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Abstract- Usually the offspring-parent fitness correla- number ofepistaticlinks!. By tuning K, landscapes can
tion is used to visualize and analyze some caracteristics generated with varying degrees of ruggedness. In order to
of fitness landscapes such as evolvability. In this paper, compute the overall fithess of one string, one consider that
we introduce a more general representation of this cor- each bit contributes a componentto the total fitness based on
relation, the Fitness Cloud (FC). We use the bottleneck its own value and the values &f other genes. The random
metaphor to emphasise fitness levels in landscape that model is used, where fithess contribution of one bit depends
cause local search process to slow down. For a local on its own value and< other randomly chosen bfts Fit-
search heuristic such as hill-climbing or simulated an- ness contributions come from a uniform distribution raggin
nealing, FC allows to visualize bottleneck and neutrality from 0.0 to 1.0. Fitness of a string is computed as the sum
of landscapes. To confirm the relevance of thEC repre-  of bits contribution at allV loci divided by N for normal-
sentation we show where the bottlenecks are in the well- ization to the rangd0; 1]. The caseX = 0 corresponds
know NK fitness landscape and also how to use neutral- to problem without epistasis: fithesses of neighbourhood
ity information from the FC to combine some neutral points are correlated. There exists a single optimum. A hill

operator with local search heuristic. climbing search allows to reach this optimum and adaptive
walks are thus relatively long\(/2). The casd = N — 1
Introduction corresponds to the maximum number of interaction of the

parts. The fitness of any point is random. There exists an
The fitness correlation between parent and offspring isiofteénormous number of local optima. Adaptive walks are rel-
used to analyse search space. In this paper, we present@igely short [og(2.V)) and are likely to end up in local op-
Fitness Cloud (FCyvhich is the scatterplot of points parent-timum.
fitness/offpring-fitness. ThEC allowed us to visualize and

analyse the dynamic of local search heuristic at fitness.levg .2 The Offspring-Parent Fitness Correlation Cloud
FC shows evolvability as well neutrality and fitness bottle-

neck. The bottleneck value is the fitness level that cau€dotting fitness against some features is not a new idea. B.
local search to slow down and stop. In other word, bottiVanderick et al. [[7] study the correlation coefficient of ge-
neck is fithess value where heuristic converge. In this pap&l€tic operators: they compute the correlation between the
we focus on theVK fitness landscapes. First, we presenf,_ltnesses of a number of parents and the fithesses of their
NK fitness landscapes and the definition of Fitness Clou@ffSPring. J. Grefenstet.tﬂ [3] uses fitness distributiogef
Section 2 reveals how C' exhibit bottleneck inVK land-  Netic operators to predict GA behaviour. H. Rosé et[dl. [8]
scapes for two well-know search heuristics hill climber ang€velop thedensity of stateapproach by plotting the num-
simulated annealing. ThEC represents the neutrality of Per of genotypes with a same finess value. Smith efjal. [9]
landscape, section 3 proposes to use this information to @SUs on notions oévolvabilityandneutrality, they plot the

sign and analyse performances of strategy using neutrality2Verage finess of offspring over fitness according to Ham-
ming neighbourhoodEvolvability refers to the efficiency

of evolutionary search. It is defined by Altenberg as "the
ability of an operator/representation scheme to produice of
spring that are fitter than their parents] (1] [2]).

1 NK Landscapes and Fitness Cloud

1.1 The Tunable NK-Fitness Landscapes

In this section the basic features of the family of NK ﬁmes%itness Cloud In order to get a visual rendering of evolv-
landscapes are reviewed. 'I_'he notion of fitness landscap lity, we proposed a more general representaion in the
[E] as s_earch space 1S deflngd as follows. a set of pote lan parent-fitness / offspring-fitness. We consider that tw
tial solutions (genotypes), a fitness function that evaisiat

