the square root of time. Then, as the sediment crosses from the

concentrated to the semi-dilute range of volume fractions (φ ≈ 0.03), the rate of evolution slows

down considerably. For dispersions with phosphates, it is about 3 times slower, and for

dispersions without phosphates, at least 10 times slower. This difference in swelling laws bears a

striking resemblance to the difference in rheological behavior of the semi-dilute dispersions,

since the dispersions with phosphates are fluids, whereas those without phosphates are soft solids.
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Figure 11. Kinetics of expansion for sediments that were centrifuged at 26000 ga and then left in

equilibrium with the supernatant after centrifugation. () Dispersions without added phosphates;

(O) dispersions with added phosphates; Lines: calculated swelling rates for simple permeation

processes (see the text)

Summary of results

The central result of this work is the observation of spontaneous swelling for highly concentrated

Laponite dispersions. This swelling implies that the concentrated dispersions have a true osmotic

pressure. Dispersions that are submitted to an external osmotic pressure must therefore evolve

towards a state where their internal osmotic pressure matches the applied pressure. This state is

the osmotic equilibrium state of the dispersion.

At equilibrium, the relation of volume fraction to osmotic pressure is the equation of state of the

dispersion. An approximate determination of this equation has been obtained by comparing the

volume fractions of dispersions that evolved from higher volume fractions (expansion) and from

lower volume fractions (compression) at the same applied pressure.

The structures of Laponite dispersions in this equilibrium state have strong orientational and

positional correlations. The orientational correlations cause the platelets to align with their

normal along a common axis, which is the axis of compression. The positional correlations cause

the platelets to be regularly spaced along this direction, with a spacing that matches the average

volume per particle in the dispersion. There are no other periodic or pseudo-periodic correlations

in the structure. The swelling law (volume fraction vs. separation) is one-dimensional, as in a

layered system.

The approach to this osmotic equilibrium state can take very long times, especially so at low

pressures and volume fractions. At the higher pressures (Π > 4 x 106 Pa) and volume fractions (φ

> 0.3), a quasi-static state was reached in compression or in expansion experiments after 15 days

(however, the volume fractions that were reached through compression remained slightly lower

than those reached through expansion). At the lower pressures (1 x 105 Pa) and volume fractions

(0.1), dispersions with added phosphates were still evolving after 1000 days and dispersions

without phosphates remained stuck in a state that was not their osmotic equilibrium state.
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Discussion

The aim of this section is to rationalize the experimental results presented above. There are two

sets of results that need to be rationalized. On the one hand, there are results that were obtained at

the end of very long compression and expansion cycles. These results provide an approximate

determination of the equilibrium state of concentrated Laponite dispersions: indeed, this state

must be located between the states that were reached through compression and through expansion

at the same pressure. In this respect, we need to rationalize the nature of this equilibrium state,

i.e. figure out what is the equilibrium structure of dispersions, what are the interparticle forces in

this equilibrium state, and how these forces determine the structure. On the other hand, there are

kinetic results that were obtained during compression or expansion experiments: these results

show how the dispersions evolve towards the equilibrium state. We would like to understand

what are the forces that drive this approach to equilibrium, and what are the forces that oppose it.

Moreover, we would also like to know whether these compression or expansion processes can

lead to a state that is “close enough” to equilibrium in a finite time, or whether these processes

can take an infinitely long time.

Osmotic equilibrium state

The equilibrium structure of concentrated dispersions has been described on the basis of the

SANS interference patterns. In this structure, the particles have strong orientational correlations

(the platelets tend to align their normal along a common axis), and also strong positional

correlations (the platelets tend to be regularly spaced along this direction). This structure differs

from those of the less concentrated dispersions, in which platelets form random aggregates when

the ionic strength exceeds 10-3 M [7]. Therefore the compression produces a structural transition

in which the aggregated particles reorganize into a lamellar structure. This reorganization must

result from a shift in the relative strengths of interparticle forces.

The forces are of two types [32]:

(a) Interactions between all electrical charges, including surface charges, edge charges, and all

ions in the interstitial solution.

