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Université de Nice-Sophia Antipolis,
06640, Laboratoire I3S, France,
{verel,pc,clerguem}@i3s.unice.fr

Abstract- Usually the offspring-parent fitness correla-
tion is used to visualize and analyze some caracteristics
of fitness landscapes such as evolvability. In this paper,
we introduce a more general representation of this cor-
relation, the Fitness Cloud (FC). We use the bottleneck
metaphor to emphasise fitness levels in landscape that
cause local search process to slow down. For a local
search heuristic such as hill-climbing or simulated an-
nealing,FC allows to visualize bottleneck and neutrality
of landscapes. To confirm the relevance of theFC repre-
sentation we show where the bottlenecks are in the well-
know NK fitness landscape and also how to use neutral-
ity information from the FC to combine some neutral
operator with local search heuristic.

Introduction

The fitness correlation between parent and offspring is often
used to analyse search space. In this paper, we present the
Fitness Cloud (FC)which is the scatterplot of points parent-
fitness/offpring-fitness. TheFC allowed us to visualize and
analyse the dynamic of local search heuristic at fitness level.
FC shows evolvability as well neutrality and fitness bottle-
neck. The bottleneck value is the fitness level that cause
local search to slow down and stop. In other word, bottle-
neck is fitness value where heuristic converge. In this paper,
we focus on theNK fitness landscapes. First, we present
NK fitness landscapes and the definition of Fitness Cloud.
Section 2 reveals howFC exhibit bottleneck inNK land-
scapes for two well-know search heuristics hill climber and
simulated annealing. TheFC represents the neutrality of
landscape, section 3 proposes to use this information to de-
sign and analyse performances of strategy using neutrality.

1 NK Landscapes and Fitness Cloud

1.1 The Tunable NK-Fitness Landscapes

In this section the basic features of the family of NK fitness
landscapes are reviewed. The notion of fitness landscapes
[12] as search space is defined as follows: a set of poten-
tial solutions (genotypes), a fitness function that evaluates
the genotypes and a topology that represents relations be-
tween genotypes. NK model proposed by Kauffman [4] is
designed to capture the structure of rugged multi-peaked fit-
ness landscapes. These random landscapes are defined on
binary strings of lengthN . The parameterK represents the

number ofepistatic links1. By tuningK, landscapes can
generated with varying degrees of ruggedness. In order to
compute the overall fitness of one string, one consider that
each bit contributes a component to the total fitness based on
its own value and the values ofK other genes. The random
model is used, where fitness contribution of one bit depends
on its own value andK other randomly chosen bits2. Fit-
ness contributions come from a uniform distribution ranging
from 0.0 to 1.0. Fitness of a string is computed as the sum
of bits contribution at allN loci divided byN for normal-
ization to the range[0; 1]. The caseK = 0 corresponds
to problem without epistasis: fitnesses of neighbourhood
points are correlated. There exists a single optimum. A hill
climbing search allows to reach this optimum and adaptive
walks are thus relatively long (N/2). The caseK = N − 1
corresponds to the maximum number of interaction of the
parts. The fitness of any point is random. There exists an
enormous number of local optima. Adaptive walks are rel-
atively short (log(2N)) and are likely to end up in local op-
timum.

1.2 The Offspring-Parent Fitness Correlation Cloud

Plotting fitness against some features is not a new idea. B.
Manderick et al. [7] study the correlation coefficient of ge-
netic operators: they compute the correlation between the
fitnesses of a number of parents and the fitnesses of their
offspring. J. Grefenstette [3] uses fitness distribution ofge-
netic operators to predict GA behaviour. H. Rosé et al. [8]
develop thedensity of statesapproach by plotting the num-
ber of genotypes with a same fitness value. Smith et al. [9]
focus on notions ofevolvabilityandneutrality; they plot the
average fitness of offspring over fitness according to Ham-
ming neighbourhood.Evolvability refers to the efficiency
of evolutionary search. It is defined by Altenberg as ”the
ability of an operator/representation scheme to produce off-
spring that are fitter than their parents” ([1], [2]).

