Wasserstein distance on configuration space - Archive ouverte HAL
Article Dans Une Revue Potential Analysis Année : 2008

Wasserstein distance on configuration space

Laurent Decreusefond

Résumé

We investigate here the optimal transportation problem on configuration space for the quadratic cost. It is shown that, as usual, provided that the corresponding Wasserstein is finite, there exists one unique optimal measure and that this measure is supported by the graph of the derivative (in the sense of the Malliavin calculus) of a ''concave'' (in a sense to be defined below) function. For finite point processes, we give a necessary and sufficient condition for the Wasserstein distance to be finite.

Dates et versions

hal-00160002 , version 1 (04-07-2013)

Identifiants

Citer

Laurent Decreusefond. Wasserstein distance on configuration space. Potential Analysis, 2008, 28 (3), pp.283-300. ⟨hal-00160002⟩
135 Consultations
0 Téléchargements

Altmetric

Partager

More