(b) Pressures caused by the thermal agitation of the ions.
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In the case of Laponite, the effects of (a) can be quite complex, because of the uneven charge

distribution on the particles (positive charges on the edges, negative ones on the faces). At low

volume fractions and moderate ionic strengths, these forces lead to aggregation (network

formation) through edge-face and edge-edge attractions [7]. The effects of (b) are rather simple,

since these pressures tend to prevent the overlap of the dense ionic layers that are located next to

the surfaces. This distinction between two types of forces makes it easier to understand the

structural transition that takes place at high volume fractions: when the extraction of water pushes

the faces of the platelets closer to each other, the cost of overlap of ionic layers becomes

prohibitive, so that (b) wins over (a). At this point the particles flip into a parallel configuration,

lose their edge-face contact and take regular spacings.

The relation between forces and structure also becomes simple in this situation. Indeed, the

swelling pressure caused by the layers of counterions can be calculated through the Poisson-

Boltzmann theory for the case where the platelets are parallel and the counterions are monovalent

[32]. The resulting pressure depends on the distance 2h between platelets, on the surface charge

density σe of the platelets (or the concentration of counterions, 2σ/2h), and on the concentration

of added salt (or the screening length κ-1). The expression for the pressure is particularly simple

in three limiting ranges of distances:

Very short distances: h < lG, where lG is the Gouy-Chapman length defined as:

l
G

=
2 kT ε

0
ε
r

σ e2
(11)

In this case the concentration of counterions is uniform within the interstitial solution that

separates the particles, and it is very high. Any salt that was added to the dispersion is excluded

by the Donnan effect, and remains in the supernatant. The osmotic pressure of the interstitial

solution is the pressure of a uniform gas of counterions, and it decays as the inverse of the

separation:

Π = kT
σ

h
 (12)

Intermediate distances: lG  < h < κ-1. In this case, passive salt is still excluded, but the counterions

are not uniformly distributed within the interstitial solution. Instead, they accumulate near the
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charged surfaces, giving a pressure that is independent of the surface charge density and decays

as the inverse square of separation:

Π =
π

2

kT

L
B

1

2h

 

 
 

 

 
 
2

(13)

where LB is the Bjerrum length defined as:

L
B

=
e
2

4π ε
0
ε
r
kT

(14)

Large distances: κ-1 << h. In this case, the added salt floods the interstitial solution and screens

the surface charges. For high surface charge densities, the surface potential takes a limiting value

which is ψeff = 100 mV. Because of this screening, the osmotic pressure of the interstitial solution

decays exponentially with distance:

Π = 2ε0 εr κ
2 ψeff

2
exp −2κh( ) (15)

For concentrated Laponite dispersions (0.1 < φ < 0.4), the interparticle separations are in the

intermediate range defined above. Indeed, for lamellar structures, the half separation h is related

to volume fraction φ through equation (10). This yields half separations that are in the range 1 nm

< h < 6 nm. These separations are always longer than the Gouy Chapman length, which for

Laponite surfaces (σ = 0.7 charge /nm2) is lG = 0.32 nm. Consequently, the separations are never

in the range of “very short distances”.

On the other hand, at lower volume fractions, the half separation h may be comparable to the

screening length κ-1, which is either 4 nm or 2 nm for dispersions without or with phosphates.

Thus, upon decreasing the volume fraction, there may be a crossover from “intermediate” (salt is

excluded) to “large” distances (salt floods the interstitial solution). A practical way of locating

this crossover is to compare the pressures measured at these different ionic strengths: as long as

these pressures are identical, it can safely be assumed that the added salt has remained in the

supernatant. Figures 6 and 7 show that the pressures measured for dispersions with and without

added phosphates are identical, within experimental errors, at all volume fractions in the range

0.1 < φ < 0.4. Therefore, added salt has not been able to flood the interstitial solution, presumably
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because of the very high value of the surface potential of Laponite. In these conditions the

osmotic pressure is expected to follow equation (13), given above for intermediate distances.