Fitness Cloud In order to get a visual rendering of evolv-
ability, we proposed a more general representaion in the
plan parent-fitness / offspring-fitness. We consider that two
strings are neighbours if there is a transformation relatedto

1Epistasis is defined as the influence of the genotype at one locus on
the effect of a mutation at another locus

2Weinberger [11] proved the NK optimization problem with random
neighbourhoods isNP complete forK ≥ 3



a local search heuristics or an operator, which allows ”to
pass” from one string to the other one. For each stringx

in the genotype space3, we plot one point which have for
abscissa the fitnessf(x) of x and for ordinate the fitness
f̃(x) of a peculiar neighbour ofx. Thus, we obtain a scat-
terplot, the so-calledoffspring-parent Fitness Cloud(FC).
The choice of one peculiar neighbour among all the possi-
ble ones is a feature of the heuristic. Implicitly the fitness
cloud gives some insight on the genotype to phenotype map.
The set of genotypes that all have equal fitness is aneutral
set [5]. Such a set corresponds to one abscissa in theFC;
according to this abscissa, a vertical slice from the cloud
represents the fitness values that could be reached from this
set of neutrality. For a given offspring-fitness valuef̃ , an
horizontal slice represents all the fitness values from which
a local operator can reach̃f . Evolvability against a fitness
level can be charaterized by the repartition of points over
the diagonal line in theFC. In this paper we will use the
FC to track the dynamic and to locate the bottlenecks of
local search heuristic. To get a more synthetic view on the
FC, we define three functions :

f̃min(ϕ) = min
x∈Gϕ

f̃(x)

f̃max(ϕ) = max
x∈Gϕ

f̃(x)

f̃mean(ϕ) = mean
x∈Gϕ

f̃(x)

where Gϕ is the neutral set defined by:
{x ∈ Gtype | f (x) = ϕ}. Practically two fitness val-
ues are taken as equal if they both stand in the same
interval4. We call FCmin, FCmax andFCmean respec-
tively the representative curve of̃fmin, f̃max and f̃mean.
Plotting the curvesFCmax andFCmin allows to materi-
alize the edge of the cloud (see fig. 1). A peculiar fitness
valueβ is defined as solution of equatioñfmean(β) = β;
it corresponds to the abscissa of intersection between the
FCmean curve and the diagonal line (see fig. 1). On
average,Gβ is invariant by the heuristic, i.e. the heuristic is
neutral on the setGβ .

Offspring-Parent Fitness Cloud and Hamming Distance
Before study a specific heuristic, it may be useful to get a
view on the scatterplot fitness vs. fitness based on Hamming
neighbourhood which is independent from any heuristic.
So, we plot a cloud where all of the genotypes that can be
produced by a single bit flip are selected (see fig. 1). Hence,
the entire neighbourhood is represented without condition
induced by some heuristics.

3Data are collected from an exhaustive enumeration of the search space
4in our experiments the range is0.002

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 β 0.6 0.8 1

parent fitness

of
fs

pr
in

g 
fit

ne
ss

min, max, mean K=20
min, max, mean K=5

Figure 1: Fitness Cloud from the Hamming neighbourhood:
border (min and max) and mean (NK-landscapes withN =
25, K = 20 andK = 5)
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Figure 2: Distribution of points on the Fitness Cloud (NK
landscape withN = 25 andK = 20)

Figure 1 shows theFCmean curve is coarsely a line.
This illustrates a well-known result: Weinberger [10] estab-
lished the following relation between the mean offspring-
fitness and the lengthN , the epistatic parameterK and the
fitness valuef :

f̃mean(f) =

(

1 − K + 1

N

)

f +

(

K + 1

N

)

β (1)

where β is constant. Therefore the mean offspring-
fitness depends linearly from the parent-fitness whatever
the epistatic parameterK is. As reported by Smith [9],
let’s note that the slop coefficient1 − K+1

N
is the offspring-

parent fitnesses correlation [10]. Theβ fitness level is al-
ways equal to0.5. So, when the parameterK varies from0
toN−1, theFCmean line turns around the(β; β) point (see



fig. 1). ForK = 0 the problem is linear and theFCmean

line is near the diagonal; at the opposite when epistasis is
upper limit (K = N − 1), theFCmean line is close to the
horizontal.