. strings are neighbours if there is a transformation reltded
the genotypes and a topology that represents relations be-

twe.en genotypes. NK madel proposed by Kauffnﬂn [4] I.S 1Epistasis is defined as the influence of the genotype at oms loe
designed to capture the structure of rugged multi-peaked fit,e effect of a mutation at another locus
ness Iand;capes. These random landscapes are defined Gfjeinberger [[1l1] proved the NK optimization problem with dam
binary strings of lengttiv. The parametek represents the neighbourhoods i8/P complete fork™ > 3




a local search heuristics or an operator, which allows "to = i e mean 20
pass” from one string to the other one. For each stiing S
in the genotype spagewe plot one point which have for
abscissa the fithesg(x) of « and for ordinate the fitness
f(z) of a peculiar neighbour of. Thus, we obtain a scat-
terplot, the so-calledffspring-parent Fitness Clou@'C).

The choice of one peculiar neighbour among all the possi-
ble ones is a feature of the heuristic. Implicitly the fithess
cloud gives some insight on the genotype to phenotype map.
The set of genotypes that all have equal fithessristral
set[E]. Such a set corresponds to one abscissa irFifie o2y
according to this abscissa, a vertical slice from the cloud
represents the fitness values that could be reached from this ol ‘ ‘ ‘ ‘

set of neutrality. For a given offspring-fitness valfiean ’ ° S parenttiness ° '
horizontal slice represents all the fitness values from whic

a local operator can reagh Evolvability against a fitness Figure 1: Fitness Cloud from the Hamming neighbourhood:
level can be charaterized by the repartition of points ovedyorder (min and max) and mean (NK-landscapes Witk

the diagonal line in theé"C'. In this paper we will use the 25, K =20 andK = 5)

FC to track the dynamic and to locate the bottlenecks of

local search heuristic. To get a more synthetic view on the

FC, we define three functions :

offspring fitness
°
@

°
S

frequency of apparition

fmin(w) = ;Zgif(x) e

0.004

fmax(@) = ma:cf(z) 0.002

zeGy,

0

Fmean() = ngﬁf (z)

where G, is the neutral set defined by:
{z € Gtype | f () = ¢}. Practically two fithess val-
ues are taken as equal if they both stand in the same
interval. We call FC,,in, FCpar and FCpeqn respec-
tively the representative curve ¢fnin, fimaz aNd frcan-

Pl_ottlng the curves’'Ciy,q, and FC_””'" allows to mate_n— Figure 2: Distribution of points on the Fitness Cloud (NK
alize the edge of the cloud (see fid. 1)._A peculiar f'mesf%mdscape WithV = 25 and K = 20)

value g is defined as solution of equatigi},cqn(8) = 5;

it corresponds to the abscissa of intersection between the

FCpean curve and the diagonal line (see fid] 1). On Figure[l shows the"C,,.... curve is coarsely a line.
average(s; is invariant by the heuristic, i.e. the heuristic isThis illustrates a well-known result: Weinbergpr][10] ésta
neutral on the sef 3. lished the following relation between the mean offspring-
fithess and the lengtlV, the epistatic parametéf and the
fitness valuef:

0.1
0.2
0.3
0475%

0.6
parent fitness 0.7 0.8 09 0 B

Offspring-Parent Fitness Cloud and Hamming Distance
Before study a specific heuristic, it may be useful to get a . K+1 K+1
view on the scatterplot fitness vs. fithess based on Hamming Jmean(f) = (1 - T) f (T
neighbourhood which is independent from any heuristic.

So, we plot a cloud where all of the genotypes that can behere 3 is constant. Therefore the mean offspring-
produced by a single bit flip are selected (seelfig. 1). Hencliiness depends linearly from the parent-fitness whatever
the entire neighbourhood is represented without conditidhie epistatic parametds is. As reported by Smith[J9],
induced by some heuristics. let's note that the slop coefficient— £ is the offspring-
parent fithesses correlatioE[lO]. Thefitness level is al-
3Data are collected from an exhaustive enumeration of thelsspace  ways equal td.5. So, when the parametéf varies from0

4in our experiments the rangeds002 to N—1,the FCy,ean line turns around thes; 3) point (see