The comparison of experimental pressures with the theoretical compression law is presented in

Figure 10. The expectation was that the true equilibrium osmotic pressure should lie in between

the data obtained though deswelling and through reswelling, and closest to the data from

experiments with the longest time scales. The theoretical pressures were calculated through

equation (13), which contains no adjustable parameters; however, the conversion of distances

into volume fractions through equation (10) involves one experimental parameter which is the

layer thickness 2H. If this thickness is taken at the value given by the manufacturer (2H = 1 nm),

then the theoretical curve lies right on top of the reswelling data. If it is taken at the value

determined from the diffraction patterns of concentrated dispersions (2H = 1.35 nm), then the

theoretical curves is on top of the osmotic stress data. Since both sets of experimental data are

quite close to each other, and the theoretical equation of state contains no adjustable parameters,

the agreement can be considered as excellent.

Another theoretical calculation was performed through a Monte Carlo simulation of the

distribution of counterions in the interstitial solution that separates two parallel platelets [33].

This approach is more accurate than the Poisson-Boltzmann theory, since it takes into account all

configurations of the counterions near the particle surfaces, rather than a mean-field

approximation to these configurations. The results of this simulation are quite close to equation

(13) at intermediate distances, and to equation (12) at very short distances. This agreement was

also expected, since the Laponite dispersions do not contain divalent counterions that would take

configurations that depart significantly from the mean field distributions.

Therefore the osmotic pressures that were measured through experiments with slow time scales

(either osmotic stress or reswelling during centrifugation) are quite close to the equilibrium

pressures that result from the thermal agitation of counterions that are located in the vicinity of

the faces of the platelets.

Approach to osmotic equilibrium

Compression experiments have indicated that, for concentrated dispersions, the approach to this

osmotic equilibrium state can be quite slow (2-4 weeks). Expansion experiments have also
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demonstrated that the time scales can become extremely slow (months) or practically infinite at

lower volume fractions (Figure 11). These long time scales indicate that the swelling is opposed

by internal friction forces. There are two types of forces that can oppose the relative motions of

particles and solvent: (1) hydrodynamic drag forces that oppose the permeation of water through

the network of particles, and (2) interparticle forces that tend to keep the particles locked into one

configuration.

There is strong evidence that, in the first stage of swelling (where the average volume fraction of

the sediment is still high), the swelling rate is limited by the rate of permeation. Indeed, the

permeability of ordered Laponite sediments is extremely low [27]. At a volume fraction φ = 0.07,

it is kp = 2.5 x 10–18 m2, and at φ = 0.13 it is kp = 6 x 10–19 m2. As a comparison, clay filtercakes

made of larger kaolinite particles have permeabilities kp = 2 x 10–16 m2 if the particles are

aggregated, and kp = 3x 1 0–17 m2if they are well dispersed [22]. Thus, the permeabilities of

Laponite cakes are 100 times smaller than those of cakes made of regular clay particles. The

permeabilities of Laponite cakes are also much lower than those for dispersions of spherical

particles with the same average radius a, which can be evaluated through the Carman-Kozeny

equation:

k p =
1− φ( )

3

45φ 2
a
2 (16)

If the particle radius a is chosen to give the same mass per particle as that of a Laponite particle,

this would yield permeabilities that are 50 times higher than those measured for Laponite

sediments. Moreover, the low values of kp for Laponite sediments are associated with the highly

ordered structure of the sediment. Indeed, if divalent cations are added to the original dispersion,

the structure becomes completely disordered, and the permeability (at a given volume fraction)

rises by a factor of 50, close to the values calculated for spherical particles [27]. Thus, the low

permeabilities of ordered Laponite sediments are a consequence of their layered structure, as

there the pores that let the water pass across the Laponite layers are extremely small.