2 Fitness Bottleneck and Limit Fitness Cloud

In this section we show that the fitness cloud is useful in
identifying a bottleneck’s location at fitness level. In a first
step we plot theFC according to a local search heuristic.
So we are able to locate the bottleneck. Then modeling dy-
namic by the way of thelimit fitness cloudallows to confirm
the realness of bottleneck value. In the following two com-
putational search techniques are used:myopic hill climb-
ing (mHC) andsimulated annealing(SA). They implement
adaptive local search; the neighbourhood is defined in terms
of applying Hamming mutation.

2.1 Modeling Dynamics at Fitness Level

Let H an heuristic, we assume there is a functionH(X)
which allows to model the average dynamics ofH at fit-
ness level. Given an initial genotype of fitnessf1, applying
the heuristic generates a sequencef1, f2, ... by the iteration
fk+1 = H(fk). Our hope is to gain knowledge from func-
tion H in order to help us to predict the behaviour of the
heuristic. To illustrate this approach, let us consider the
heuristic (notedHham) corresponding to arandom walk:
starting from a initial genotype, at each step the next geno-
type is chosen at random in the Hamming neighbourhood.
Equation 1 may be reformulated in

Hham(f) =

(

1 − K + 1

N

)

f +

(

K + 1

N

)

β (2)

From an initial fitness valuef1 less thanβ, the sequence
f1, f2, ... increases toβ. On average offspring-fitness
is higher than parent-fitness; thus the heuristic is selec-
tively advantageous. If fitness is greater thanβ, the mean
offspring-fitness is lower than fitness: on average the heuris-
tic is deleterious. Property{β = 0.5} means that on aver-
ageHham is selectively neutral5 on NK-landscapes what-
ever epistasis is. Starting fromf1 = 0.56 the heuristic gen-
erates the sequencef1 = 0.5, f2 = 0.5, .... In order to get
a visual rendering of the long term behavior of an heuris-
tic, for each string in the genotype space a point is plotted;
the abscissa of which is the fitnessf and the ordinate the
fitnessf∗ of a genotype reached after applying the heuris-
tic a given number of times. Thus, a new scatterplot, the
so-calledLimit Fitness Cloud(notedFC∗), is drawn. We

5Hham induces no effect on fitness level
6Fitness of a random initial genotype is on average closed to the mean

fitness over the search space (f̄ = 0.5)

define the following function:

f∗

mean(ϕ) = mean
x∈Gϕ

f∗(x)

and the fitness valueβ∗ asf∗

mean(β)7. We callFC∗

mean the
representative curve off∗

mean.

2.2 Myopic Hill Climber

A myopic hill climbing heuristic (so-called mHC) is used.
At each step, the fittest of all of the genotypes that can
be produced by a single bit flip is selected. Entire neigh-
bourhood is searched and selection occurs in all cases, even
when the best of the one-mutant neighbours of a genotype
is less fit than it. Figure 3 (a) shows theFCmean curve is
coarsely a line too: the mean offspring-fitness is in propor-
tion to fitness, whatever the epistatic parameterK is. Rela-
tion betweenf̃mean and the lengthN , the epistatic parame-
terK and fitnessf verifies the following equation:

f̃mean(f) =

(

1 − K + 1

N

)

f +

(

K + 1

N

)

E(X) (3)

The mean termE(X) is equal toE(X(N, K)) where
X(N, K) = max(X1, . . . , XN ) and Xi follows normal
lawN (0.5, 1√