)ﬁ )




fig. ). For K = 0 the problem is linear and thEC,,....,  define the following function:

line is near the diagonal; at the opposite when epistasis is

upper limit (& = N — 1), the FCpeqn line is close to the fmean () = Teegnf*(l’)
horizontal. ‘

and the fitness valug* asf;,.,,(8)". We callFC?,. . the
2 Fitness Bottleneck and Limit Fitness Cloud representative curve ¢f;, .,

In this section we show that the fitness cloud is useful i2.2 Myopic Hill Climber
identifying a bottleneck’s location at fitness level. In &ffir
step we plot thet’'C' according to a local search heuristic.
So we are able to locate the bottleneck. Then modeling d
namic by the way of thémit fitness cloudallows to confirm
the realness of bottleneck value. In the following two com
putational search techniques are usedyopic hill climb-

A myopic hill climbing heuristic (so-called mHC) is used.

\t each step, the fittest of all of the genotypes that can
e produced by a single bit flip is selected. Entire neigh-
bourhood is searched and selection occurs in all cases, even
when the best of the one-mutant neighbours of a genotype

ing (MHC) andsimulated annealingSA). They implement S less fit than it. Figur]3 (a) shows tC,,c., curve is

adaptive local search; the neighbourhood is defined in terfj@arsely a line too: the mean offspring-fitness is in propor-
of applying Hamming mutation. tion to fitness, whatever the epistatic paraméfes. Rela-

tion betweerfmem and the lengthV, the epistatic parame-
2.1 Modeling Dynamics at Fitness Level ter K and fitnesg verifies the following equation:

Let H an heuristic, we assume there is a functi®fx) Fonean(f) = (1 K+ 1) ' (K + 1) BEX) @)
which allows to model the average dynamicsifat fit- N N

ness level. Given an initial genotype of fitheis applying

the heuristic generates a seque ... by the iteration
g quericefs. ... by X(N,K) = max(Xy,...,Xy) and X; follows normal

fr+1 = H(fx). Our hope is to gain knowledge from func- 1 .
tion H in order to help us to predict the behaviour of theIaWN(O'5’ «/12(K+1))' Then, correlation between parent-

heuristic. To illustrate this approach, let us consider théitness and the mean offspring-fitness is linear. Therefore
heuristic (notedH},,,,) corresponding to aandom walk (3 = E(X(N,K)) is not any more constant but depends
starting from a initial genotype, at each step the next genfrom N and K. WhenN is fixed, 3 grows as the amount of
type is chosen at random in the Hamming neighbourhoo€@pistasis decreases. A least squares regression is campute

The mean termF(X) is equal toE(X (N, K)) where

Equatior{]L may be reformulated in from the FC,,eqn et forN = 20 andK = 15, we find:
K+1 K+1 Frnean = 0.200f + 0.516 (4)
it = (1 K20) 11 (K215 g

which agrees to equatic[h 3

From an initial fitness valu¢; less than3, the sequence  The F'C allows to predict whether in the fitness space a
fi, f2,... increases to3. On average offspring-fitness bottleneck is likely to arise. We conjecture there is such a
is higher than parent-fitness; thus the heuristic is selebottleneck in the vicinity of thej fitness level. This means
tively advantageous. If fitness is greater thiirthe mean that, applying mHC heuristic from a point which fitness is
offspring-fitness is lower than fitness: on average the keuribelow3, on average the search process breaks off around
tic is deleterious. Property3 = 0.5} means that on aver- In particular from a random initial point, dynamic pushes
age Hpqm is selectively neutrlon NK-landscapes what- fitnesses toward. In order to validate this hypothesis, from
ever epistasis is. Starting frofa = 0.5° the heuristic gen- €ach genotype as initial point, mHC is ran over 50 genera-
erates the sequenge = 0.5, fo = 0.5, .... In order to get tions to collect the fitness of the last point encountered. Al
a visual rendering of the long term behavior of an heurighese informations are got together to build up the corre-
tic, for each string in the genotype space a point is plotte@pondinglimit fitness cloudsee figurg]3 (b). According to
the abscissa of which is the fithegsand the ordinate the the initial fitness value (abcissa) we can observe two main
fitnessf* of a genotype reached after applying the heuriscases about the limit behavor of the mHC heuristic. Apply-
tic a given number of times. Thus, a new scatterplot, th&g the heuristic a given number of times results to an equi-
so-calledLimit Fitness Cloudnoted FC*), is drawn. We librium state where the mean fitnegs no longer changes
from generation to generation. First, for an initial fitnbss
5H},.m induces no effect on fitness level low 3, on average mHC "converges” to the fitness vaitie