With the measured values of the permeabilities, the flux of water through a sediment can be

calculated from Darcy’s law. If the sediment (thickness smax and area of cross section A) was

simply submitted to a pressure difference ΔP, then the flux of water (viscosity µ) would be:
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Q =
k p AΔP

s
max

µ
(17)

In fact, the sediment exchanges water with a supernatant, under the effect of an osmotic pressure

difference Π. Therefore, the swelling is non-uniform, and the flux is non uniform as well. For a

first approximation, we ignore these complications, and assume that the flux is uniform across the

sediment. Consider an incremental swelling step, where the flux Q causes the sediment volume to

increase by δV = A dsmax. The time required for this swelling is:

δt =
δV

Q
=

µ

k p Π

 

 
 

 

 
 smax δsmax( ) (18)

At low volume fractions φ, the permeability kp should vary as kp ≈ φ –2, and the osmotic pressure

as Π  ≈ φ 2; therefore, the first factor remains constant, and the differential equation can be

integrated to give the final height of sediment, which varies as the square root of swelling time.

This integration has been performed with the experimental values of permeabilities, osmotic

pressures and initial sediment height: it does yield a swelling law where the height of sediment

varies as the square root of swelling time; in agreement with the experimental behavior.

However, the predicted swelling rate is too low by a constant factor (Figure 11, dashed line). This

is an effect of the approximations made in the calculation, since the swelling is non-uniform, and

the flux of water does not have to cross the whole sediment height. The comparison with the data

indicates that the effective thickness of sediment that is crossed by the swelling flux is 4 times

smaller than the total sediment thickness (Figure 11, full line).

After about a month of swelling (square root of swelling time = 5 in Figure 11), there is a second

stage where the swelling of the dispersion without added phosphates departs from this law and

slows down by a factor of 30. The average volume fraction of the dispersion at this crossover is φ

= 0.03. This corresponds to the structural transition where the particles flip into aggregated

configurations under the effect of edge-face attractions. Accordingly, the reduction in the rate of

swelling indicates that the network of aggregates resists swelling. The slowing down is not as

marked for the dispersion without phosphates, indicating that the phosphates reduce the life times

of edge face or edge-edge contacts.
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These considerations explain why swelling (and deswelling) are relatively fast at high volume

fractions, because they do not involve any structural reorganization, and much slower at lower

volume fractions, where they are limited by structural processes.

Conclusions

During compression or expansion, the state of aqueous Laponite dispersions results from a

competition of applied forces and internal forces. Applied forces are osmotic forces that tend to

separate the particles from the aqueous phase, e.g. forces that are applied to the boundaries of the

particle network, or to individual particles, or to the solvent. Internal forces are of two types: (a),

interactions between all electrical charges, including surface charges, edge charges, and all ions

in the interstitial solution, and (b), pressures caused by the thermal agitation of the ions.

In general, the competition of all these forces can lead to quite complex behavior. However, the

situation becomes rather simple at very high volume fractions (φ > 0.03). Indeed, when the

extraction of water pushes the faces of the platelets closer to each other, the cost of overlap of

ionic layers becomes prohibitive, so that (b) wins over (a). At this point the particles flip into a

parallel configuration, lose their edge-face contact and take regular spacings.

In this simple situation, the internal osmotic pressure is uniquely determined by the spacing: this

is the equation of state of the dispersions. In aqueous dispersions made at high volume fractions,

it has a power-law behavior that matches the predictions for the force between ionized platelets

that are parallel to each other. Equilibrium is reached when the average spacing is such that this

internal pressure matches the applied pressure.

Non-equilibrium situations occur when the applied force either exceeds or is below the internal

osmotic pressure. In such a situation, water flows out of or into the dispersion, at a rate that is

limited by internal friction forces. At high volume fractions, where the particles are parallel to

each other, and all voids in the structure have been eliminated, the compression or expansion

processes are opposed by hydrodynamic drag forces associated with the permeation of water

through the structure. This permeation is quite slow, because the pores that let water pass across

the Laponite layers are extremely small. At lower volume fractions, where the particles are

aggregated (no longer parallel to each other), permeation is easier, but structural reordering
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becomes the limiting process, because the particles may be locked in their configurations by

edge-face attractions.
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