12(K+1)
). Then, correlation between parent-

fitness and the mean offspring-fitness is linear. Therefore
β = E(X(N, K)) is not any more constant but depends
from N andK. WhenN is fixed,β grows as the amount of
epistasis decreases. A least squares regression is computed
from theFCmean set forN = 20 andK = 15, we find:

f̃mean = 0.200f + 0.516 (4)

which agrees to equation 3
TheFC allows to predict whether in the fitness space a

bottleneck is likely to arise. We conjecture there is such a
bottleneck in the vicinity of theβ fitness level. This means
that, applying mHC heuristic from a point which fitness is
belowβ, on average the search process breaks off aroundβ.
In particular from a random initial point, dynamic pushes
fitnesses towardβ. In order to validate this hypothesis, from
each genotype as initial point, mHC is ran over 50 genera-
tions to collect the fitness of the last point encountered. All
these informations are got together to build up the corre-
spondinglimit fitness cloudsee figure 3 (b). According to
the initial fitness value (abcissa) we can observe two main
cases about the limit behavor of the mHC heuristic. Apply-
ing the heuristic a given number of times results to an equi-
librium state where the mean fitnessf∗ no longer changes
from generation to generation. First, for an initial fitnessbe-
low β, on average mHC ”converges” to the fitness valueβ∗.

7of course, in this definition we assume thatβ exists
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Figure 3: Fitness Cloud under mHC: border (min and max)
and mean (with standard deviation) (FC (a), FC∗ (b))
(NK-landscape withN = 20 andK = 15)

Let’s note thatβ is smaller thanβ∗ but have the same mag-
nitude (see tab. 1). Second, fitnessesf aboveβ are fixed
points in the fitness space (f∗ = f ). Let’s note that there is
a transition range aroundβ wheref∗ depends not linearly
onf . These experiments support thebottleneck conjecture:
it is difficult to bypasse theβ∗ fitness level for the mHC
heuritic. Of course, breaking the bottleneck may occur for
a particular initial genotype as in this study we look for the
average behavior only.

2.3 Simulated Annealing

Simulated annealing (SA) can be seen as a way of trying
to allow solution to get away from local optima and move
toward fitter point. The SA algorithm employs a random
search that not only accepts changes that increase the fit-
ness function, but also some changes that decrease the fit-

metaheuristic β β∗

mHC 0.645 0.667
SA (T = 0.10) 0.524 0.559
SA (T = 0.05) 0.548 0.590
SA (T = 0.01) [0.604, 0.792] 0.656

SA (Generation 50) - 0.560
SA (Generation 1000) - 0.613
SA (Generation 1900) - 0.682
SA (Generation 2450) - 0.701

nHC [0.686, 0.792] 0.746

Table 1: Experimental values ofβ andβ∗ for N = 20 and
K = 15 with mHC, SA and nHC. The maximum fitness
value for this fitness landscape is0.792

ness value, thus allowing SA to jump out of local maxima.
SA search technique takes its inspiration from the models
of the annealing physical process [6]. It is search process
based on using a parameter which can play the role of tem-
perature. The ability to avoid to get stuck in local optima
depends on the choice of initial temperature, the number of
iterations performed at each temperature, and the way the
temperature is decremented. At each step, one genotype
from all of the genotypes that can be produced by a single
bit flip is selected and the resulting change,∆f = f̃ − f , in
fitness is computed. If∆f > 0, the new point is accepted;
else, it is accepted with probabilitye∆f/T , whereT is the
temperature control parameter. One major problem with SA
is to control thecooling process. Often the cooling schedule
is developed by trial and error for each particular landscape.
First, with regard to given temperature values, the fitness
cloud is analyzed; then a cooling process is implemented.
For a given temperatureT , relation betweeñfmean, f , N ,
K andT can be derived from equation 3. In this case,

E(X) = E(X(f, N, K, T ))

= 1 − φ(
f − 0, 5

σK

) +

∫ f

−∞

ϕ(
x − f

σK

)e
x−f

T dx

whereϕ andΦ are respectively the density and repartition
function of the reduced centered normal law. SoE(X) de-
pends, not only onN andK, but on the fitness value too.
As a consequence, the setFCmean is no more represented
by a line but by a curved shape.