SFitness of a random initial genotype is on average closeletartean
fitness over the search spage=€ 0.5) 7of course, in this definition we assume tiiaexists




= | metaheuristic B | 5 |
mHC 0.645 0.667
os SA (T = 0.10) 0.524 0.559
SA (T = 0.05) 0.548 0.590
SA (T =0.01) [0.604, 0.792]| 0.656
g SA (Generation 50) - 0.560
5 SA (Generation 1000 - 0.613
g SA (Generation 1900 - 0.682
SA (Generation 2450 - 0.701
nHC [0.686,0.792]| 0.746
Table 1: Experimental values gfand* for N = 20 and
K = 15 with mHC, SA and nHC. The maximum fithess

0 02 04 06 B 08 1
parent fitness

(@)

T ‘ ‘ ‘ ness value, thus allowing SA to jump out of local maxima.
SA search technique takes its inspiration from the models
0sl ] of the annealing physical proces‘} [6]. It is search process
‘ ' based on using a parameter which can play the role of tem-
perature. The ability to avoid to get stuck in local optima
depends on the choice of initial temperature, the number of
, iterations performed at each temperature, and the way the
0al ] temperature is decremented. At each step, one genotype
’ from all of the genotypes that can be produced by a single
bit flip is selected and the resulting changef = f — £, in
' ] fithess is computed. A f > 0, the new point is accepted,;
i else, it is accepted with probabilig//T, whereT is the
‘ ‘ ‘ ‘ temperature control parameter. One major problem with SA
’ ” " finess ” ' is to control thecooling processOften the cooling schedule
(b) is developed by trial and error for each particular landscap
First, with regard to given temperature values, the fithess
Figure 3: Fitness Cloud under mHC: border (min and maxg|oud is analyzed; then a cooling process is implemented.
and mean (with standard deviationy'¢’ (a), F'C* (b))  For a given temperaturg, relation betweerf,can, f, N,
(NK-landscape withV = 20 and K = 15) K andT can be derived from equatidj 3. In this case,

value for this fitness landscapelis92

limit fitness

: E(X) = EX(f,N,KT))
Let's note that3 is smaller thars* but have the same mag- f
nitude (see ta] 1). Second, fitnesgeaboveg are fixed - 1_ ¢(7f —0, 5) +/ (2= f)e%daj
points in the fithess spac¢*( = f). Let’s note that there is 0K —0 0K

a transition range aroun@ where f* depends not linearly
on f. These experiments support thettleneck conjecture

it is difficult to bypasse thes* fitness level for the mHC

heuritic. Of course, breaking the bottleneck may occur f
a particular initial genotype as in this study we look for th
average behavior only.

wherep and® are respectively the density and repartition

function of the reduced centered normal law. 50X ) de-
ends, not only orV and K, but on the fithess value too.

é«s a consequence, the 96t,,,.. iS N0 more represented
y a line but by a curved shape.

High temperature As predicted by our analytical study,

at high temperaturel{ = 0.10), the F'Cy,eqn Set is repre-
Simulated annealing (SA) can be seen as a way of tryirggnted by a curved shape (seeﬁg. 4 (a)). This curve crosses
to allow solution to get away from local optima and movethe diagonal at poin{s; ) distinctly; so it is easy to es-
toward fitter point. The SA algorithm employs a randontimate 3 (see tab[]1). Plotting the limit fitness cloutC*
search that not only accepts changes that increase the §irows that it is difficult to bypasse thi# bottleneck level
ness function, but also some changes that decrease theffi- the SA at high temperature (see fi§. 4 (b) and fhb. 1).