High temperature As predicted by our analytical study,
at high temperature (T = 0.10), theFCmean set is repre-
sented by a curved shape (see fig. 4 (a)). This curve crosses
the diagonal at point(β; β) distinctly; so it is easy to es-
timateβ (see tab. 1). Plotting the limit fitness cloudFC∗

shows that it is difficult to bypasse theβ∗ bottleneck level
for the SA at high temperature (see fig. 4 (b) and tab. 1).
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Figure 4: Fitness Cloud under SA athigh temperature:
border (min and max) and mean (with standard deviation)
(FC (a),FC∗ (b)) (NK-landscape withN = 20 andK =
15)

Let’s note that,β∗ is reached whatever the initial fitness is
(except for extreme fitness values).

Medium temperature At medium temperature (T =
0.05), the fitness cloud is roughly shared by the diagonal
line as the probability to accept deleterious mutation re-
mains significant (see fig. 5 (a)). It is easy to estimate both
β andβ∗ (see tab. 1). Theβ∗ fitness level appears to be at-
tractive on the limit fitness cloud (see fig. 5 (b) and tab. 1).
Once again,β∗ is reached whatever the initial fitness is.

Low temperature At low temperature (T = 0.01), the
greatest part of the fitness cloud is above the diagonal line as
the probability to accept deleterious mutation is small (see
fig. 6 (a)). TheFCmean curve is a curved shape; as fitness
increases, it glides slope toward the diagonal. So it is diffi-
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Figure 5: Fitness Cloud under SA atmedium temperature:
border (min and max) and mean (with standard deviation)
(FC (a),FC∗ (b)) (NK-landscape withN = 20 andK =
15)

cult to visualize point which abscissa isβ. Examining data,
we can find an interval where theFCmean curve is close to
the diagonal line (with a accuracy of 0.002) (see tab. 1). The
setFC∗

mean is roughly represented by an horizontal line ex-
cept for high fitnesses where it follows the diagonal line (see
fig. 6 (b) and tab. 1). As the constant value off∗

mean corre-
sponds to a bottleneck,β∗ stands for this value, althoughβ
is not discerned.

Cooling process The notion of system temperature is in-
trinsic to the SA process. By slowly lowering the temper-
ature of an initially random system, we encourage the ele-
ments of the system to assume an orderly, minimal energy
arrangement. In search process terms, a slow cooling can
thus lead to an optimal state. Our annealing schedule is
defined as follows: temperature starts at0.10, and drops to
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Figure 7: Limit fitness cloud under SA withcooling process: generation 50 (a), generation 1000 (b), generation 1900 (c),
generation 2450 (d) (NK-landscape withN = 20 andK = 15)

0.01 over a geometric decrements whereT = 0.95T 8. 2450
generations are performed; changes occurs each 50 gener-
ations. The cooling process is sufficiently slow such that
for each temperature an equilibrium state, where the mean
fitness no longer changes from generation to generation, is
reached. Figure 7 shows snapshots of theFC∗ cloud at gen-
erations 50, 100, 1900 and 2450. As for low temperature,
β∗ stands for the constant value off∗

mean sinceβ is not
significant. During the cooling processβ∗ increases with
generations to finally, reaches its greatest value (see tab.1).
Let’s note that the finalβ∗ value for SA (0.701) is greater
that the one for mHC (0.667).

8Experience has shown that the decrement coefficient should be be-
tween0.8 and0.99, with better results being found in the higher end of the
range

3 Fitness Cloud and neutrality : Neutral Hill
Climber

In the Fitness Cloud, a vertical slice represents the set of
fitnesses that could be reached from this set of neutrality.
Consequently theFC shows the potential interest in using
neutral operator. To implement such an operator noted nOP,
first the entire search space is partitioned according to fit-
ness, then we are able to choose at random a genotype with
a given fitness value9. So each genotype with the same
fitness are connected by an elementary neutral move. To
combine neutral exploration with local search technique, we
define theneutral Hill Climbingheuristic (so-called nHC).
First mHC is applied on the current genotypeg and the re-
sulting change,∆f = f̃ − f , in fitness is computed. If
∆f > 0, the new point is accepted; else, we obtain off-

9with an uniform law
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Figure 6: Fitness Cloud under SA atlow temperature: bor-
der (min and max) and mean (with standard deviation) (FC

(a),FC∗ (b)) (NK-landscape withN = 20 andK = 15)

spring by applying nOP to the genotypeg. Within a neutral
set there is no productive gradient information, then the gain
fitness comes from Hamming based mutation only. The re-
lation betweenf̃mean, f , N and K can be derived from
equation 3. In this case,E(X) = E(X(f, N, K)) where
X(f, N, K) is max(f, X1, . . . , XN) with Xi follows nor-
mal law N (0.5, 1√

12(K+1)
). As a consequence, the set

FCmean is represented by a curved shape. Figure 8 shows
theFCmean curve is coarsely a line except for high fitness
values where it glides slope toward the diagonal. So it is
difficult to visualize point which abscissa isβ. Examin-
ing data, we can find an interval where theFCmean curve
is close to the diagonal line with a accuracy of 0.002 (see
tab. 1). To support the bottleneck conjecture thelimit fitness
cloud is plotted (see fig. 8 (b)). According to the initial fit-
ness value we can observe two main cases about the limit

behavor of the nHC heuristic. First, for an initial fitness
belowβ∗ = 0.746 (as for SA with low temperature,β∗ is
the constant value off∗

mean), on average nHC converges
to a fitness value close toβ∗. Second, fitnesses aboveβ∗

are fixed points in the fitness space. Therefore theβ∗ fit-
ness level is a bottleneck for the nHC heuritic. In nHC,
leaving the genotype invariant instead of applying nOP, the
fitness cloud remains identical. TheFC∗ allows to show
the influence of nOP: neutral exploration allows to find bet-
ter fitnesses. Let’s note that the fitness bottleneck for nHC
(0.746) is greater that the one for both mHC (0.667) and
SA (0.701). These experiments show the potential inter-
est in using neutral operator when each plateau is a graph
connected by a neutral operator. Of course this is an ideal
case, in more realistic situations we must consider the topol-
ogy graph of neutral sets induces by hamming mutation or
a specific neutral operator. In real word problems one must
take into account the computational cost in using neutral op-
erator as well the availability of such operator. However in
many problems neutral operator may derive from specific
knowledge as symetry properties or redondancies.

Conclusion

In this paper we have presented the Offspring-Parents Fit-
ness Cloud. The Fitness Cloud shows evolvability as well
neutrality and dynamic at fitness level of local search heuris-
tic. We have used FC to formulate thebottleneck conjecture:
there is a fitness level in the NK-landscape that causes local
search process to slow down and stop. Moreover the FC is
useful in identifying the bottleneck’s location in the neigh-
bourhood of a fitness valueβ. This conjecture deals with
the average behavior of local search heuristics only. To con-
firm this conjecture, the Limit Fitness Cloud is introduced;
it gives a visual rendering of the long term behavior. The
experiments performed on NK-landscape with Hill Climb-
ing, Simulated Annealing and Neutral Hill Climbing sup-
port our conjecture. Indeed there is a fitness levelβ∗ close
to β which is difficult to bypass. FC can also represent the
neutrality of landscape. So, we have designed the Neutral
Hill Climbing (nHC) which shows how to exploit the infor-
mation about neutrality given by FC. We have found exper-
imentaly that the bottleneck for nHC is greater that the one
for both mHC and SA.
In this work exhaustive enumeration of the search space is
used; future works should address the question of how to
get FC from data collected through random sampling or dur-
ing the search process. To track the dynamics of population
based heuristics, asgenetic algorithms, notion of population
must be taken into account. The approach can be extended
to others operators than local variations, in particular we
project to draw the FC for crossover. Another extension is
to study the effect of choosing one representation: for in-
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Figure 8: Fitness Cloud under nHC: border (min and max)
and mean (with standard deviation) (FC (a), FC∗ (b))
(NK-landscape withN = 20 andK = 15)

stance, what happen to the FC when switching from Integer
coding to Gray coding ? The NK-landscapes can be use-
ful for initial investigations, but results gained on them can-
not be guaranteed to transfer to real word problems in gen-
eral. So we obviously have to study fitness cloud and the
fitness bottleneck hypothesis on other problems than NK-
landscapes.
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