2.3 Simulated Annealing
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Figure 4. Fitness Cloud under SA high temperature:  Figure 5: Fitness Cloud under SAratedium temperature:
border (min and max) and mean (with standard deviatioljorder (min and max) and mean (with standard deviation)
(FC (a), FC* (b)) (NK-landscape withV = 20 and K = (F'C (a), FC* (b)) (NK-landscape withV = 20 and K =

15) 15)

Let's note that3* is reached whatever the initial fitness iscult to visualize point which abscissads Examining data,

(except for extreme fitness values). we can find an interval where théC,,, ..., curve is close to
the diagonal line (with a accuracy of 0.002) (seethb. 1). The
Medium temperature At medium temperature7{ = SetrCy,. ., is roughly represented by an horizontal line ex-

0.05), the fitness cloud is roughly shared by the diagonajept for high fitnesses where it follows the diagonal line(se

line as the probability to accept deleterious mutation refig. § (b) and tabf]1). As the constant valuefgf.,,, corre-

mains significant (see fi] 5 (a)). It is easy to estimate bo$ponds to a bottleneck; stands for this value, although

B ands* (see tabf]1). The* fitness level appears to be at-is not discerned.

tractive on the limit fithess cloud (see fE; 5(b) and ﬁb. 1).

Once againﬂ* is reached whatever the initial fithess is. Cooling process The notion Of System temperature is in-
trinsic to the SA process. By slowly lowering the temper-

Low temperature At low temperature{ = 0.01), the ature of an initially random system, we encourage the ele-

greatest part of the fithess cloud is above the diagonaléine ments of the system to assume an orderly, minimal energy

the probability to accept deleterious mutation is smale(searrangement. In search process terms, a slow cooling can

fig. @ (@)). TheFCyean curve is a curved shape; as fitnesshus lead to an optimal state. Our annealing schedule is

increases, it glides slope toward the diagonal. So it is-diffdefined as follows: temperature start$at0, and drops to
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Figure 7: Limit fitness cloud under SA wittpboling process generation 50 (a), generation 1000 (b), generation 1900 (c
generation 2450 (d) (NK-landscape with= 20 and K’ = 15)

0.01 over a geometric decrements whére- 0.957%. 2450 3 Fitness Cloud and neutrality : Neutral Hill
generations are performed; changes occurs each 50 geneiClimber

ations. The cooling process is sufficiently slow such that

for each temperature an equilibrium state, where the meém the Fitness Cloud, a vertical slice represents the set of
fitness no longer changes from generation to generation,fimesses that could be reached from this set of neutrality.
reached. Figur 7 shows snapshots offfli& cloud atgen- Consequently thé’C’ shows the potential interest in using
erations 50, 100, 1900 and 2450. As for low temperatur@eutral operator. To implement such an operator noted nOP,
(£* stands for the constant value ¢f,.,,, sinceg is not first the entire search space is partitioned according to fit-
significant. During the cooling procegs increases with ness, then we are able to choose at random a genotype with
generations to finally, reaches its greatest value (seffyab. a given fitness valfe So each genotype with the same
Let’s note that the finab* value for SA (.701) is greater fitness are connected by an elementary neutral move. To
that the one for mHCQ(667). combine neutral exploration with local search techniquee, w
define theneutral Hill Climbing heuristic (so-called nHC).
First mHC is applied on the current genotypand the re-
sulting changeAf = f — f, in fitness is computed. If
Af > 0, the new point is accepted; else, we obtain off-

8Experience has shown that the decrement coefficient shauloeb

tween0.8 and0.99, with better results being found in the higher end of the
range Swith an uniform law
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behavor of the nHC heuristic. First, for an initial fithess
below g* = 0.746 (as for SA with low temperaturgd* is
the constant value of},....), on average nHC converges
to a fitness value close t6*. Second, fithesses abogé

are fixed points in the fithess space. Thereforeghdit-

ness level is a bottleneck for the nHC heuritic. In nHC,
leaving the genotype invariant instead of applying nOP, the
fitness cloud remains identical. TH&C* allows to show

the influence of nOP: neutral exploration allows to find bet-
ter fithesses. Let's note that the fithess bottleneck for nHC
(0.746) is greater that the one for both mHG.¢67) and

SA (0.701). These experiments show the potential inter-
est in using neutral operator when each plateau is a graph
connected by a neutral operator. Of course this is an ideal
case, in more realistic situations we must consider thetopo
ogy graph of neutral sets induces by hamming mutation or
a specific neutral operator. In real word problems one must

take into account the computational cost in using neutral op
erator as well the availability of such operator. However in
many problems neutral operator may derive from specific
knowledge as symetry properties or redondancies.

0.8

limit fitness

, Conclusion

In this paper we have presented the Offspring-Parents Fit-
o2r 1 ness Cloud. The Fitness Cloud shows evolvability as well
neutrality and dynamic at fitness level of local search lseuri
‘ ‘ ‘ ‘ tic. We have used FC to formulate thettleneck conjecture
’ o P o8 ! there is a fitness level in the NK-landscape that causes local
(b) search process to slow down and stop. Moreover the FC is
useful in identifying the bottleneck’s location in the nieig
Figure 6: Fitness Cloud under SAlaw temperature: bor-  bourhood of a fitness valu@. This conjecture deals with
der (min and max) and mean (with standard deviatiéi)( the average behavior of local search heuristics only. Te con
(), FC* (b)) (NK-landscape withV = 20 and K’ = 15) firm this conjecture, the Limit Fitness Cloud is introduced;
it gives a visual rendering of the long term behavior. The
experiments performed on NK-landscape with Hill Climb-

_ ) o ing, Simulated Annealing and Neutral Hill Climbing sup-
spring by applying nOP to the genotypeWithin aneutral - o ¢ conjecture. Indeed there is a fitness Igietlose

§et there is no productive gradientinformatipn, then the ga, 3 which is difficult to bypass. FC can also represent the
fitness comes from Hamming based mutation only. The reg ity of landscape. So, we have designed the Neutral
Iatmn_betweenfme-an, f, N and K can be derived from Climbing (nHC) which shows how to exploit the infor-
equation[B. In this caséy(X) = E(X(f, N, K)) where  oion apnout neutrality given by FC. We have found exper-
X(f,N,K)is maz(flel’ -, Xn) with X; follows nor- imentaly that the bottleneck for nHC is greater that the one
mal law N (0.5, W). As a consequence, the sett,.\,5ith mHC and SA.

FCean is represented by a curved shape. Figﬂlre 8 showviis this work exhaustive enumeration of the search space is
the F'C,,,cqn cuUrve is coarsely a line except for high fithesaused; future works should address the question of how to
values where it glides slope toward the diagonal. So it iget FC from data collected through random sampling or dur-
difficult to visualize point which abscissa j& Examin- ingthe search process. To track the dynamics of population
ing data, we can find an interval where tR€,,,..,, curve based heuristics, @enetic algorithmsnotion of population

is close to the diagonal line with a accuracy of 0.002 (semust be taken into account. The approach can be extended
tab.[ir). To support the bottleneck conjectureltimit fitness to others operators than local variations, in particular we
cloudis plotted (see fig[|8 (b)). According to the initial fit- project to draw the FC for crossover. Another extension is
ness value we can observe two main cases about the lirtatstudy the effect of choosing one representation: for in-
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[3]

[4]

[5]

[6]
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[8]

[9]

(10]

Figure 8: Fitness Cloud under nHC: border (min and max)

and mean (with standard deviationy'@ (a), FC* (b))
(NK-landscape withV = 20 and K = 15)

(11]

stance, what happen to the FC when switching from Integer
coding to Gray coding ? The NK-landscapes can be use-

ful for initial investigations, but results gained on theame

(12]

not be guaranteed to transfer to real word problems in gen-
eral. So we obviously have to study fitness cloud and the
fithess bottleneck hypothesis on other problems than NK-

landscapes.
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